Immunologic Research

, Volume 67, Issue 1, pp 39–47 | Cite as

Tryptophan-kynurenine profile in pediatric autoimmune hepatitis

  • Simon D. LyttonEmail author
  • Marcin Osiecki
  • MałgorzataWoźniak
  • Bożena Cukrowska
  • Aldona Wierzbicka
  • Maria Goliszek
  • Piotr Socha
  • Wojciech Janczyk
  • Dilek Dayanakli
  • Dieter Abendroth
  • Sabine Kramp
  • Kai Fechner
  • Thomas Scheper
  • Michael Mahler
  • Chelsea Bentow
  • Dimietrios Bogdanos
  • Dietmar Fuchs
  • Marek Woynarowski
Original Article


The impairment of regulatory T cells (Tregs) is a characteristic feature of autoimmune hepatitis (AIH), and the degradation of tryptophan (Trp) to kynurenine (Kyn), by gamma interferon-induced indoleamine-2,3-dioxygenase-1 (IDO-1), is a central metabolomics check point in the differentiation of Tregs. For this reason, we investigate whether or not Kyn and IDO activity is potentially useful biomarkers in pediatric AIH.

Between January 2016 and January 2017, children of AIH type-1 (AIH-1, n = 37), AIH type-2 with liver kidney microsome-1 autoantibodies (AIH-2-LKM-1, n = 8), and autoantibody-negative Wilsons Disease (WD, n = 8) and alpha-1 anti-trypsin deficiency (AATD, n = 10), were enrolled in a cross-sectional survey of Kyn and Trp levels and Kyn/Trp ratios (IDO activity) by HPLC, and neopterin levels by ELISA.

The mean Kyn and mean Kyn/Trp ratios of AIH-1 with smooth muscle antigen (SMA) 1.85 μM and 27 μmole/mmole, and AIH-2-LKM-1; 1.7 μM and 28.6 μmole/mmole were lower than that of the WD; 2.2 μM p = 0.03 and 33 μmole/mmole p = 0.02 and of AATD; 2.3 μM, p = 0.02 and 55 μM, p = 0.001. Kyn/Trp ratios of AIH relapse; 23.6 μmole/mmole were lower than Kyn/Trp ratios of AIH remission; 27.6 μmole/mmole (p < 0.05). The stage of liver disease and grade of liver biopsies in AIH-1 patients negatively correlated with the Kyn/Trp ratios.

The serum Kyn levels and Kyn/Trp ratio of AIH patients, within or below the normal range, indicate a trend of IDO activity lower than non-autoimmune WD or AATD. Prospective monitoring of serum tryptophan metabolomics in larger cohorts of pediatric AIH patients is required to confirm the apparent paradigm of weak IDO activity contributing to the Treg deficit and pathogenesis of pediatric AIH.


Pediatric autoimmune hepatitis Autoantibodies Tryptophan Kynurenine Treg cells Serum IDO activity 



type 1 autoimmune hepatitis


type II autoimmune hepatitis


alanine aminotransferase




T-regulatory cells


interferon gamma


immune fluorescence assay


anti-nuclear antigen


aspartate aminotransferase






anti-liver cytosol antigen 1


anti-liver kidney microsome 1


anti-smooth muscle antigen


anti-alpha trypsin deficiency


Wilsons Disease







We thank all the patients who kindly consented to participate in this study and the cooperation of nursing staff for the collection and storage of serum.

Financial support

The research expenses were incurred in part by SeraDiaLogistics and EB Group Sp. All material support is identified in the acknowledgements section.

Compliance with ethical standards

The study protocol conforms to the ethical guidelines of the 1975 Declaration of Helsinki as reflected in a priori approval by Ethics Committee of the Children’s Memorial Health Institute no 192/KBE/2015 and 231/KBE/2015.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Doherty DG. Immunity, tolerance and autoimmunity in the liver: a comprehensive review. J Autoimmun. 2018;66:60–75.CrossRefGoogle Scholar
  2. 2.
    Wawman RE, Bartlett H, Oo YH. Regulatory T cell metabolism in the hepatic microenvironment. Front Immunol. 2018;8:1889. Scholar
  3. 3.
    Grant CR, Holder BS, Liberal R, Heneghan MA, Ma Y, Mieli-Vergani G, et al. Immunosuppressive drugs affect interferon (IFN)-γ and programmed cell death 1 (PD-1) kinetics in patients with newly diagnosed autoimmune hepatitis. Clin Exp Immunol. 2017;189:71–82.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Behairy BE, El-Araby HA, Abd El Kader HH, et al. Assessment of intrahepatic regulatory T cells in children with autoimmune hepatitis. Ann Hepatol. 2016;15:682–90.PubMedGoogle Scholar
  5. 5.
    Xue Y, Michalopoulos G. Tregs: a therapeutic target for the treatment of portal fibrosis? Dig Dis Sci. 2015;60:1878–80.CrossRefPubMedGoogle Scholar
  6. 6.
    Alvarez F, Berg PA, Bianchi FP. International autoimmune hepatitis group report: review of criteria for diagnosis of autoimmune hepatitis. J Hepatol. 1999;31:929e938.CrossRefGoogle Scholar
  7. 7.
    Manns MP, Czaja AJ, Gorham JD, Krawitt EL, Mieli-Vergani G, Vergani D, et al. Diagnosis and management of autoimmune hepatitis. Hepatology. 2010;51:2193–213.CrossRefPubMedGoogle Scholar
  8. 8.
    Hennes EM, Zeniya M, Czaja AI, Pares A, Dalekos GN, et al. International autoimmune hepatitis group simplified criteria for the diagnosis of autoimmune hepatitis. Hepatology. 2008;48:169–76.CrossRefPubMedGoogle Scholar
  9. 9.
    EASL Clinical Practice Guidelines. Autoimmune hepatitis European association for the study of the liver. J Hepatol. 2015;63:971–1004.CrossRefGoogle Scholar
  10. 10.
    Mieli-Vergani G, Vergani D, Baumann U, Czubkowski P, Debray D, Dezsofi A, et al. Diagnosis and management of paediatric autoimmune liver disease: ESPGHAN hepatology committee position statement. J Pediatr Gastroenterol Nutr. 2017;66(2):345–60.CrossRefGoogle Scholar
  11. 11.
    Floreani A, Liberal R, Vergani D, Mieli-Vergani G. Autoimmune hepatitis: contrast and comparison in children and adults-a comprehensive review. J Autoimmun. 2013;46:7–16.CrossRefPubMedGoogle Scholar
  12. 12.
    Healey R, Corless L, Gordin P, Holding S. Do anti-smooth muscle antibodies predict development of autoimmune hepatitis in patients with normal liver function? A retrospective cohort review. Autoimmun Rev. 2016;15:668–72.CrossRefPubMedGoogle Scholar
  13. 13.
    Liberal R, Vergani D, Mieli-Vergani G. Update on autoimmune hepatitis. J Clin Trans Hepatol. 2015;3:42–52.CrossRefGoogle Scholar
  14. 14.
    Woynarowski M, Woźniak M, Cukrowska B, Cukrowska B, Wierzbicka A, Lytton SD. Autoantibody profile of adult patients with childhood onset type 2 autoimmune hepatitis. J Clin Lab Anal. 2016;30(5):590–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Duchini A, McHutchison JG, Pockros PJ. LKM-positive autoimmune hepatitis in the western United States: a case series. Am J Gastroenterol. 2000;95:3238–41.CrossRefPubMedGoogle Scholar
  16. 16.
    Gregorio GV, Portmann B, Reid F, Donaldson PT, Doherty DG, McCartney M, et al. Autoimmune hepatitis in childhood: a 20-year experience. Paedatic J Clin Transl Hepatol. 2015;42–52(43):3.Google Scholar
  17. 17.
    Gatselis NK, Zachou K, Koukoulis GK, Dalekos GN. Autoimmune hepatitis, one disease with many faces: etiopathogenetic, clinico-laboratory and histological characteristics. World J Gastroenterol. 2015;21:60–83.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bogdanos DP, Invernizzi P, Mackay IR, Vergani D. Autoimmune liver serology: current diagnostic and clinical challenges. World J Gastroenterol. 2008;14:3374–87.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Villata D, Girolami E, Alessio MG, et al. Autoantibody profiling in a cohort of pediatric and adult patients with autoimmune hepatitis. J Clin Lab Anal. 2016;30:41–6.CrossRefGoogle Scholar
  20. 20.
    Paolo M, Cumali E, Luigi M, Ersan O Schiano T, Yoshida EM, Heurgué-Berlot, et al. Clinical implications of antimitochondrial antibody seropositivity in autoimmune hepatitis: a multicentre study. Eur J Gastroenterol Hepatol. 2017;29:777–80.CrossRefGoogle Scholar
  21. 21.
    Roggenbruck D, Mytilnaiou MG, Lapin SV, Rheinhold D, Conrad K. Asialoglycoprotein receptor (ASGPR): a peculiar target of liver-specific autoimmunity. Autoimmun Highlights. 2012;3:119–25.CrossRefGoogle Scholar
  22. 22.
    Norman GL, Yang CY, Ostendorff HP, Lim MJ, Wang J, et al. Anti-Kelch-like 12 and anti-hexokinase 1: novel autoantibodies in primary biliary cirrhosis. Liver Int. 2015;35:642–51.CrossRefPubMedGoogle Scholar
  23. 23.
    Lytton SD, Berg U, Nemeth A, Ingelman-Sundberg M. Autoantibodies against cytochrome P450s in sera of children treated with immunosuppressive drugs. Clin Exp Immunol. 2012;127:293–302.CrossRefGoogle Scholar
  24. 24.
    Woynarowski M, Nemeth A, Baruch Y. Budesonide versus prednisone with azathioprine for the treatment of autoimmune hepatitis in children and adolescents. J Pediatr. 2013;163:1347–53.CrossRefPubMedGoogle Scholar
  25. 25.
    Batts KP, Ludwig J. Chronic hepatitis. An update on terminology and reporting. Am J Surg Pathol. 1995;19:1409–17.CrossRefPubMedGoogle Scholar
  26. 26.
    Goodman GD. Grading and staging systems for inflammation and fibrosis in chronic liver diseases. J Hepatol. 2007;47:598–607.CrossRefPubMedGoogle Scholar
  27. 27.
    Roberts EA, Schilsky ML. Diagnosis and treatment of Wilson Disease: an update. Hepatology. 2008;47:2090–111.CrossRefGoogle Scholar
  28. 28.
    Lauletta G, Russi S, Pavone F, Marzullo A, Tampoia A, Sansonno D, et al. Autoimmune hepatitis: factors involved in initiation and methods of diagnosis and treatment. Crit Rev Immunol. 2016;36:407.428.CrossRefPubMedGoogle Scholar
  29. 29.
    Dhaliwal HK, Hoeroldt BS, Dube AK, McFarlane E, Underwood JC, Karajeh MA, et al. Long-term prognostic significance of persisting histological activity despite biochemical remission in autoimmune hepatitis. Am J Gastroenterol. 2015;110:993–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Aizawaa Y, Abea H, Sugitaa T, Sekia N, Chuganjic Y, Furumotoc Y, et al. Centrilobular zonal necrosis as a hallmark of a distinctive subtype of autoimmune hepatitis. Eur J Gastroenterol Hepatol. 2016;28:391–7.Google Scholar
  31. 31.
    Abdel-Razik A, Mousa N, Zakaria S, Elhelaly R, Elzehery R, Zalata K, et al. New predictive factors of poor response to therapy in autoimmune hepatitis: role of mean platelet volume. Eur J Gastroenterol Hepatol. 2017;29:1373–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Diestelhorst J, Junge N, Jonigk D, Schlue J, Falk CS, Manns MP, et al. Baseline IL-2 and the AIH score can predict the response to standard therapy in paediatric autoimmune hepatitis. Sci Rep. 2018;8:419.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Dounay AB, Tuttle JB, Verhoest PR. Challenges and opportunities in the discovery of new therapeutics targeting the kynurenine pathway. J Med Chem. 2015;58:8762–82.CrossRefPubMedGoogle Scholar
  34. 34.
    Zuo H, Ueland PM, Ulvik A, Eussen S, et al. Plasma biomarkers of inflammation, the kynurenine pathway, and risks of all-cause, cancer, and cardiovascular disease mortality: the Hordaland health study. Am J Epidemiol. 2016;183:249–58.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lippens C, Duraes FV, Dubrot J, Brighouse D, Lacroix M, Irla M, et al. IDO-orchestrated crosstalk between pDCs and Tregs inhibits autoimmunity. J Autoimmun. 2016;75:39–49.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Mancuso R, Hernis A, Agostini S, Rovaris M, Caputo D, Fuchs D, et al. Indoleamine 2,3 dioxygenase (IDO) expression and activity in relapsing-remitting multiple sclerosis. PlosOne. 2015;10:e0130715. Scholar
  37. 37.
    Llamas-Velasco M, Bonay P, José Concha-Garzón M, Corvo-Villén L, Cibrián D, Sanguino-Pascual A, et al. Immune cells from patients with psoriasis are defective in inducing indoleamine 2,3-dioxygenase expression in response to inflammatory stimuli. Br J Dermatol. 2017;176:695–704.CrossRefPubMedGoogle Scholar
  38. 38.
    Bernard NJ. Rheumatoid arthritis: who knows why regulatory T cells are defective in RA. IDO Nat Rev Rheumatol. 2014;10:381–96.CrossRefPubMedGoogle Scholar
  39. 39.
    Konstantia-Maria C, Shukla D, Keteepe-Arachi T, Sekel JA, Fuchs D, Pussey CD, et al. Regulation of myeloperoxidase-specific T cell responses during disease remission in anti-neutrophil cytoplasmic antibody–associated vasculitis: the role of Treg cells and tryptophan degradation. Arthritis Rheum. 2010;62:1539–48.CrossRefGoogle Scholar
  40. 40.
    Palabiyik SS, Keles S, Girgin G, Arpali-Tanas E, Topdagi E, Baydar T. Neopterin release and tryptophan degradation in patients with uveitis. Curr Eye Res. 2016;41:1513–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Kaden J, Abendroth DE, Völp M, Marzinzig M, Wesslau C. Causes and prognostic value of pre-transplant elevated kynurenine level in kidney allograft recipients. Ann Transplant. 2014;19:51–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Kaden J, Abendroth D, Völp A, Marzinzig M. Dynamics and diagnostic relevance of kynurenine serum level after kidney transplantation. Ann Transpl. 2015;20:327–37.Google Scholar
  43. 43.
    Yoshio S, Sugiyama M, Shoji H, et al. Indoleamine-2,3-dioxygenase as an effector and an indicator of protective immune responses in patients with acute hepatitis B. Hepatol. 2016;63:3–94.CrossRefGoogle Scholar
  44. 44.
    Jenabian MA, Patel M, Kema I, Kanagaratham C, Radzioch D, Thébault P, et al. Distinct tryptophan catabolism and Th17/Treg balance in HIV progressors and elite controllers. PLoS One. 2013;8:e78146. Scholar
  45. 45.
    Bipath P, Levay PF, Viljoen M. The kynurenine pathway activities in a sub-Saharan HIV/AIDS population. BMC Infect Dis. 2015;15:346–61.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Mehraj J, Routy JP. Tryptophan catabolism in chronic viral infections: handling uninvited guests. Int J Tryptophan Res. 2015;8:41–6.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Zoller H, Jenal A, Staettermayer AF, Schroecksnadel S, Ferenci P, Fuchs D. Tryptophan breakdown in patients with HCV infection is influenced by IL28B polymorphism. Pharmaceuticals. 2015;8:337–50.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Danikowski KM, Jayaraman S, Prabhaka BS. Regulatory T cells in multiple sclerosis and myasthenia gravis. J Neuroinflammation. 2017;14:117–33.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Geisler S, Mayersbach P, Becker K, Schennach H, Fuchs D, Gostner JM. Serum tryptophan, kynurenine, phenylalanine, tyrosine and neopterin concentrations in 100 healthy blood donors. Pteridines. 2015;26:31–6.CrossRefGoogle Scholar
  50. 50.
    Schröcksnadel K, Wirleitner B, Winkler C, Fuchs D. Monitoring tryptophan metabolism in chronic immune activation. Clin Chim Acta. 2016;364:82–90.CrossRefGoogle Scholar
  51. 51.
    Gibson RN, Donlan JD, Ditchfield MR, Bhathal PS. Duplex Doppler ultrasound of the ligamentum teres and portal vein: a clinically useful adjunct in the evaluation of patients with known or suspected chronic liver disease or portal hypertension. J Gastroenterol Hepatol. 1991;6:61–5.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Simon D. Lytton
    • 1
    Email author
  • Marcin Osiecki
    • 2
    • 3
  • MałgorzataWoźniak
    • 2
    • 3
  • Bożena Cukrowska
    • 2
    • 3
  • Aldona Wierzbicka
    • 2
    • 3
  • Maria Goliszek
    • 2
    • 3
  • Piotr Socha
    • 2
    • 3
  • Wojciech Janczyk
    • 2
    • 3
  • Dilek Dayanakli
    • 3
  • Dieter Abendroth
    • 4
  • Sabine Kramp
    • 5
  • Kai Fechner
    • 5
  • Thomas Scheper
    • 5
  • Michael Mahler
    • 6
  • Chelsea Bentow
    • 5
  • Dimietrios Bogdanos
    • 6
  • Dietmar Fuchs
    • 7
  • Marek Woynarowski
    • 2
    • 3
  1. 1.SeraDiaLogisticsMunichGermany
  2. 2.Children’s Memorial Health InstituteWarsawPoland
  3. 3.Zentrum für Chirurgie Universitätsklinikum Universität UlmULMGermany
  4. 4.Division of Biological Chemistry, Biocenter Innsbruck Medical UniversityCenter for Chemistry and BiomedicineInnsbruckAustria
  5. 5.Euroimmun AGLübeckGermany
  6. 6.Department of Rheumatology and Clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health SciencesUniversity of ThessalyLarissaGreece
  7. 7.Inova DiagnosticsSan DiegoUSA

Personalised recommendations