Advertisement

Catalase expression of Propionibacterium acnes may contribute to intracellular persistence of the bacterium in sinus macrophages of lymph nodes affected by sarcoidosis

  • Kurara Yamamoto
  • Keisuke Uchida
  • Asuka Furukawa
  • Tomoki Tamura
  • Yuki Ishige
  • Mariko Negi
  • Daisuke Kobayashi
  • Takashi Ito
  • Tomoya Kakegawa
  • Akira Hebisawa
  • Nobuyasu Awano
  • Tamiko Takemura
  • Tomonari Amano
  • Takumi Akashi
  • Yoshinobu EishiEmail author
Original Article
  • 25 Downloads

Abstract

Bacterial catalase is important for intracellular survival of the bacteria. This protein of Propionibacterium acnes, one of possible causes of sarcoidosis, induces hypersensitive Th1 immune responses in sarcoidosis patients. We examined catalase expression in cultured P. acnes isolated from 19 sarcoid and 18 control lymph nodes and immunohistochemical localization of the protein in lymph nodes from 43 sarcoidosis and 102 control patients using a novel P. acnes-specific antibody (PAC) that reacts with the catalase protein, together with the previously reported P. acnes-specific PAB and TIG antibodies. High catalase expression of P. acnes cells was found during stationary phase in more isolates from sarcoid than from non-sarcoid lymph nodes and was associated with bacterial survival under H2O2-induced oxidative stress. In many sarcoid and some control lymph nodes, catalase expression was detected at the outer margins of PAB-reactive Hamazaki-Wesenberg (HW) bodies in sinus macrophages, the same location as catalase expression on the surface of cultured P. acnes and the same distribution as bacterial cell membrane-bound lipoteichoic acid in HW bodies. Some or no catalase expression was detected in sarcoid granulomas with PAB reactivity or in clustered paracortical macrophages packed with many PAB-reactive small-round bodies. HW bodies expressing catalase may be persistent P. acnes in sinus macrophages whereas PAB-reactive small-round bodies with undetectable catalase may be activated P. acnes proliferating in paracortical macrophages. Intracellular proliferation of P. acnes in paracortical macrophages may lead to granuloma formation by this commensal bacterium in sarcoidosis patients with Th1 hypersensitivity to certain P. acnes antigens, including catalase.

Keywords

Sarcoidosis Propionibacterium acnes Catalase Monoclonal antibody 

Notes

Acknowledgments

We gratefully acknowledge Dr. Y. Hara and Dr. T. Suzuki for their advice regarding the study design. We thank Ms. Y. Suzuki, Ms. M. Yoshizaki, and Ms. M. Sakaguchi for their technical assistance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Hunninghake GW, Costabel U, Ando M, Baughman R, Cordier JF, du Bois R, et al. ATS/ERS/WASOG statement on sarcoidosis. American Thoracic Society/European Respiratory Society/World Association of Sarcoidosis and other Granulomatous Disorders. Sarcoidosis Vasc Diffuse Lung Dis. 1999;16:149–73.Google Scholar
  2. 2.
    McGrath DS, Goh N, Foley PJ, du Bois RM. Sarcoidosis: genes and microbes—soil or seed? Sarcoidosis Vasc Diffuse Lung Dis. 2001;18:149–64http://www.ncbi.nlm.nih.gov/pubmed/11436535.
  3. 3.
    du Bois RM, Goh N, McGrath D, Cullinan P. Is there a role for microorganisms in the pathogenesis of sarcoidosis? J Intern Med. 2003;253:4–17 http://www.ncbi.nlm.nih.gov/pubmed/12588534.
  4. 4.
    Drake WP, Newman LS. Mycobacterial antigens may be important in sarcoidosis pathogenesis. Curr Opin Pulm Med. 2006;12:359–63.  https://doi.org/10.1097/01.mcp.0000239554.01068.94.CrossRefGoogle Scholar
  5. 5.
    Homma JY, Abe C, Chosa H, Ueda K, Saegusa J, Nakayama M, et al. Bacteriological investigation on biopsy specimens from patients with sarcoidosis. Jpn J Exp Med. 1978;48:251–5 http://www.ncbi.nlm.nih.gov/pubmed/713130.
  6. 6.
    Abe C, Iwai K, Mikami R, Hosoda Y. Frequent isolation of Propionibacterium acnes from sarcoidosis lymph nodes. Zentralbl Bakteriol Mikrobiol Hyg A. 1984;256:541–7 http://www.ncbi.nlm.nih.gov/pubmed/6377763.
  7. 7.
    Ishige I, Usui Y, Takemura T, Eishi Y. Quantitative PCR of mycobacterial and propionibacterial DNA in lymph nodes of Japanese patients with sarcoidosis. Lancet. 1999;354:120–3.  https://doi.org/10.1016/S0140-6736(98)12310-3.CrossRefGoogle Scholar
  8. 8.
    Zhou Y, Wei Y, Zhang Y, Du S, Baughman RP, Li H. Real-time quantitative reverse transcription-PCR to detect propionibacterial ribosomal RNA in the lymph nodes of Chinese patients with sarcoidosis. Clin Exp Immunol. 2015:511–7.  https://doi.org/10.1111/cei.12650.
  9. 9.
    Yamada T, Eishi Y, Ikeda S, Ishige I, Suzuki T, Takemura T, et al. In situ localization of Propionibacterium acnes DNA in lymph nodes from sarcoidosis patients by signal amplification with catalysed reporter deposition. J Pathol. 2002.  https://doi.org/10.1002/path.1243.
  10. 10.
    Negi M, Takemura T, Guzman J, Uchida K, Furukawa A, Suzuki Y, et al. Localization of Propionibacterium acnes in granulomas supports a possible etiologic link between sarcoidosis and the bacterium. Mod Pathol. 2012;25:1284–97.  https://doi.org/10.1038/modpathol.2012.80.CrossRefGoogle Scholar
  11. 11.
    Eishi Y. Etiologic link between sarcoidosis and Propionibacterium acnes. Respir Investig. 2013;51:56–68.  https://doi.org/10.1016/j.resinv.2013.01.001.CrossRefGoogle Scholar
  12. 12.
    Eishi Y, Etiologic aspect of sarcoidosis as an allergic endogenous infection caused by propionibacterium acnes, Biomed Res Int 2013 (2013). doi: https://doi.org/10.1155/2013/935289.
  13. 13.
    Furusawa H, Suzuki Y, Miyazaki Y. Th1 and Th17 immune responses to viable Propionibacterium acnes in patients with sarcoidosis. Respir Investig. 2012;50:104–9.  https://doi.org/10.1016/j.resinv.2012.07.001.CrossRefGoogle Scholar
  14. 14.
    Ebe Y, Ikushima S, Yamaguchi T, Kohno K, Azuma A, Sato K, et al. Proliferative response of peripheral blood mononuclear cells and levels of antibody to recombinant protein from Propionibacterium acnes DNA expression library in Japanese patients with sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2000;17:256–65.Google Scholar
  15. 15.
    Yorozu P, Furukawa A, Uchida K, Akashi T, Kakegawa T, Ogawa T, et al. Propionibacterium acnes catalase induces increased Th1 immune response in sarcoidosis patients. Respir Investig. 2015;53:161–9.  https://doi.org/10.1016/j.resinv.2015.02.005.CrossRefGoogle Scholar
  16. 16.
    Srinivasa Rao PS, Yamada Y, Leung KY. A major catalase (KatB) that is required for resistance to H2O2 and phagocyte-mediated killing in Edwardsiella tarda. Microbiology. 2003;149:2635–44.  https://doi.org/10.1099/mic.0.26478-0.CrossRefGoogle Scholar
  17. 17.
    Ishige I, Eishi Y, Takemura T, Kobayashi I, Nakata K, Tanaka I, et al. Propionibacterium acnes is the most common bacterium commensal in peripheral lung tissue and mediastinal lymph nodes from subjects without sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2005;22:33–42.Google Scholar
  18. 18.
    Furukawa A, Uchida K, Ishige Y, Ishige I, Kobayashi I, Takemura T, et al. Characterization of Propionibacterium acnes isolates from sarcoid and non-sarcoid tissues with special reference to cell invasiveness, serotype, and trigger factor gene polymorphism. Microb Pathog. 2009;46:80–7.  https://doi.org/10.1016/j.micpath.2008.10.013.CrossRefGoogle Scholar
  19. 19.
    Minegishi K, Watanabe T, Furukawa A, Uchida K, Suzuki Y, Akashi T, et al. Genetic profiles of Propionibacterium acnes and identification of a unique transposon with novel insertion sequences in sarcoid and non-sarcoid isolates. Sci Rep. 2015;5:9832.  https://doi.org/10.1038/srep09832.CrossRefGoogle Scholar
  20. 20.
    Minegishi K, Aikawa C, Furukawa A, Watanabe T, Nakano T, Ogura Y, et al. Complete genome sequence of a Propionibacterium acnes isolate from a sarcoidosis patient. Genome Announc. 2013;1:e00016-12.  https://doi.org/10.1128/genomeA.00016-12.CrossRefGoogle Scholar
  21. 21.
    Harlow EL, Lane D. Antibodies: a laboratory manual. New York: Cold Spring Harbor Laboratory Press; 1988.  https://doi.org/10.1016/0968-0004(89)90307-1.Google Scholar
  22. 22.
    Rajakaruna GA, Negi M, Uc K, Sekine M, Furukawa A. Localization and density of Porphyromonas gingivalis and Tannerella forsythia in gingival and subgingival granulation tissues affected by chronic or aggressive periodontitis, (2018) 1–13. doi: https://doi.org/10.1038/s41598-018-27766-7.
  23. 23.
    Suzuki Y, Uchida K, Takemura T, Sekine M, Tamura T, Furukawa A, et al. Propionibacterium acnes-derived insoluble immune complexes in sinus macrophages of lymph nodes affected by sarcoidosis. PLoS One. 2018;13:1–23.  https://doi.org/10.1371/journal.pone.0192408.Google Scholar
  24. 24.
    Dréno B, Pécastaings S, Corvec S, Veraldi S, Khammari A, Roques C. Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: a brief look at the latest updates. J Eur Acad Dermatol Venereol. 2018;32(Suppl 2):5–14.  https://doi.org/10.1111/jdv.15043. CrossRefGoogle Scholar
  25. 25.
    Sowmiya M, Malathi J, Swarnali S, Priya J, Therese K, Madhavan H. A study on the characterization of Propionibacterium acnes isolated from ocular clinical specimens. Indian J Med Res. 2015;142:438.  https://doi.org/10.4103/0971-5916.169209.CrossRefGoogle Scholar
  26. 26.
    Holland C, Mak TN, Zimny-Arndt U, Schmid M, Meyer TF, Jungblut PR, Bruggemann H. Proteomic identification of secreted proteins of Propionibacterium acnes, BMC Microbiol 10 (2010). doi:Artn 230\rDoi  https://doi.org/10.1186/1471-2180-10-230.
  27. 27.
    Prapagdee B, Eiamphungporn W, Saenkham P. Analysis of growth phase regulated KatA and CatE and their physiological roles in determining hydrogen peroxide resistance in Agrobacterium tumefaciens, 237 (2004) 219–226. doi: https://doi.org/10.1016/j.femsle.2004.06.035.
  28. 28.
    Eshghi A, Lourdault K, Murray GL, Bartpho T, Sermswan RW, Picardeau M, et al. Leptospira interrogans catalase is required for resistance to H2O2 and for virulence. Infect Immun. 2012;80:3892–9.  https://doi.org/10.1128/IAI.00466-12.CrossRefGoogle Scholar
  29. 29.
    Ng VH, Cox JS, Sousa AO, MacMicking JD, McKinney JD. Role of KatG catalase-peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst. Mol Microbiol. 2004;52:1291–302.  https://doi.org/10.1111/j.1365-2958.2004.04078.x.CrossRefGoogle Scholar
  30. 30.
    Elkins JG, Hassett DJ, Stewart PS, Schweizer HP, McDermott TR. Protective role of catalase in Pseudomonas aeruginosa biofilm resistance to hydrogen peroxide. Appl Environ Microbiol. 1999;65:4594–600 http://aem.asm.org/content/65/10/4594%5Cn http://aem.asm.org/content/65/10/4594.full.pdf.
  31. 31.
    Howell ML, Alsabbagh E, Ma JF, Ochsner UA, Klotz MG, Beveridge TJ, et al. AnkB, a periplasmic ankyrin-like protein in Pseudomonas aeruginosa, is required for optimal catalase B (KatB) activity and resistance to hydrogen peroxide. J Bacteriol. 2000;182:4545–56 http://www.ncbi.nlm.nih.gov/pubmed/10913088.
  32. 32.
    Das D, Bishayi B. Staphylococcal catalase protects intracellularly survived bacteria by destroying H2O2 produced by the murine peritoneal macrophages. Microb Pathog. 2009;47:57–67.  https://doi.org/10.1016/j.micpath.2009.04.012.CrossRefGoogle Scholar
  33. 33.
    Tsai H-H, Lee W-R, Wang P-H, Cheng K-T, Chen Y-C, Shen S-C. Propionibacterium acnes-induced iNOS and COX-2 protein expression via ROS-dependent NF-κB and AP-1 activation in macrophages. J Dermatol Sci. 2013;69:122–31.  https://doi.org/10.1016/j.jdermsci.2012.10.009.CrossRefGoogle Scholar
  34. 34.
    Ichise N, Hirota K, Ichihashi D, Nodasaka Y, Morita N, Okuyama H, et al. H2O2 tolerance of Vibrio rumoiensis S-1(T) is attributable to the cellular catalase activity. J Biosci Bioeng. 2008;106:39–45.  https://doi.org/10.1263/jbb.106.39.CrossRefGoogle Scholar
  35. 35.
    Hanaoka Y, Takebe F, Nodasaka Y, Hara I, Matsuyama H, Yumoto I. Growth-dependent catalase localization in Exiguobacterium oxidotolerans T-2-2T reflected by catalase activity of cells. PLoS One. 2013;8:e76862.  https://doi.org/10.1371/journal.pone.0076862.CrossRefGoogle Scholar
  36. 36.
    Carr I. Sarcoid macrophage giant cells. Ultrastructure and lysozyme content. Virchows Arch B Cell Pathol Incl Mol Pathol. 1980;32:147–55.CrossRefGoogle Scholar
  37. 37.
    Hoffmann A, Bukau B, Kramer G. Structure and function of the molecular chaperone Trigger Factor. Biochim Biophys Acta. 2010;1803:650–61.  https://doi.org/10.1016/j.bbamcr.2010.01.017.
  38. 38.
    Yuan Y, Crane DD, Iii CEB, Stationary phase-associated protein expression in Mycobacterium tuberculosis: function of the mycobacterial α-crystallin homolog, 178 (1996) 4484–4492.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Kurara Yamamoto
    • 1
  • Keisuke Uchida
    • 2
  • Asuka Furukawa
    • 1
  • Tomoki Tamura
    • 2
  • Yuki Ishige
    • 1
  • Mariko Negi
    • 1
  • Daisuke Kobayashi
    • 1
  • Takashi Ito
    • 1
  • Tomoya Kakegawa
    • 1
  • Akira Hebisawa
    • 3
  • Nobuyasu Awano
    • 4
  • Tamiko Takemura
    • 5
  • Tomonari Amano
    • 6
  • Takumi Akashi
    • 2
  • Yoshinobu Eishi
    • 1
    Email author
  1. 1.Department of Human Pathology, Graduate School and Faculty of MedicineTokyo Medical and Dental UniversityBunkyo-kuJapan
  2. 2.Division of Surgical PathologyTokyo Medical and Dental University HospitalBunkyo-kuJapan
  3. 3.Clinical Research Center and Pathology DivisionNational Hospital Organization Tokyo National HospitalKiyose-siJapan
  4. 4.Division of Clinical Respiratory MedicineJapanese Red Cross Medical CenterShibuya-kuJapan
  5. 5.Division of PathologyJapanese Red Cross Medical CenterShibuya-kuJapan
  6. 6.Division of PathologyTokyo Kita Medical CenterKita-kuJapan

Personalised recommendations