Advertisement

Immunologic Research

, Volume 66, Issue 6, pp 655–662 | Cite as

Microparticles and autophagy: a new frontier in the understanding of atherosclerosis in rheumatoid arthritis

  • C. Barbati
  • M. Vomero
  • T. Colasanti
  • F. Ceccarelli
  • M. Marcosano
  • F. Miranda
  • L. Novelli
  • A. Pecani
  • Carlo PerriconeEmail author
  • F. R. Spinelli
  • S. Truglia
  • F. Conti
  • G. Valesini
  • C. Alessandri
Review

Abstract

Microparticles (MPs) are small membrane vesicles released by many cell types under physiological and pathological conditions. In the last years, these particles were considered as inert cell debris, but recently many studies have demonstrated they could have a role in intercellular communication. Increased levels of MPs have been reported in various pathological conditions including infections, malignancies, and autoimmune diseases, such as rheumatoid arthritis (RA). RA is an autoimmune systemic inflammatory disease characterized by chronic synovial inflammation, resulting in cartilage and bone damage with accelerated atherosclerosis increasing mortality. According to the literature data, also MPs could have a role in endothelial dysfunction, contributing to atherosclerosis in RA patients. Moreover many researchers have shown that a dysregulated autophagy seems to be involved in endothelial dysfunction. Autophagy is a reparative process by which cytoplasmic components are sequestered in double-membrane vesicles and degraded on fusion with lysosomal compartments. It has been shown in many works that basal autophagy is essential to proper vascular function. Taking into account these considerations, we hypothesized that in RA patients MPs could contribute to atherosclerosis process by dysregulation of endothelial autophagy process.

Keywords

Microparticles Autophagy Atherosclerosis Rheumatoid arthritis 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200:373–83.CrossRefGoogle Scholar
  2. 2.
    Piccin A, Murphy WG, Smith OP. Circulating microparticles: pathophysiology and clinical implications. Blood Rev. 2007;21:157–71.CrossRefGoogle Scholar
  3. 3.
    Morel O, Toti F, Hugel B, Freyssinet J-M. Cellular microparticles: a disseminated storage pool of bioactive vascular effectors. Curr Opin Hematol. 2004;11:156–64.CrossRefGoogle Scholar
  4. 4.
    Bevers EM, Comfurius P, van Rijn JL, Hemker HC, Zwaal RF. Generation of prothrombin-converting activity and the exposure of phosphatidylserine at the outer surface of platelets. Eur J Biochem FEBS. 1982;122:429–36.CrossRefGoogle Scholar
  5. 5.
    Schroit AJ, Tanaka Y, Madsen J, Fidler IJ. The recognition of red blood cells by macrophages: role of phosphatidylserine and possible implications of membrane phospholipid asymmetry. Biol Cell Auspices Eur Cell Biol Organ. 1984;51:227–38.Google Scholar
  6. 6.
    Erdbrugger U, Le TH. Extracellular vesicles in renal diseases: more than novel biomarkers? J Am Soc Nephrol. 2016;27:12–26.CrossRefGoogle Scholar
  7. 7.
    Loyer X, Vion AC, Tedgui A, Boulanger CM. Microvesicles as cell-cell messengers in cardiovascular diseases. Circ Res. 2014;114:345–53.CrossRefGoogle Scholar
  8. 8.
    Connor DE, Exner T, Ma DD, Joseph JE. Detection of the procoagulant activity of microparticle-associated phosphatidylserine using XACT. Blood Coagul Fibrinolysis. 2009;20:558–64.CrossRefGoogle Scholar
  9. 9.
    Morel O, Toti F, Freyssinet JM. Markers of thrombotic disease: procoagulant microparticles. Ann Pharm Fr. 2007;65:75–84.CrossRefGoogle Scholar
  10. 10.
    Brodsky SV, Zhang F, Nasjletti A, Goligorsky MS. Endothelium-derived microparticles impair endothelial function in vitro. Am J Physiol Heart Circ Physiol. 2004;286:1910–5.CrossRefGoogle Scholar
  11. 11.
    Lacroix R, Sabatier F, Mialhe A, Basire A, Pannell R, Borghi H, et al. Activation of plasminogen into plasmin at the surface of endothelial microparticles: a mechanism that modulates angiogenic properties of endothelial progenitor cells in vitro. Blood. 2007;110:2432–9.CrossRefGoogle Scholar
  12. 12.
    Teruel R, Corral J, Perez-Andreu V, Martinez-Martinez I, Vicente V, Martinez C. Potential role of miRNAs in developmental haemostasis. PLoS One. 2011;6:e17648.CrossRefGoogle Scholar
  13. 13.
    Turpin D, Truchetet ME, Faustin B, Augusto JF, Contin-Bordes C, Brisson A, et al. Role of extracellular vesicles in autoimmune diseases. Autoimmun Rev. 2016;15:174–83 Review.CrossRefGoogle Scholar
  14. 14.
    Habets KL, Trouw LA, Levarht EW, Korporaal SJ, Habets PA, de Groot P, et al. Anti-citrullinated protein antibodies contribute to platelet activation in rheumatoid arthritis. Arthritis Res Ther. 2015;17:209.CrossRefGoogle Scholar
  15. 15.
    Scherlinger M, Guillotin V, Truchetet ME, Contin-Bordes C, Sisirak V, Duffau P, et al. Systemic lupus erythematosus and systemic sclerosis: all roads lead to platelets. Autoimmun Rev. 2018.  https://doi.org/10.1016/j.autrev.2018.01.012 Review.
  16. 16.
    Pisetsky DS, Ullal AJ. The blood nucleome in the pathogenesis of SLE. Autoimmun Rev. 2010;10:35–7 Review.CrossRefGoogle Scholar
  17. 17.
    Nielsen CT, Rasmussen NS, Heegaard NH, Jacobsen S. “Kill” the messenger: targeting of cell-derived microparticles in lupus nephritis. Autoimmun Rev. 2016;15:719–25 Review.CrossRefGoogle Scholar
  18. 18.
    Miwa Y, Takahashi R, Ikari Y, Maeoka A, Nishimi S, Oguro N, et al. Clinical characteristics of rheumatoid arthritis patients achieving functional remission with six months of biological DMARDs treatment. Intern Med. 2017;56:903–6.CrossRefGoogle Scholar
  19. 19.
    Knijff-Dutmer EA, Koerts J, Nieuwland R, Kalsbeek-Batenburg EM, van de Laar MA. Elevated levels of platelet microparticles are associated with disease activity in rheumatoid arthritis. Arthritis Rheum. 2002;46:1498–503.CrossRefGoogle Scholar
  20. 20.
    Hsu J, Gu Y, Tan SL, Narula S, DeMartino JA, Liao C. Bruton’s tyrosine kinase mediates platelet receptor-induced generation of microparticles: a potential mechanism for amplification of inflammatory responses in rheumatoid arthritis synovial joints. Immunol Lett. 2013;150:97–104.CrossRefGoogle Scholar
  21. 21.
    Berckmans RJ, Nieuwland R, Tak PP, Böing AN, Romijn FP, Kraan MC, et al. Cell-derived microparticles in synovial fluid from inflamed arthritic joints support coagulation exclusively via a factor VII-dependent mechanism. Arthritis Rheum. 2002;46:2857–66.CrossRefGoogle Scholar
  22. 22.
    Berckmans RJ, Nieuwland R, Kraan MC, Schaap MC, Pots D, Smeets TJ, et al. Synovial microparticles from arthritic patients modulate chemokine and cytokine release by synoviocytes. Arthritis Res Ther. 2005;7:536–44.CrossRefGoogle Scholar
  23. 23.
    Low JM, Moore TL. A role for the complement system in rheumatoid arthritis. Curr Pharm Des. 2005;11:655–70.CrossRefGoogle Scholar
  24. 24.
    Grant EP, Picarella D, Burwell T, Delaney T, Croci A, Avitahl N, et al. Essential role for the C5a receptor in regulating the effector phase of synovial infiltration and joint destruction in experimental arthritis. J Exp Med. 2002;196:1461–71.CrossRefGoogle Scholar
  25. 25.
    Dye JR, Ullal AJ, Pisetsky DS. The role of microparticles in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus. Scand J Immunol. 2013;78:140–8 Review.CrossRefGoogle Scholar
  26. 26.
    Biró E, Nieuwland R, Tak PP, Pronk LM, Schaap MC, Sturk A, et al. Activated complement components and complement activator molecules on the surface of cell-derived microparticles in patients with rheumatoid arthritis and healthy individuals. Ann Rheum Dis. 2007;66:1085–92.CrossRefGoogle Scholar
  27. 27.
    Walsh DA, Pearson CI. Angiogenesis in the pathogenesis of inflammatory joint and lung diseases. Arthritis Res. 2001;3:147–53 Review.CrossRefGoogle Scholar
  28. 28.
    Beyer C, Pisetsky DS. The role of microparticles in the pathogenesis of rheumatic diseases. Nat Rev Rheumatol. 2010;6:21–9.CrossRefGoogle Scholar
  29. 29.
    Reich N, Beyer C, Gelse K. Microparticles stimulate angiogenesis by inducing ELR(+) CXC-chemokines in synovial fibroblasts. J Cell Mol Med. 2011;15:756–62.CrossRefGoogle Scholar
  30. 30.
    Amaya-Amaya J, Sarmiento-Monroy J, Mantilla R, Pineda-Tamayo R, Rojas-Villarraga A, Anaya J. Novel risk factors for cardiovascular disease in rheumatoid arthritis. Immunol Res. 2013;56:267–86.CrossRefGoogle Scholar
  31. 31.
    Aviña-Zubieta JA, Choi HK, Sadatsafavi M. Risk of cardiovascular mortality in patients with rheumatoid arthritis: a meta-analysis of observational studies. Arthritis Rheum. 2008;59:1690–7.CrossRefGoogle Scholar
  32. 32.
    Avina-Zubieta JA, Thomas J, Sadatsafavi M, Lehman AJ, Lacaille D. Risk of incident cardiovascular events in patients with rheumatoid arthritis: a meta-analysis of observational studies. Ann Rheum Dis. 2012;71:1524–9.CrossRefGoogle Scholar
  33. 33.
    Szekanecz Z, Kerekes G, Dér H. Accelerated atherosclerosis in rheumatoid arthritis. Ann N Y Acad Sci. 2007;1108:349–58.CrossRefGoogle Scholar
  34. 34.
    Södergren A, Karp K, Boman K. Atherosclerosis in early rheumatoid arthritis: very early endothelial activation and rapid progression of intima media thickness. Arthritis Res Ther. 2010;12:R158.CrossRefGoogle Scholar
  35. 35.
    Schmitz G, Grandl M. Lipid homeostasis in macrophages - implications for atherosclerosis. Rev Physiol Biochem Pharmacol. 2008;160:93–125.CrossRefGoogle Scholar
  36. 36.
    Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 1999;340:115–26.CrossRefGoogle Scholar
  37. 37.
    Mudau M, Genis A, Lochner A, Strijdom H. Endothelial dysfunction: the early predictor of atherosclerosis. Cardiovasc J Afr. 2012;23:222–31 Review.CrossRefGoogle Scholar
  38. 38.
    Bijl M. Endothelial activation, endothelial dysfunction and premature atherosclerosis in systemic autoimmune disease. Neth J Med. 2003;60:273–7.Google Scholar
  39. 39.
    Rabelink TJ, De Boer CH, van Zonneveld AJ. Endothelial activation and circulating markers of endothelial activation in kidney disease. Nat Rev Nephrol. 2010;6:404–14.CrossRefGoogle Scholar
  40. 40.
    Mestas J, Ley K. Monocyte-endothelial cell interactions in the development of atherosclerosis. Trends Cardiovasc Med. 2008;18:228–32.CrossRefGoogle Scholar
  41. 41.
    Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell. 2011;145:341–55.CrossRefGoogle Scholar
  42. 42.
    Jaipersad AS, Lip GY, Silverman S, Shantsila E. The role of monocytes in angiogenesis and atherosclerosis. J Am Coll Cardiol. 2014;63:1–11.CrossRefGoogle Scholar
  43. 43.
    Szotowski B, Antoniak S, Goldin-Lang P. Antioxidative treatment inhibits the release of thrombogenic tissue factor from irradiation- and cytokine-induced endothelial cells. Cardiovasc Res. 2007;73:806–12.CrossRefGoogle Scholar
  44. 44.
    Lozito TP, Tuan RS. Endothelial cell microparticles act as centers of matrix metalloproteinsase-2 (MMP-2) activation and vascular matrix remodeling. J Cell Physiol. 2012;227:534–49.CrossRefGoogle Scholar
  45. 45.
    Mallat Z, Benamer H, Hugel B. Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation. 2000;101:841–3.CrossRefGoogle Scholar
  46. 46.
    Rautou PE, Leroyer AS, Ramkhelawon B, Devue C, Duflaut D, Vion AC, et al. Microparticles from human atherosclerotic plaques promote endothelial ICAM-1-dependent monocyte adhesion and transendothelial migration. Circ Res. 2011;108:335–43.CrossRefGoogle Scholar
  47. 47.
    Mesri M, Altieri DC. Leukocyte microparticles stimulate endothelial cell cytokine release and tissue factor induction in a JNK1 signaling pathway. J Biol Chem. 1999;274:23111–8.CrossRefGoogle Scholar
  48. 48.
    Boulanger CM, Morrison KJ, Vanhoutte PM. Mediation by M3-muscarinic receptors of both endothelium-dependent contraction and relaxation to acetylcholine in the aorta of the spontaneously hypertensive rat. Br J Pharmacol. 1994;112:519–24.CrossRefGoogle Scholar
  49. 49.
    Tan KT, Lip GYH. The potential role of platelet microparticles in atherosclerosis. Thromb Haemost. 2005;94:488–92.CrossRefGoogle Scholar
  50. 50.
    Paudel KR, Panth N, Kim DW. Circulating endothelial microparticles: a key hallmark of atherosclerosis progression. Scientifica. 2016;2016:8514056.  https://doi.org/10.1155/2016/8514056.CrossRefGoogle Scholar
  51. 51.
    Duchez A-C, Boudreau LH, Naika GS, Bollinger J, Belleannée C, Cloutier N, et al. Platelet microparticles are internalized in neutrophils via the concerted activity of 12-lipoxygenase and secreted phospholipase A2-IIA. Proc Natl Acad Sci U S A. 2015;112:3564–73.CrossRefGoogle Scholar
  52. 52.
    Rodriguez-Carrio J, López P, Alperi-Lopez M. Angiogenic T cells and derived microparticles disturbances in rheumatoid arthritis patients. Ann Rheum Dis. 2014;73:A33.CrossRefGoogle Scholar
  53. 53.
    Carrio JR, López MA, Francisco PL, Ballina-García J, Suárez A. Good response to tumour necrosis factor alpha blockade results in an angiogenic T cell recovery in rheumatoid arthritis patients. Rheumatology. 2015;54:1129–31.CrossRefGoogle Scholar
  54. 54.
    Deter RL, De Duve C. Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J Cell Biol. 1967;33:437–49.CrossRefGoogle Scholar
  55. 55.
    Nair S, Ren J. Autophagy and cardiovascular aging: lesson learned from rapamycin. Cell Cycle. 2012;11:2092–9.CrossRefGoogle Scholar
  56. 56.
    Schrijvers DM, De Meyer GR, Martinet W. Autophagy in atherosclerosis: a potential drug target for plaque stabilization. Arterioscler Thromb Vasc Biol. 2011;31:2787–91.CrossRefGoogle Scholar
  57. 57.
    Martinet W, De Loof H, De Meyer GR. mTOR inhibition: a promising strategy for stabilization of atherosclerotic plaques. Atherosclerosis. 2014;233:601–7.CrossRefGoogle Scholar
  58. 58.
    Martinet W, De Meyer GR. Autophagy in atherosclerosis: a cell survival and death phenomenon with therapeutic potential. Circ Res. 2009;104:304–17.CrossRefGoogle Scholar
  59. 59.
    Razani B, Feng C, Coleman T, Emanuel R, Wen H, Hwang S, et al. Autophagy links inflammasomes to atherosclerotic progression. Cell Metab. 2012;15:534–44.CrossRefGoogle Scholar
  60. 60.
    Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature. 2008;456:264–8.CrossRefGoogle Scholar
  61. 61.
    Torisu T, Torisu K, Lee IH. Autophagy regulates endothelial cell processing, maturation and secretion of von Willebrand factor. Nat Med. 2013;19:1281–7.CrossRefGoogle Scholar
  62. 62.
    Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, et al. Autophagy regulates lipid metabolism. Nature. 2009;458:1131–5.CrossRefGoogle Scholar
  63. 63.
    Liao X, Sluimer JC, Wang Y, Subramanian M, Brown K, Pattison JS, et al. Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab. 2012;15:545–53.CrossRefGoogle Scholar
  64. 64.
    Le Guezennec X, Brichkina A, Huang YF, Kostromina E, Han W, Bulavin DV. Wip1-dependent regulation of autophagy, obesity, and atherosclerosis. Cell Metab. 2012;16:68–80.CrossRefGoogle Scholar
  65. 65.
    Xiong Y, Yepuri G, Forbiteh M, Y Y, JP Montani ZY, et al. ARG2 impairs endothelial autophagy through regulation of MTOR and PRKAA/AMPK signaling in advanced atherosclerosis. Autophagy. 2014;10:2223–38.CrossRefGoogle Scholar
  66. 66.
    Peng N, Meng N, Wang S, Zhao F, Zhao J, Su L, et al. An activator of mTOR inhibits oxLDL-induced autophagy and apoptosis in vascular endothelial cells and restricts atherosclerosis in apolipoprotein E/ mice. Sci Rep. 2014;4:5519.CrossRefGoogle Scholar
  67. 67.
    Zufeng D, Shijie L, Xianwei W, Magomed K, Yao D, Jawahar L. Oxidant stress in mitochondrial DNA damage, autophagy and inflammation in atherosclerosis. Sci Rep. 2013;3:1077.CrossRefGoogle Scholar
  68. 68.
    Wang Q, Zeng P, Liu Y, Wen G, Fu X, Sun X. Inhibition of autophagy ameliorates atherogenic inflammation by augmenting apigenin-induced macrophage apoptosis. Immunopharmacology. 2015;27:24–31.CrossRefGoogle Scholar
  69. 69.
    Salabei JK, Hill BG. Implications of autophagy for vascular smooth muscle cell function and plasticity. Free Radic Biol Med. 2013;65:693–703.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • C. Barbati
    • 1
  • M. Vomero
    • 1
  • T. Colasanti
    • 1
  • F. Ceccarelli
    • 1
  • M. Marcosano
    • 1
  • F. Miranda
    • 1
  • L. Novelli
    • 1
  • A. Pecani
    • 1
  • Carlo Perricone
    • 1
    Email author
  • F. R. Spinelli
    • 1
  • S. Truglia
    • 1
  • F. Conti
    • 1
  • G. Valesini
    • 1
  • C. Alessandri
    • 1
  1. 1.Arthritis Center, Department of Internal Medicine and Medical SpecialtiesSapienza University of RomeRomeItaly

Personalised recommendations