Immunologic Research

, Volume 66, Issue 6, pp 710–722 | Cite as

The paramount role of cytokines and chemokines in papillary thyroid cancer: a review and experimental results

  • Poupak Fallahi
  • Silvia Martina Ferrari
  • Simona Piaggi
  • Michaela Luconi
  • Giulia Cantini
  • Stefania Gelmini
  • Giusy Elia
  • Ilaria Ruffilli
  • Alessandro AntonelliEmail author


Our study demonstrates that (C-X-C motif) ligand 9 and 11 (CXCL9, CXCL11) chemokines were absent basally in non-neoplastic thyroid (TFC) and papillary thyroid carcinoma (PTC) cells. Interferon (IFN)γ induced the chemokine secretion in TFC and PTC, while tumor necrosis factor (TNF)α induced it only in PTC. IFNγ+TNFα induced a synergistic chemokines release in PTC, and at a lower level in TFC. Peroxisome proliferator-activated receptor (PPAR)γ agonists suppressed dose-dependently IFNγ+TNFα-induced chemokine release in TFC, while stimulated it in PTC. PPARγ knocking down, by RNA interference technique in PTC cells, abolished the effect of PPARγ agonists on chemokines release. In PTC cells, PPARγ agonists reduced proliferation, and CXCL9 or CXCL11 (100 and 500 pg/mL) reduced proliferation and migration (P < 0.01, for all). In conclusion, in PTC cells: (a) IFNγ+TNFα induced a marked release of CXCL9 and CXCL11; (b) PPARγ agonists stimulated CXCL9 and CXCL11 secretion, while inhibited proliferation; (c) CXCL9 and CXCL11 inhibited proliferation and migration. The use of CXCL9 or CXCL11 as antineoplastic agents in PTC remains to be explored.


• IFNγ and IFNγ+TNFα induce dose-dependently CXCL9 (and less CXCL11) in PTC cells.

• Rosi and Pio dose-dependently inhibit the PTC cells proliferation.

• Rosi and Pio (at variance of normal TFC) stimulate CXCL9 or CXCL11 secretion.

• CXCL9 or CXCL11 induce a significant antiproliferative effect in PTC cells.

• Chemokines induced by IFNγ (CXCL9 or CXCL11) inhibit migration in PTC cells.


CXCL9 CXCL11 Papillary thyroid cancer PPARγ CXCL10 



We thank Dr. Michaela Francalanci for her contribution in the realization of siRNA studies.


This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of Interests

The authors declare that they have no conflict of interest.


  1. 1.
    Soejima K, Rollins BJ. A functional IFN-gamma-inducible protein-10/CXCL10-specific receptor expressed by epithelial and endothelial cells that is neither CXCR3 nor glycosaminoglycan. J Immunol. 2001;167:6576–82.CrossRefGoogle Scholar
  2. 2.
    Kawada K, Sonoshita M, Sakashita H, Takabayashi A, Yamaoka Y, Manabe T, et al. Pivotal role of CXCR3 in melanoma cell metastasis to lymph nodes. Cancer Res. 2004;64:4010–7.CrossRefGoogle Scholar
  3. 3.
    Suyama T, Furuya M, Nishiyama M, Kasuya Y, Kimura S, Ichikawa T, et al. Up-regulation of the interferon gamma (IFN-gamma)-inducible chemokines IFN-inducible T-cell alpha chemoattractant and monokine induced by IFN-gamma and of their receptor CXC receptor 3 in human renal cell carcinoma. Cancer. 2005;103:258–67.CrossRefGoogle Scholar
  4. 4.
    Mantovani A, Savino B, Locati M, Zammataro L, Allavena P, Bonecchi R. The chemokine system in cancer biology and therapy. Cytokine Growth Factor Rev. 2010;21:27–39.CrossRefGoogle Scholar
  5. 5.
    Melillo RM, Castellone MD, Guarino V, De Falco V, Cirafici AM, Salvatore G, et al. The RET/PTC-RAS-BRAF linear signaling cascade mediates the motile and mitogenic phenotype of thyroid cancer cells. J Clin Invest. 2005;115:1068–81 (Retracted Article; Citation for this retraction: J Clin Invest 2016;126:1603).CrossRefGoogle Scholar
  6. 6.
    Puxeddu E, Knauf JA, Sartor MA, Mitsutake N, Smith EP, Medvedovic M, et al. RET/PTC-induced gene expression in thyroid PCCL3 cells reveals early activation of genes involved in regulation of the immune response. Endocr Relat Cancer. 2005;12:319–34.CrossRefGoogle Scholar
  7. 7.
    Antonelli A, Ferrari SM, Fallahi P, Frascerra S, Piaggi S, Gelmini S, et al. Dysregulation of secretion of CXC alpha-chemokine CXCL10 in papillary thyroid cancer: modulation by peroxisome proliferator-activated receptor-gamma agonists. Endocr Relat Cancer. 2009;16:1299–311.CrossRefGoogle Scholar
  8. 8.
    McCall KD, Harii N, Lewis CJ, Malgor R, Kim WB, Saji M, et al. High basal levels of functional toll-like receptor 3 (TLR3) and noncanonical Wnt5a are expressed in papillary thyroid cancer and are coordinately decreased by phenylmethimazole together with cell proliferation and migration. Endocrinology. 2007;148:4226–37.CrossRefGoogle Scholar
  9. 9.
    Antonelli A, Ferrari SM, Giuggioli D, Ferrannini E, Ferri C, Fallahi P. Chemokine (C-X-C motif) ligand (CXCL)10 in autoimmune diseases. Autoimmun Rev. 2014;13:272–80.CrossRefGoogle Scholar
  10. 10.
    Antonelli A, Ferrari SM, Corrado A, Ferrannini E, Fallahi P. CXCR3, CXCL10 and type 1 diabetes. Cytokine Growth Factor Rev. 2014;25:57–65.CrossRefGoogle Scholar
  11. 11.
    Antonelli A, Rotondi M, Fallahi P, Romagnani P, Ferrari SM, Barani L, et al. Increase of interferon-gamma-inducible CXC chemokine CXCL10 serum levels in patients with active Graves' disease, and modulation by methimazole therapy. Clin Endocrinol. 2006;64:189–95.CrossRefGoogle Scholar
  12. 12.
    Antonelli A, Rotondi M, Fallahi P, Grosso M, Boni G, Ferrari SM, et al. Iodine-131 given for therapeutic purposes modulates differently interferon-gamma-inducible alpha-chemokine CXCL10 serum levels in patients with active graves’ disease or toxic nodular goiter. J Clin Endocrinol Metab. 2007;92:1485–90.CrossRefGoogle Scholar
  13. 13.
    Antonelli A, Ferrari SM, Fallahi P, Frascerra S, Santini E, Franceschini SS, et al. Monokine induced by interferon gamma (IFNgamma) (CXCL9) and IFNgamma inducible T-cell alpha-chemoattractant (CXCL11) involvement in Graves' disease and ophthalmopathy: modulation by peroxisome proliferator-activated receptor-gamma agonists. J Clin Endocrinol Metab. 2009;94:1803–9.CrossRefGoogle Scholar
  14. 14.
    Antonelli A, Ferrari SM, Mancusi C, Mazzi V, Pupilli C, Centanni M, et al. Interferon-α, −β and -γ induce CXCL11 secretion in human thyrocytes: modulation by peroxisome proliferator-activated receptor γ agonists. Immunobiology. 2013;218:690–5.CrossRefGoogle Scholar
  15. 15.
    Antonelli A, Ferrari SM, Frascerra S, Pupilli C, Mancusi C, Metelli MR, et al. CXCL9 and CXCL11 chemokines modulation by peroxisome proliferator-activated receptor-alpha agonists secretion in Graves' and normal thyrocytes. J Clin Endocrinol Metab. 2010;95:E413–20.CrossRefGoogle Scholar
  16. 16.
    Antonelli A, Ferrari SM, Frascerra S, Galetta F, Franzoni F, Corrado A, et al. Circulating chemokine (CXC motif) ligand (CXCL)9 is increased in aggressive chronic autoimmune thyroiditis, in association with CXCL10. Cytokine. 2011;55:288–93.CrossRefGoogle Scholar
  17. 17.
    Antonelli A, Ferrari SM, Frascerra S, Di Domenicantonio A, Nicolini A, Ferrari P, et al. Increase of circulating CXCL9 and CXCL11 associated with euthyroid or subclinically hypothyroid autoimmune thyroiditis. J Clin Endocrinol Metab. 2011;96:1859–63.CrossRefGoogle Scholar
  18. 18.
    Ohta K, Endo T, Haraguchi K, Hershman JM, Onaya T. Ligands for peroxisome proliferator-activated receptor gamma inhibit growth and induce apoptosis of human papillary thyroid carcinoma cells. J Clin Endocrinol Metab. 2001;86:2170–7.Google Scholar
  19. 19.
    Grommes C, Landreth GE, Heneka MT. Antineoplastic effects of peroxisome proliferator-activated receptor gamma agonists. Lancet. 2004;5:419–29.CrossRefGoogle Scholar
  20. 20.
    Antonelli A, Ferrari SM, Fallahi P, Berti P, Materazzi G, Marchetti I, et al. Evaluation of the sensitivity to chemotherapeutics or thiazolidinediones of primary anaplastic thyroid cancer cells obtained by fine-needle aspiration. Eur J Endocrinol. 2008;159:283–91.CrossRefGoogle Scholar
  21. 21.
    Antonelli A, Fallahi P, Ferrari SM, Carpi A, Berti P, Materazzi G, et al. Dedifferentiated thyroid cancer: a therapeutic challenge. Biomed Pharmacother. 2008;62:559–63.CrossRefGoogle Scholar
  22. 22.
    Antonelli A, Ferrari SM, Fallahi P, Berti P, Materazzi G, Minuto M, et al. Thiazolidinediones and antiblastics in primary human anaplastic thyroid cancer cells. Clin Endocrinol. 2009;70:946–53.CrossRefGoogle Scholar
  23. 23.
    Ferrari SM, Materazzi G, Baldini E, Ulisse S, Miccoli P, Antonelli A, et al. Antineoplastic effects of PPARγ agonists, with a special focus on thyroid Cancer. Curr Med Chem. 2016;23:636–49.CrossRefGoogle Scholar
  24. 24.
    Muzza M, Degl’Innocenti D, Colombo C, Perrino M, Ravasi E, Rossi S, et al. The tight relationship between papillary thyroid cancer, autoimmunity and inflammation: clinical and molecular studies. Clin Endocrinol. 2010;72:702–8.CrossRefGoogle Scholar
  25. 25.
    Mitsiades CS, Poulaki V, Mitsiades N. The role of apoptosis-inducing receptors of the tumor necrosis factor family in thyroid cancer. J Endocrinol. 2003;178:205–16.CrossRefGoogle Scholar
  26. 26.
    Giannini R, Ugolini C, Lupi C, Proietti A, Elisei R, Salvatore G, et al. The heterogeneous distribution of BRAF mutation supports the independent clonal origin of distinct tumor foci in multifocal papillary thyroid carcinoma. J Clin Endocrinol Metab. 2007;92:3511–6.CrossRefGoogle Scholar
  27. 27.
    Antonelli A, Ferrari SM, Fallahi P, Piaggi S, Paolicchi A, Franceschini SS, et al. Cytokines (interferon-γ and tumor necrosis factor-α)-induced nuclear factor-κB activation and chemokine (C-X-C motif) ligand 10 release in graves disease and ophthalmopathy are modulated by pioglitazone. Metabolism. 2011;60:277–83.CrossRefGoogle Scholar
  28. 28.
    Lombardi A, Cantini G, Piscitelli E, Gelmini S, Francalanci M, Mello T, et al. A new mechanism involving ERK contributes to rosiglitazone inhibition of tumor necrosis factor-alpha and interferon-gamma inflammatory effects in human endothelial cells. Arterioscler Thromb Vasc Biol. 2008;28:718–24.CrossRefGoogle Scholar
  29. 29.
    Berridge MV, Herst PM, Tan AS. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev. 2005;11:127–52.CrossRefGoogle Scholar
  30. 30.
    Copland JA, Marlow LA, Kurakata S, Fujiwara K, Wong AK, Kreinest PA, et al. Novel high-affinity PPARgamma agonist alone and in combination with paclitaxel inhibits human anaplastic thyroid carcinoma tumor growth via p21WAF1/CIP1. Oncogene. 2006;25:2304–17.CrossRefGoogle Scholar
  31. 31.
    Sancho M, Vieira JM, Casalou C, Mesquita M, Pereira T, Cavaco BM, et al. Expression and function of the chemokine receptor CCR7 in thyroid carcinomas. J Endocrinol. 2006;19:229–38.CrossRefGoogle Scholar
  32. 32.
    Ngo HT, Azab AK, Farag M, Jia X, Melhem MM, Runnels J, et al. Src tyrosine kinase regulates adhesion and chemotaxis in Waldenstrom macroglobulinemia. Clin Cancer Res. 2009;15:6035–41.CrossRefGoogle Scholar
  33. 33.
    Antonelli A, Bocci G, Fallahi P, La Motta C, Ferrari SM, Mancusi C, et al. CLM3, a multitarget tyrosine kinase inhibitor with antiangiogenic properties, is active against primary anaplastic thyroid cancer in vitro and in vivo. J Clin Endocrinol Metab. 2014;99:E572–81.CrossRefGoogle Scholar
  34. 34.
    Barton BE, Karras JG, Murphy TF, Barton A, Huang HF. Signal transducer and activator of transcription 3 (STAT3) activation in prostate cancer: direct STAT3 inhibition induces apoptosis in prostate cancer lines. Mol Cancer Ther. 2004;3:11–20.CrossRefGoogle Scholar
  35. 35.
    Xu Z, Choudhary S, Voznesensky O, Mehrotra M, Woodard M, Hansen M, et al. Overexpression of COX-2 in human osteosarcoma cells decreases proliferation and increases apoptosis. Cancer Res. 2006;66:6657–64.CrossRefGoogle Scholar
  36. 36.
    Galimberti S, Canestraro M, Pacini S, Fazzi R, Orciuolo E, Trombi L, et al. PS-341 (Bortezomib) inhibits proliferation and induces apoptosis of megakaryoblastic MO7-e cells. Leuk Res. 2008;32:103–12.CrossRefGoogle Scholar
  37. 37.
    Antonelli A, Fallahi P, Delle Sedie A, Ferrari SM, Maccheroni M, Bombardieri S, et al. High values of Th1 (CXCL10) and Th2 (CCL2) chemokines in patients with psoriatic arthtritis. Clin Exp Rheumatol. 2009;27:22–7.Google Scholar
  38. 38.
    Antonelli A, Ferri C, Fallahi P, Ferrari SM, Frascerra S, Sebastiani M, et al. High values of CXCL10 serum levels in patients with hepatitis C associated mixed cryoglobulinemia in presence or absence of autoimmune thyroiditis. Cytokine. 2008;42:137–43.CrossRefGoogle Scholar
  39. 39.
    Schweppe RE, Klopper JP, Korch C, Pugazhenthi U, Benezra M, Knauf JA, et al. Deoxyribonucleic acid profiling analysis of 40 human thyroid cancer cell lines reveals cross-contamination resulting in cell line redundancy and misidentification. J Clin Endocrinol Metab. 2008;93:4331–41.CrossRefGoogle Scholar
  40. 40.
    Marx N, Mach F, Sauty A, Leung JH, Sarafi MN, Ransohoff RM, et al. Peroxisome proliferator-activated receptor-gamma activators inhibit IFN-gamma-induced expression of the T cell-active CXC chemokines IP-10, Mig, and I-TAC in human endothelial cells. J Immunol. 2000;164:6503–8.CrossRefGoogle Scholar
  41. 41.
    Gosset P, Charbonnier AS, Delerive P, Fontaine J, Staels B, Pestel J, et al. Peroxisome proliferator-activated receptor gamma activators affect the maturation of human monocyte-derived dendritic cells. Eur J Immunol. 2001;31:2857–65.CrossRefGoogle Scholar
  42. 42.
    Schaefer KL, Denevich S, Ma C, Cooley SR, Nakajima A, Wada K, et al. Intestinal antiinflammatory effects of thiazolidenedione peroxisome proliferator-activated receptor-gamma ligands on T helper type 1 chemokine regulation include nontranscriptional control mechanisms. Inflamm Bowel Dis. 2005;11:244–52.CrossRefGoogle Scholar
  43. 43.
    Yang XY, Wang LH, Farrar WL. A role for PPARgamma in the regulation of cytokines in immune cells and Cancer. PPAR Res. 2008;2008:961753 (Retracted Article; Citation for this retraction: PPAR Res 2015;2015:982750).Google Scholar
  44. 44.
    Ferrari SM, Fallahi P, Vita R, Antonelli A, Benvenga S. Peroxisome proliferator-activated receptor- γ in thyroid autoimmunity. PPAR Res. 2015;2015:232818.CrossRefGoogle Scholar
  45. 45.
    Antonelli A, Ferrari SM, Fallahi P, Piaggi S, Di Domenicantonio A, Galleri D, et al. Variable modulation by cytokines and thiazolidinediones of the prototype Th1 chemokine CXCL10 in anaplastic thyroid cancer. Cytokine. 2012;59:218–22.CrossRefGoogle Scholar
  46. 46.
    Hayashi N, Nakamori S, Hiraoka N, Tsujie M, Xundi X, Takano T, et al. Antitumor effects of peroxisome proliferator activate receptor gamma ligands on anaplastic thyroid carcinoma. Int J Oncol. 2004;24:89–95.Google Scholar
  47. 47.
    Klopper JP, Hays WR, Sharma V, Baumbusch MA, Hershman JM, Haugen BR. Retinoid X receptor-gamma and peroxisome proliferator-activated receptor-gamma expression predicts thyroid carcinoma cell response to retinoid and thiazolidinedione treatment. Mol Cancer Ther. 2004;3:1011–20.Google Scholar
  48. 48.
    Fröhlich E, Machicao F, Wahl R. Action of thiazolidinediones on differentiation, proliferation and apoptosis of normal and transformed thyrocytes in culture. Endocr Relat Cancer. 2005;12:291–303.CrossRefGoogle Scholar
  49. 49.
    Park JW, Zarnegar R, Kanauchi H, Wong MG, Hyun WC, Ginzinger DG, et al. Troglitazone, the peroxisome proliferator-activated receptor-gamma agonist, induces antiproliferation and redifferentiation in human thyroid cancer cell lines. Thyroid. 2005;15:222–31.CrossRefGoogle Scholar
  50. 50.
    Aiello A, Pandini G, Frasca F, Conte E, Murabito A. Sacco, et al. Peroxisomal proliferator-activated receptor-gamma agonists induce partial reversion of epithelial-mesenchymal transition in anaplastic thyroid cancer cells. Endocrinology. 2006;147:4463–75.CrossRefGoogle Scholar
  51. 51.
    Martelli ML, Iuliano R, Le Pera I, Sama' I, Monaco C, Cammarota S, et al. Inhibitory effects of peroxisome poliferator-activated receptor gamma on thyroid carcinoma cell growth. J Clin Endocrinol Metab. 2002;87:4728–35.CrossRefGoogle Scholar
  52. 52.
    Graham DJ, Ouellet-Hellstrom R, MaCurdy TE, Ali F, Sholley C, Worrall C, et al. Risk of acute myocardial infarction, stroke, heart failure, and death in elderly Medicare patients treated with rosiglitazone or pioglitazone. JAMA. 2010;304:411–8.CrossRefGoogle Scholar
  53. 53.
    Moynihan R. European drug agency extends review of safety of pioglitazone. BMJ. 2011;342:d4105.CrossRefGoogle Scholar
  54. 54.
    Wang YQ, Wada A, Ugai S, Tagawa M. Expression of the Mig (CXCL9) gene in murine lung carcinoma cells generated angiogenesis-independent antitumor effects. Oncol Rep. 2003;10:909–13.Google Scholar
  55. 55.
    Zhang R, Tian L, Chen LJ, Xiao F, Hou JM, Zhao X, et al. Combination of MIG (CXCL9) chemokine gene therapy with low-dose cisplatin improves therapeutic efficacy against murine carcinoma. Gene Ther. 2006;13:1263–71.CrossRefGoogle Scholar
  56. 56.
    Hensbergen PJ, Wijnands PG, Schreurs MW, Scheper RJ, Willemze R, Tensen CP. The CXCR3 targeting chemokine CXCL11 has potent antitumor activity in vivo involving attraction of CD8+ T lymphocytes but not inhibition of angiogenesis. J Immunother. 2005;28:343–51.CrossRefGoogle Scholar
  57. 57.
    Chu Y, Yang X, Xu W, Wang Y, Guo Q, Xiong S. In situ expression of IFN-gamma-inducible T cell alpha chemoattractant in breast cancer mounts an enhanced specific anti-tumor immunity which leads to tumor regression. Cancer Immunol Immunother. 2007;56:1539–49.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Poupak Fallahi
    • 1
  • Silvia Martina Ferrari
    • 1
  • Simona Piaggi
    • 2
  • Michaela Luconi
    • 3
  • Giulia Cantini
    • 3
  • Stefania Gelmini
    • 4
  • Giusy Elia
    • 1
  • Ilaria Ruffilli
    • 1
  • Alessandro Antonelli
    • 1
    Email author
  1. 1.Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
  2. 2.Department of Translational Research and of New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
  3. 3.Endocrinology Unit, Department of Clinical and Experimental Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
  4. 4.Department of Biomedical, Experimental and Clinical SciencesUniversity of FlorenceFlorenceItaly

Personalised recommendations