Advertisement

Neurocritical Care

, Volume 30, Issue 2, pp 449–466 | Cite as

Assessment and Comparison of the Four Most Extensively Validated Prognostic Scales for Intracerebral Hemorrhage: Systematic Review with Meta-analysis

  • Tiago GregórioEmail author
  • Sara Pipa
  • Pedro Cavaleiro
  • Gabriel Atanásio
  • Inês Albuquerque
  • Paulo Castro Chaves
  • Luís Azevedo
Original Article
  • 195 Downloads

Abstract

Background/Objective

Intracerebral hemorrhage (ICH) is a devastating disorder, responsible for 10% of all strokes. Several prognostic scores have been developed for this population to predict mortality and functional outcome. The aim of this study was to determine the four most frequently validated and most widely used scores, assess their discrimination for both outcomes by means of a systematic review with meta-analysis, and compare them using meta-regression.

Methods

PubMed, ISI Web of Knowledge, Scopus, and CENTRAL were searched for studies validating the ICH score, ICH-GS, modified ICH, and the FUNC score in ICH patients. C-statistic was chosen as the measure of discrimination. For each score and outcome, C-statistics were aggregated at four different time points using random effect models, and heterogeneity was evaluated using the I2 statistic. Score comparison was undertaken by pooling all C-statistics at different time points using robust variance estimation (RVE) and performing meta-regression, with the score used as the independent variable.

Results

Fifty-three studies were found validating the original ICH score, 14 studies were found validating the ICH-GS, eight studies were found validating the FUNC score, and five studies were found validating the modified ICH score. Most studies attempted outcome prediction at 3 months or earlier. Pooled C-statistics ranged from 0.76 for FUNC functional outcome prediction at discharge to 0.85 for ICH-GS mortality prediction at 3 months, but heterogeneity was high across studies. RVE showed the ICH score retained the highest discrimination for mortality (c = 0.84), whereas the modified ICH score retained the highest discrimination for functional outcome (c = 0.80), but these differences were not statistically significant.

Conclusions

The ICH score is the most extensively validated score in ICH patients and, in the absence of superior prediction by other scores, should preferably be used. Further studies are needed to validate prognostic scores at longer follow-ups and assess the reasons for heterogeneity in discrimination.

Keywords

Cerebral hemorrhage Prognosis Decision support techniques Mortality Morbidity 

Notes

Acknowledgements

The authors wish to thank Dr Laura Stapleton for proofreading the final manuscript for clarity and conciseness.

Author Contributions

TG conceived and designed the project, acquired, analyzed and interpreted the data, and wrote the manuscript; SP, PC, GA, and IA acquired data; PCC analyzed and interpreted data; LA designed the project, analyzed, and interpreted data; all authors critically reviewed and approved the final version of the manuscript.

Source of Support

There were no sources of funding for the current study.

Compliance with Ethical Standards

Conflicts of interest

The authors declare they have no conflicts of interest.

Supplementary material

12028_2018_633_MOESM1_ESM.docx (12 kb)
Supplementary material 1 (DOCX 12 kb)

References

  1. 1.
    Van Asch CJJ, Luitse MJA, Rinkel GJE, Van Der Tweel I, Algra A, Klijn CJM. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin : a systematic review and meta-analysis. Lancet Neurol. 2017;9(2):167–76.Google Scholar
  2. 2.
    Hwang BY, Appelboom G, Kellner CP, et al. Clinical grading scales in intracerebral hemorrhage. Neurocrit Care. 2010;13(1):141–51.PubMedGoogle Scholar
  3. 3.
    Hemphill JC, Greenberg SM, Anderson CS, et al. Guidelines for the Management of Spontaneous Intracerebral Hemorrhage: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. 2015.Google Scholar
  4. 4.
    Moher D, Liberati A, Tetzlaff J, Altman DG, Altman D. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Altman DG, Royston P. What do we mean by validating a prognostic model? Stat Med. 2000;19(4):453–73.PubMedGoogle Scholar
  6. 6.
    Moons KGM, de Groot JAH, Bouwmeester W, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med. 2014;11(10):e1001744.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Hanley AJ, McNeil JB. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143:29–36.PubMedGoogle Scholar
  8. 8.
    Zhou X, Obuchowski N. Statistical methods in diagnostic medicine. New York: Blackwell Publishing, Inc.; 2002.Google Scholar
  9. 9.
    Tanner-Smith EE, Tipton E. Robust variance estimation with dependent effect sizes: practical considerations including a software tutorial in Stata and spss. Res Synth Methods. 2014;5(1):13–30.PubMedGoogle Scholar
  10. 10.
    McGinn TG, Guyatt GH, Wyer PC, et al. Users’ guides to the medical literature. JAMA. 2000;284(1):79.PubMedGoogle Scholar
  11. 11.
    Stroup DF, Berlin JA, Morton SC, et al. meta-analysis of observational studies in epidemiology: a proposal for reporting. JAMA. 2000;283(15):2008–12.PubMedGoogle Scholar
  12. 12.
    Hemphill JC, Bonovich DC, Besmertis L, Manley GT, Claiborne JS. The ICH score. Stroke. 2001;32:891–7.PubMedGoogle Scholar
  13. 13.
    Adeoye O, Haverbusch M, Woo D, et al. Is ED disposition associated with intracerebral hemorrhage mortality? Am J Emerg Med. 2011;29(4):391–5.PubMedGoogle Scholar
  14. 14.
    Appelboom G, Bruce SS, Han J, et al. Functional outcome prediction following intracerebral hemorrhage. J Clin Neurosci. 2012;19(6):795–8.PubMedGoogle Scholar
  15. 15.
    Chuang YC, Chen YM, Peng SK, Peng SY. Risk stratification for predicting 30-day mortality of intracerebral hemorrhage. Int J Qual Heal Care. 2009;21(6):441–7.Google Scholar
  16. 16.
    Clarke JL, Johnston SC, Farrant M, Bernstein R, Tong D, Hemphill JC. External validation of the ICH score. Neurocrit Care. 2004;1(1):53–60.PubMedGoogle Scholar
  17. 17.
    Creutzfeld CJ, Becker KJ, Weinstein JR, et al. Do-not-attempt-resuscitation orders and prognostic models for intraparenchymal hemorrhagelic access. Crit Care Med. 2011;39(1):158–62.Google Scholar
  18. 18.
    Del Brutto OH, Campos X. Validation of intracerebral hemorrhage scores for patients with pontine hemorrhage. Neurology. 2004;62:515–6.PubMedGoogle Scholar
  19. 19.
    Di Napoli M, Godoy DA, Campi V, et al. C-reactive protein level measurement improves mortality prediction when added to the spontaneous intracerebral hemorrhage score. Stroke. 2011;42(5):1230–6.PubMedGoogle Scholar
  20. 20.
    Faigle R, Marsh EB, Llinas RH, Urrutia VC, Gottesman RF. Race-specific predictors of mortality in intracerebral hemorrhage: differential impacts of intraventricular hemorrhage and age among Blacks and Whites. J Am Heart Assoc. 2016;5(8):1–8.Google Scholar
  21. 21.
    Garrett JS, Zarghouni M, Layton KF, Graybeal D, Daoud YA. Validation of clinical prediction scores in patients with primary intracerebral hemorrhage. Neurocrit Care. 2013;19(3):329–35.PubMedGoogle Scholar
  22. 22.
    Ghelmez D, Tuta S, Popa C, Diseases N. Prognostic factors in hypertensive. Rom J Neurol. 2013;12(4):202–5.Google Scholar
  23. 23.
    Godoy DA, Piñero G, Di Napoli M. Predicting mortality in spontaneous intracerebral hemorrhage: can modification to original score improve the prediction? Stroke. 2006;37(4):1038–44.PubMedGoogle Scholar
  24. 24.
    Hallevi H, Dar NS, Barreto AD, et al. The IVH Score: a novel tool for estimating intraventricular hemorrhage volume: Clinical and research implications. Crit Care Med. 2009;37(3):969-e1.PubMedCentralGoogle Scholar
  25. 25.
    Appelboom G, Hwang BY, Bruce SS, et al. Predicting outcome after arteriovenous malformation-associated intracerebral hemorrhage with the original ICH score. World Neurosurg. 2012;78(6):646–50.PubMedGoogle Scholar
  26. 26.
    Heeley E, Anderson CS, Woodward M, et al. Poor utility of grading scales in acute intracerebral hemorrhage: Results from the INTERACT2 trial. Int J Stroke. 2015;10(7):1101–7.PubMedGoogle Scholar
  27. 27.
    Hemphill JC, Farrant M, Neill TA. Prospective validation of the ICH Score for 12-month functional outcome. Neurology. 2009;73(14):1088–94.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Huang KB, Ji Z, Wu YM, Wang SN, Lin ZZ, Pan SY. The prediction of 30-day mortality in patients with primary pontine hemorrhage: a scoring system comparison. Eur J Neurol. 2012;19(9):1245–50.PubMedGoogle Scholar
  29. 29.
    Huang BR, Liao CC, Huang WH, et al. Prognostic factors of spontaneous intracerebral haemorrhage in haemodialysis patients and predictors of 30-day mortality. Intern Med J. 2008;38(7):568–74.PubMedGoogle Scholar
  30. 30.
    Hwang DY, Dell CA, Sparks MJ, et al. Clinician judgment vs formal scales for predicting intracerebral hemorrhage outcomes. Neurology. 2016;86(2):126–33.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Ji R, Shen H, Pan Y, et al. A novel risk score to predict 1-year functional outcome after intracerebral hemorrhage and comparison with existing scores. Crit Care. 2013;17(1466–609X (Electronic)):275.Google Scholar
  32. 32.
    Khan M, Baird GL, Elias R, et al. Comparison of intracerebral hemorrhage volume calculation methods and their impact on scoring tools. J Neuroimaging. 2017;27(1):144–8.PubMedGoogle Scholar
  33. 33.
    Lei C, Wu B, Liu M, Zhang S, Yuan R. Cerebral amyloid angiopathy-related intracerebral hemorrhage score for predicting outcome. Curr Neurovasc Res. 2016;13(2):156–62.PubMedGoogle Scholar
  34. 34.
    Masotti L, Lorenzini G, Di Napoli M, Godoy DA. Prognostic ability of four clinical grading scores in spontaneous intracerebral hemorrhage. Acta Neurol Belg. 2017;117(1):325–7.PubMedGoogle Scholar
  35. 35.
    Matchett SC, Castaldo J, Wasser TE, Baker K, Mathiesen C, Rodgers J. Predicting mortality after intracerebral hemorrhage: comparison of scoring systems and influence of withdrawal of care. J Stroke Cerebrovasc Dis. 2006;15(4):144–50.PubMedGoogle Scholar
  36. 36.
    Ariesen MJ, Algra A, van der Worp HB, Rinkel GJE. Applicability and relevance of models that predict short term outcome after intracerebral haemorrhage. J Neurol Neurosurg Psychiatry. 2005;76(6):839–44.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Muengtaweepongsa S, Seamhan B. Predicting mortality rate with ICH score in Thai intracerebral hemorrhage patients. Neurol Asia. 2013;18(2):131–5.Google Scholar
  38. 38.
    Naidech AM, Bernstein RA, Bassin SL, et al. How patients die after intracerebral hemorrhage. Neurocrit Care. 2009;11(1):45–9.PubMedGoogle Scholar
  39. 39.
    Neidert MC, Lawton MT, Mader M, et al. The AVICH score: a novel grading system to predict clinical outcome in arteriovenous malformation-related intracerebral hemorrhage. World Neurosurg. 2016;92:292–7.PubMedGoogle Scholar
  40. 40.
    Panchal HN, Shah MS, Shah DS. Intracerebral hemorrhage score and volume as an independent predictor of mortality in primary intracerebral hemorrhage patients. Indian J Surg. 2015;77(Suppl 2):302–4.PubMedGoogle Scholar
  41. 41.
    Parry-Jones AR, Abid KA, Di Napoli M, et al. Accuracy and clinical usefulness of intracerebral hemorrhage grading scores: a direct comparison in a UK population. Stroke. 2013;44(7):1840–5.PubMedGoogle Scholar
  42. 42.
    Patriota GC, Da Silva JM, Santos Barcellos ACE, et al. Determining ich score: can we go beyond? Arq Neuropsiquiatr. 2009;67(3 A):605–8.PubMedGoogle Scholar
  43. 43.
    Peng SY, Chuang YC, Kang TW, Tseng KH. Random forest can predict 30-day mortality of spontaneous intracerebral hemorrhage with remarkable discrimination. Eur J Neurol. 2010;17(7):945–50.PubMedGoogle Scholar
  44. 44.
    Romano LM, Ioli PL, Gonorazky SE, et al. Desarollo y validación de la escala predictiva de mortalidad (REC-HPC) en la hemorragia intracerebral primaria. Neurol Argentina. 2009;1(2):75–81.Google Scholar
  45. 45.
    Ruiz-Sandoval JL, Chiquete E, Romero-Vargas S, Padilla-Martínez JJ, González-Cornejo S. Grading scale for prediction of outcome in primary intracerebral hemorrhages. Stroke. 2007;38(5):1641–4.PubMedGoogle Scholar
  46. 46.
    Safatli DA, Gunther A, Schlattmann P, Schwarz F, Kalff R, Ewald C. Predictors of 30-day mortality in patients with spontaneous primary intracerebral hemorrhage. Surg Neurol Int. 2016;7(8):S510–7.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Barbieri A, Pinna C, Basso GP, et al. Specificity and reliability of prognostic indexes in intensive care evaluation: The spontaneous cerebral haemorrhage case. J Eval Clin Pract. 2009;15(2):242–5.PubMedGoogle Scholar
  48. 48.
    Stein M, Luecke M, Preuss M, Boeker DK, Joedicke A, Oertel MF. Spontaneous intracerebral hemorrhage with ventricular extension and the grading of obstructive hydrocephalus: the prediction of outcome of a special life-threatening entity. Neurosurgery. 2010;67(5):1243–51.PubMedGoogle Scholar
  49. 49.
    Stein M, Luecke M, Preuss M, Scharbrodt W, Joedicke A, Oertel MF. The prediction of 30-day mortality and functional outcome in spontaneous intracerebral hemorrhage with secondary ventricular hemorrhage: a score comparison. Acta Neurochir (Wien). 2011;112:10–2.Google Scholar
  50. 50.
    Takahashi O, Cook EF, Nakamura T, Saito J, Ikawa F, Fukui T. Risk stratification for in-hospital mortality in spontaneous intracerebral haemorrhage: a Classification and Regression Tree analysis. QJM. 2006;99(11):743–50.PubMedGoogle Scholar
  51. 51.
    Tao W-D, Wang J, Schlaug G, Liu M, Selim MH. A comparative study of fractional anisotropy measures and ICH score in predicting functional outcomes after intracerebral hemorrhage. Neurocrit Care. 2014;21(3):417–25.PubMedGoogle Scholar
  52. 52.
    Vial F, Brunser A, Lavados P, Illanes S. Intraventricular bleeding and hematoma size as predictors of infection development in intracerebral hemorrhage: a prospective cohort study. J Stroke Cerebrovasc Dis. 2016;25(11):2708–11.PubMedGoogle Scholar
  53. 53.
    Wei ZJ, Ou YQ, Li X, Li H. The 90-day prognostic value of copeptin in acute intracerebral hemorrhage. Neurol Sci. 2014;35(11):1673–9.PubMedGoogle Scholar
  54. 54.
    Weimar C, Benemann J, Diener H-C, German Stroke Study Collaboration. Development and validation of the Essen Intracerebral Haemorrhage Score. J Neurol Neurosurg Psychiatry. 2006;77(5):601–5.PubMedGoogle Scholar
  55. 55.
    Yang X, Ren W, Zu H, Dong Q. Evaluate the serum cortisol in patients with intracerebral hemorrhage. Clin Neurol Neurosurg. 2014;123:127–30.PubMedGoogle Scholar
  56. 56.
    Zahuranec DB, Morgenstern LB, Sánchez BN, Resnicow K, White DB, Hemphill JC. Do-not-resuscitate orders and predictive models after intracerebral hemorrhage. Neurology. 2010;75(7):626–33.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Ziai WC, Siddiqui AA, Ullman N, et al. Early therapy intensity level (TIL) predicts mortality in spontaneous intracerebral hemorrhage. Neurocrit Care. 2015;23(2):188–97.PubMedGoogle Scholar
  58. 58.
    Behrouz R, Hafeez S, Mutgi SA, Zakaria A, Miller CM. Hypomagnesemia in intracerebral hemorrhage. World Neurosurg. 2015;84(6):1929–32.PubMedGoogle Scholar
  59. 59.
    Zweifel C, Katan M, Schuetz P, et al. Copeptin is associated with mortality and outcome in patients with acute intracerebral hemorrhage. BMC Neurol. 2010;10:34.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Suthar N, Patel K, Saparia C, Parikh A. Study of clinical and radiological profile and outcome in patients of intracranial hemorrhage. Ann Afr Med. 2016;15(2):69–77.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Liu H, Zen Y, Li J, et al. Optimal treatment determination on the basis of haematoma volume and intra-cerebral haemorrhage score in patients with hypertensive putaminal haemorrhages: a retrospective analysis of 310 patients. BMC Neurol. 2014;14(1):141.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Bhatia R, Singh H, Singh S, et al. A prospective study of in-hospital mortality and discharge outcome in spontaneous intracerebral hemorrhage. Neurol India. 2013;61(3):244–8.PubMedGoogle Scholar
  63. 63.
    Bruce SS, Appelboom G, Piazza M, et al. A comparative evaluation of existing grading scales in intracerebral hemorrhage. Neurocrit Care. 2011;15(3):498–505.PubMedGoogle Scholar
  64. 64.
    Chen HS, Hsieh CF, Chau TT, Yang CD, Chen YW. Risk factors of in-hospital mortality of intracerebral hemorrhage and comparison of ICH scores in a Taiwanese population. Eur Neurol. 2011;66(1):59–63.PubMedGoogle Scholar
  65. 65.
    Cheung RTF, Zou LY. Use of the original, modified, or new intracerebral hemorrhage score to predict mortality and morbidity after intracerebral hemorrhage. Stroke. 2003;34(7):1717–22.PubMedGoogle Scholar
  66. 66.
    Ruiz-Sandoval JL, Chiquete E, Garate-Carrillo A, et al. Spontaneous intracerebral hemorrhage in Mexico: results from a Multicenter Nationwide Hospital-based Registry on Cerebrovascular Disease (RENAMEVASC). Rev Neurol. 2011;53(12):705–12.PubMedGoogle Scholar
  67. 67.
    Rost NS, Smith EE, Chang Y, et al. Prediction of functional outcome in patients with primary intracerebral hemorrhage: The FUNC score. Stroke. 2008;39(8):2304–9.PubMedGoogle Scholar
  68. 68.
    Garrett JS, Zarghouni M, Layton KF, Graybeal D, Daoud YA. Validation of clinical prediction scores in patients with primary intracerebral hemorrhage. Neurocrit Care. 2013;19:329–35.PubMedGoogle Scholar
  69. 69.
    Mittal MK, Lele A. Predictors of poor outcome at hospital discharge following a spontaneous intracerebral hemorrhage. Int J Neurosci. 2011;121(5):267–70.PubMedGoogle Scholar
  70. 70.
    Barret RJ, Hussain R, Coplin WM, et al. Frameless stereotactic aspiration and thrombolysis of spontaneous intracerebral hemorrhage. Neurocrit Care. 2005;3(1):237–45.Google Scholar
  71. 71.
    Brouwers HB, Chang Y, Falcone GJ, et al. Predicting hematoma expansion after primary intracerebral hemorrhage. JAMA Neurol. 2014;71(2):158–64.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Cerillo A, Vizioli L, Falivene R, Mottolese C, Bernini FP, Tedeschi G. Intracerebral hemorrhage: an attempt of statistical assessment for operability. Acta Neurol (Napoli). 1981;3(4):572–86.Google Scholar
  73. 73.
    Edwards DF, Hollingsworth H, Zazulia A, Diringer M. Artificial neural networks improve the prediction of mortality in intracerebral hemorrhage. Neurology. 1999;53(2):351–7.PubMedGoogle Scholar
  74. 74.
    Lukić S, Ćojbasić Ž, Perić Z, et al. Artificial neural networks based early clinical prediction of mortality after spontaneous intracerebral hemorrhage. Acta Neurol Belg. 2012;112(4):375–82.PubMedGoogle Scholar
  75. 75.
    Romano LM, Ioli P, Gonorazky S. Variables predictivas de letalidad y validacíon externa de la escala original de hemorragia intracerebral espontánea. Rev Neurol Argentina. 2007;32:94–9.Google Scholar
  76. 76.
    Tuhrim S, Dambrosia J, Price T, et al. Intracerebral hemorrhage: external validation and extension of a model for prediction of 30-day survival. Ann Neurol. 1991;29(6):658–63.PubMedGoogle Scholar
  77. 77.
    Tuhrim S, Horowitz D, Sacher M, Godbold J. Volume of ventricular blood is an important determinant of outcome in supratentorial intracerebral hemorrhage. Crit Care Med. 1999;27(3):617–21.PubMedGoogle Scholar
  78. 78.
    Weimar C, Roth M, Willig V, Kostopoulos P, Benemann J, Diener HC. Development and validation of a prognostic model to predict recovery following intracerebral hemorrhage. J Neurol. 2006;253(6):788–93.PubMedGoogle Scholar
  79. 79.
    Weimar C, Ziegler A, Sacco RL, Diener HC, König IR. Predicting recovery after intracerebral hemorrhage–an external validation in patients from controlled clinical trials. J Neurol. 2009;256(3):464–9.PubMedGoogle Scholar
  80. 80.
    Zorilla JP, Sousa L, Ioli P, et al. Variables predictivas de letalidad y rendimiento de la escala ReC-HPC en hemorragia intracerebral primaria en pacientes anticoagulados. Neurol Argentina. 2011;3(2):94–9.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature and Neurocritical Care Society 2018

Authors and Affiliations

  1. 1.Department of Internal MedicineVila Nova de Gaia Hospital CentreVila Nova de GaiaPortugal
  2. 2.Stroke UnitVila Nova de Gaia Hospital CentreVila Nova de GaiaPortugal
  3. 3.Intensive Care DepartmentAlgarve University Hospital CentreFaroPortugal
  4. 4.Department of Internal MedicineSão João Hospital CentrePortoPortugal
  5. 5.Stroke UnitSão João Hospital CentrePortoPortugal
  6. 6.Department of Surgery and Physiology, Faculty of MedicineUniversity of PortoPortoPortugal
  7. 7.Centre for Health Technology and Services Research and Department of Community Medicine, Information and Health Decision Sciences, Faculty of MedicineUniversity of PortoPortoPortugal

Personalised recommendations