Immunologic Research

, Volume 66, Issue 6, pp 642–648 | Cite as

Immune reconstitution therapy (IRT) in multiple sclerosis: the rationale

  • Dimitrios KarussisEmail author
  • Panayiota Petrou


Immunotherapy of multiple sclerosis (MS) and other neuroimmune diseases is rapidly evolving. For the past 25 years, there has been an accelerating inclusion of new immunomodulating drugs. Based on their molecular construction and their basic mechanism of action, immunotherapeutic agents belong to the following categories: (1) cytotoxic drugs, (2) synthetic immunomodulators, (3) monoclonal antibodies, (4) vaccines (T cell vaccines, antigen vaccines), (5) oral tolerizing agents, (6) modalities that act as indirect immunosuppressants (plasmapheresis, intravenous immunoglobulins [IVIG]), and (7) cellular therapies. MS immunotherapies may also be classified in a different way, into treatments that are given continuously (chronic treatments) and medications that are applied intermittently (IRTs). The principle behind the latter is depletion of the immune system that allows it to rebuild itself. Upon its reconstitution/resetting, the immune system regains the ability to respond to infections and survey the periphery for cancer. An IRT by definition is given at short intermittent courses and not continuously. IRT modalities were shown to induce long-term remission of MS that, in some cases, is close to the definition of a “cure.” There are cohorts of patients having been treated with the IRTs, alemtuzumab, and HSCT, who experience—under these modalities—no evidence of disease activity (NEDA) for over 10 years. Most importantly, IRTs cause radical changes in the lymphocyte repertoire after the reconstitution phase that may explain the long-term beneficial effects of IRT and the possibility of re-induction of self-tolerance to self/myelin antigens. In comparison, a chronic treatment cannot result in cure of the autoimmune reactivity, because it only blocks the immune system, as long as it is given; it cannot therefore radically affect the immunopathogenesis of the disease. The risks of adverse events related to immune suppression (such as opportunistic infections and secondary malignancies) with IRTs are lower and front-loaded, whereas the common side effects of chronic immunomodulation are higher and accumulate with time. In conclusion, IRT provides a novel concept for MS therapy with substantial advantages over chronic immunosuppression. IRT therapies have shown a significantly higher level of efficacy in MS. The “Holy grail” of the treatment of autoimmunity, which is to re-induce the disrupted self-tolerance, seems to be achievable—at least in part—with this approach. Moreover, the benefits of IRT, administered in short pulses, include significantly higher adherence to treatment and lower risks for accumulative side effects that are typically associated with chronic immunosuppression.


Immune reconstitution therapy (IRT) Multiple sclerosis (MS) Autoimmune diseases Autoimmunity 


Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest to declare in relation to the current manuscript.


  1. 1.
    Zhang J, Markovic-Plese S, Lacet B, Raus J, Weiner HL, Hafler DA. Increased frequency of interleukin 2-responsive T cells specific for myelin basic protein and proteolipid protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. J Exp Med. 1994;179:973–84.CrossRefGoogle Scholar
  2. 2.
    Allegretta M, Nicklas JA, Sriram S, Albertini RJ. T cells responsive to myelin basic protein in patients with multiple sclerosis. Science. 1990;247:718–21.CrossRefGoogle Scholar
  3. 3.
    Bar-Or A. Multiple sclerosis and related disorders: evolving pathophysiologic insights. Lancet Neurol. 2016;15:9–11.CrossRefGoogle Scholar
  4. 4.
    Wucherpfennig KW, Strominger JL. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell. 1995;80:695–705.CrossRefGoogle Scholar
  5. 5.
    Venken K, Hellings N, Hensen K, Rummens JL, Stinissen P. Memory CD4+CD127high T cells from patients with multiple sclerosis produce IL-17 in response to myelin antigens. J Neuroimmunol. 2010;226:185–91.CrossRefGoogle Scholar
  6. 6.
    Danikowski KM, Jayaraman S, Prabhakar BS. Regulatory T cells in multiple sclerosis and myasthenia gravis. J Neuroinflammation. 2017;14:117.CrossRefGoogle Scholar
  7. 7.
    Tesmer LA, Lundy SK, Sarkar S, Fox DA. Th17 cells in human disease. Immunol Rev. 2008;223:87–113.CrossRefGoogle Scholar
  8. 8.
    Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Annu Rev Immunol. 2009;27:485–517.CrossRefGoogle Scholar
  9. 9.
    Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, et al. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med. 2007;13:1173–5.CrossRefGoogle Scholar
  10. 10.
    Vanderlugt CJ, Miller SD. Epitope spreading. Curr Opin Immunol. 1996;8:831–6.CrossRefGoogle Scholar
  11. 11.
    Vanderlugt CL, Miller SD. Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat Rev Immunol. 2002;2:85–95.CrossRefGoogle Scholar
  12. 12.
    Quintana FJ, Patel B, Yeste A, Nyirenda M, Kenison J, Rahbari R, et al. Epitope spreading as an early pathogenic event in pediatric multiple sclerosis. Neurology. 2014;83:2219–26.CrossRefGoogle Scholar
  13. 13.
    Hawker K. B-cell-targeted treatment for multiple sclerosis: mechanism of action and clinical data. Curr Opin Neurol. 2008;21(Suppl 1):S19–25.CrossRefGoogle Scholar
  14. 14.
    Zouali M. B lymphocytes--chief players and therapeutic targets in autoimmune diseases. Front Biosci. 2008;13:4852–61.CrossRefGoogle Scholar
  15. 15.
    Bar-Or A, Fawaz L, Fan B, Darlington PJ, Rieger A, Ghorayeb C, et al. Abnormal B-cell cytokine responses a trigger of T-cell-mediated disease in MS? Ann Neurol. 2010;67:452–61.CrossRefGoogle Scholar
  16. 16.
    Cepok S, Rosche B, Grummel V, Vogel F, Zhou D, Sayn J, et al. Short-lived plasma blasts are the main B cell effector subset during the course of multiple sclerosis. Brain. 2005;128:1667–76.CrossRefGoogle Scholar
  17. 17.
    Owens GP, Bennett JL, Gilden DH, Burgoon MP. The B cell response in multiple sclerosis. Neurol Res. 2006;28:236–44.CrossRefGoogle Scholar
  18. 18.
    Prineas JW, Graham JS. Multiple sclerosis: capping of surface immunoglobulin G on macrophages engaged in myelin breakdown. Ann Neurol. 1981;10:149–58.CrossRefGoogle Scholar
  19. 19.
    Archelos JJ, Storch MK, Hartung HP. The role of B cells and autoantibodies in multiple sclerosis. Ann Neurol. 2000;47:694–706.CrossRefGoogle Scholar
  20. 20.
    Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Aloisi F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. 2004;14:164–74.CrossRefGoogle Scholar
  21. 21.
    Krumbholz M, Theil D, Cepok S, Hemmer B, Kivisakk P, Ransohoff RM, et al. Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain. 2006;129:200–11.CrossRefGoogle Scholar
  22. 22.
    Magliozzi R, Howell O, Vora A, Serafini B, Nicholas R, Puopolo M, et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain. 2007;130:1089–104.CrossRefGoogle Scholar
  23. 23.
    Ruggieri S, Petracca M, Miller A, Krieger S, Ghassemi R, Bencosme Y, et al. Association of deep gray matter damage with cortical and spinal cord degeneration in primary progressive multiple sclerosis. JAMA Neurol. 2015;72(12):1466–74.CrossRefGoogle Scholar
  24. 24.
    Haider L, Simeonidou C, Steinberger G, Hametner S, Grigoriadis N, Deretzi G, et al. Multiple sclerosis deep grey matter: the relation between demyelination, neurodegeneration, inflammation and iron. J Neurol Neurosurg Psychiatry. 2014;85:1386–95.CrossRefGoogle Scholar
  25. 25.
    Cappellani R, Bergsland N, Weinstock-Guttman B, Kennedy C, Carl E, Ramasamy DP, et al. Subcortical deep gray matter pathology in patients with multiple sclerosis is associated with white matter lesion burden and atrophy but not with cortical atrophy: a diffusion tensor MRI study. AJNR Am J Neuroradiol. 2014;35:912–9.CrossRefGoogle Scholar
  26. 26.
    Daams M, Geurts JJ, Barkhof F. Cortical imaging in multiple sclerosis: recent findings and “grand challenges”. Curr Opin Neurol. 2013;26:345–52.CrossRefGoogle Scholar
  27. 27.
    Calabrese M, Rinaldi F, Mattisi I, Bernardi V, Favaretto A, Perini P, et al. The predictive value of gray matter atrophy in clinically isolated syndromes. Neurology. 2011;77:257–63.CrossRefGoogle Scholar
  28. 28.
    Ceccarelli A, Rocca MA, Neema M, Martinelli V, Arora A, Tauhid S, et al. Deep gray matter T2 hypointensity is present in patients with clinically isolated syndromes suggestive of multiple sclerosis. Mult Scler. 2010;16:39–44.CrossRefGoogle Scholar
  29. 29.
    Neema M, Arora A, Healy BC, Guss ZD, Brass SD, Duan Y, et al. Deep gray matter involvement on brain MRI scans is associated with clinical progression in multiple sclerosis. J Neuroimaging. 2009;19:3–8.CrossRefGoogle Scholar
  30. 30.
    Geurts JJ, Bo L, Pouwels PJ, Castelijns JA, Polman CH, Barkhof F. Cortical lesions in multiple sclerosis: combined postmortem MR imaging and histopathology. AJNR Am J Neuroradiol. 2005;26:572–7.Google Scholar
  31. 31.
    Popescu BF, Lucchinetti CF. Meningeal and cortical grey matter pathology in multiple sclerosis. BMC Neurol. 2012;12:11.CrossRefGoogle Scholar
  32. 32.
    Popescu BF, Pirko I, Lucchinetti CF. Pathology of multiple sclerosis: where do we stand? Continuum (Minneap Minn). 2013;19:901–21.Google Scholar
  33. 33.
    Lucchinetti CF, Popescu BF, Bunyan RF, Moll NM, Roemer SF, Lassmann H, et al. Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med. 2011;365:2188–97.CrossRefGoogle Scholar
  34. 34.
    Kutzelnigg A, Lassmann H. Cortical demyelination in multiple sclerosis: a substrate for cognitive deficits? J Neurol Sci. 2006;245:123–6.CrossRefGoogle Scholar
  35. 35.
    Romme Christensen J, Bornsen L, Ratzer R, Piehl F, Khademi M, Olsson T, et al. Systemic inflammation in progressive multiple sclerosis involves follicular T-helper, Th17- and activated B-cells and correlates with progression. PLoS One. 2013;8:e57820.CrossRefGoogle Scholar
  36. 36.
    Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O. Multiple sclerosis. Lancet. 2018;391:1622–36.CrossRefGoogle Scholar
  37. 37.
    Reich DS, Lucchinetti CF, Calabresi PA. Multiple sclerosis. N Engl J Med. 2018;378:169–80.CrossRefGoogle Scholar
  38. 38.
    Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69:292–302.CrossRefGoogle Scholar
  39. 39.
    Karussis D. Immunotherapy of multiple sclerosis: the state of the art. BioDrugs. 2013;27:113–48.CrossRefGoogle Scholar
  40. 40.
    Tuohy O, Costelloe L, Hill-Cawthorne G, Bjornson I, Harding K, Robertson N, et al. Alemtuzumab treatment of multiple sclerosis: long-term safety and efficacy. J Neurol Neurosurg Psychiatry. 2015;86:208–15.CrossRefGoogle Scholar
  41. 41.
    Massey JC, Sutton IJ, Ma DDF, Moore JJ. Regenerating immunotolerance in multiple sclerosis with autologous hematopoietic stem cell transplant. Front Immunol. 2018;9:410.CrossRefGoogle Scholar
  42. 42.
    Muraro PA, Robins H, Malhotra S, Howell M, Phippard D, Desmarais C, et al. T cell repertoire following autologous stem cell transplantation for multiple sclerosis. J Clin Invest. 2014;124:1168–72.CrossRefGoogle Scholar
  43. 43.
    Rezvany MR, Tehrani MJ, Karlsson C, Lundin J, Rabbani H, Osterborg A, et al. Reconstitution of the T-cell repertoire following treatment with alemtuzumab (anti-CD52 monoclonal antibody) in patients with B-cell chronic lymphocytic leukaemia. Br J Haematol. 2006;135:475–85.CrossRefGoogle Scholar
  44. 44.
    Muraro PA, Douek DC, Packer A, Chung K, Guenaga FJ, Cassiani-Ingoni R, et al. Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients. J Exp Med. 2005;201:805–16.CrossRefGoogle Scholar
  45. 45.
    Sun W, Popat U, Hutton G, Zang YC, Krance R, Carrum G, et al. Characteristics of T-cell receptor repertoire and myelin-reactive T cells reconstituted from autologous haematopoietic stem-cell grafts in multiple sclerosis. Brain. 2004;127:996–1008.CrossRefGoogle Scholar
  46. 46.
    Li Y, Xu L. Evaluation of TCR repertoire diversity in patients after hematopoietic stem cell transplantation. Stem Cell Investig. 2015;2:17.Google Scholar
  47. 47.
    Gallacher L, Murdoch B, Wu DM, Karanu FN, Keeney M, Bhatia M. Isolation and characterization of human CD34(−)Lin(−) and CD34(+)Lin(−) hematopoietic stem cells using cell surface markers AC133 and CD7. Blood. 2000;95:2813–20.Google Scholar
  48. 48.
    Wognum AW, Eaves AC, Thomas TE. Identification and isolation of hematopoietic stem cells. Arch Med Res. 2003;34:461–75.CrossRefGoogle Scholar
  49. 49.
    Brazelton TR, Rossi FM, Keshet GI, Blau HM. From marrow to brain: expression of neuronal phenotypes in adult mice. Science. 2000;290:1775–9.CrossRefGoogle Scholar
  50. 50.
    Locatelli F, Corti S, Donadoni C, Guglieri M, Capra F, Strazzer S, et al. Neuronal differentiation of murine bone marrow Thy-1- and Sca-1-positive cells. J Hematother Stem Cell Res. 2003;12:727–34.CrossRefGoogle Scholar
  51. 51.
    Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science. 2000;290:1779–82.CrossRefGoogle Scholar
  52. 52.
    Karussis D, Vaknin-Dembinsky A. Hematopoietic stem cell transplantation in multiple sclerosis: a review of the clinical experience and a report of an international meeting. Expert Rev Clin Immunol. 2010;6:347–52.CrossRefGoogle Scholar
  53. 53.
    Karussis D, Petrou P, Vourka-Karussis U, Kassis I. Hematopoietic stem cell transplantation in multiple sclerosis. Expert Rev Neurother. 2013;13:567–78.CrossRefGoogle Scholar
  54. 54.
    Karussis D. Worldwide status of clinical experimentation with stem cells in neurologic diseases. Neurology. 2012;78:1334–6.CrossRefGoogle Scholar
  55. 55.
    Karussis D, Petrou P, Kassis I. Clinical experience with stem cells and other cell therapies in neurological diseases. J Neurol Sci. 2013;324:1–9.CrossRefGoogle Scholar
  56. 56.
    Karussis D, Slavin S. Hematopoietic stem cell transplantation in multiple sclerosis: experimental evidence to rethink the procedures. J Neurol Sci. 2004;223:59–64.CrossRefGoogle Scholar
  57. 57.
    Karussis D, Vourka-Karussis U, Mizrachi-Koll R, Abramsky O. Acute/relapsing experimental autoimmune encephalomyelitis: induction of long lasting, antigen-specific tolerance by syngeneic bone marrow transplantation. Mult Scler. 1999;5:17–21.CrossRefGoogle Scholar
  58. 58.
    Karussis DM, Slavin S, Ben-Nun A, Ovadia H, Vourka-Karussis U, Lehmann D, et al. Chronic-relapsing experimental autoimmune encephalomyelitis (CR-EAE): treatment and induction of tolerance, with high dose cyclophosphamide followed by syngeneic bone marrow transplantation. J Neuroimmunol. 1992;39:201–10.CrossRefGoogle Scholar
  59. 59.
    Karussis DM, Slavin S, Lehmann D, Mizrachi-Koll R, Abramsky O, Ben-Nun A. Prevention of experimental autoimmune encephalomyelitis and induction of tolerance with acute immunosuppression followed by syngeneic bone marrow transplantation. J Immunol. 1992;148:1693–8.Google Scholar
  60. 60.
    Karussis DM, Vourka-Karussis U, Lehmann D, Abramsky O, Ben-Nun A, Slavin S. Immunomodulation of autoimmunity in MRL/lpr mice with syngeneic bone marrow transplantation (SBMT). Clin Exp Immunol. 1995;100:111–7.CrossRefGoogle Scholar
  61. 61.
    Karussis DM, Vourka-Karussis U, Lehmann D, Ovadia H, Mizrachi-Koll R, Ben-Nun A, et al. Prevention and reversal of adoptively transferred, chronic relapsing experimental autoimmune encephalomyelitis with a single high dose cytoreductive treatment followed by syngeneic bone marrow transplantation. J Clin Invest. 1993;92:765–72.CrossRefGoogle Scholar
  62. 62.
    Burt RK, Cohen BA, Russell E, Spero K, Joshi A, Oyama Y, et al. Hematopoietic stem cell transplantation for progressive multiple sclerosis: failure of a total body irradiation-based conditioning regimen to prevent disease progression in patients with high disability scores. Blood. 2003;102:2373–8.CrossRefGoogle Scholar
  63. 63.
    Burt RK, Loh Y, Cohen B, Stefoski D, Balabanov R, Katsamakis G, et al. Autologous non-myeloablative haemopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: a phase I/II study. Lancet Neurol. 2009;8:244–53.CrossRefGoogle Scholar
  64. 64.
    Fassas A. Autologous stem cell transplants in treatment of multiple sclerosis: where we stand and future prospects. Int J Hematol. 2002;76(Suppl 1):223–5.CrossRefGoogle Scholar
  65. 65.
    Fassas A, Anagnostopoulos A, Kazis A, Kapinas K, Sakellari I, Kimiskidis V, et al. Peripheral blood stem cell transplantation in the treatment of progressive multiple sclerosis: first results of a pilot study. Bone Marrow Transplant. 1997;20:631–8.CrossRefGoogle Scholar
  66. 66.
    Fassas A, Passweg JR, Anagnostopoulos A, Kazis A, Kozak T, Havrdova E, et al. Hematopoietic stem cell transplantation for multiple sclerosis. A retrospective multicenter study. J Neurol. 2002;249:1088–97.CrossRefGoogle Scholar
  67. 67.
    Mancardi GL, Sormani MP, Di Gioia M, Vuolo L, Gualandi F, Amato MP, et al. Autologous haematopoietic stem cell transplantation with an intermediate intensity conditioning regimen in multiple sclerosis: the Italian multi-centre experience. Mult Scler. 2012;18:835–42.CrossRefGoogle Scholar
  68. 68.
    Nash RA, Bowen JD, McSweeney PA, Pavletic SZ, Maravilla KR, Park MS, et al. High-dose immunosuppressive therapy and autologous peripheral blood stem cell transplantation for severe multiple sclerosis. Blood. 2003;102:2364–72.CrossRefGoogle Scholar
  69. 69.
    Curro D, Vuolo L, Gualandi F, Bacigalupo A, Roccatagliata L, Capello E, et al. Low intensity lympho-ablative regimen followed by autologous hematopoietic stem cell transplantation in severe forms of multiple sclerosis: a MRI-based clinical study. Mult Scler. 2015;21:1423–30.CrossRefGoogle Scholar
  70. 70.
    Muraro PA, Pasquini M, Atkins HL, Bowen JD, Farge D, Fassas A, et al. Long-term outcomes after autologous hematopoietic stem cell transplantation for multiple sclerosis. JAMA Neurol. 2017;74:459–69.CrossRefGoogle Scholar
  71. 71.
    Atkins HL, Bowman M, Allan D, Anstee G, Arnold DL, Bar-Or A, et al. Immunoablation and autologous haemopoietic stem-cell transplantation for aggressive multiple sclerosis: a multicentre single-group phase 2 trial. Lancet. 2016;388:576–85.CrossRefGoogle Scholar
  72. 72.
    Atkins HL, Freedman MS. Five questions answered: a review of autologous hematopoietic stem cell transplantation for the treatment of multiple sclerosis. Neurotherapeutics. 2017;14:888–93.CrossRefGoogle Scholar
  73. 73.
    Minagawa H, Takenaka A, Itoyama Y, Mori R. Experimental allergic encephalomyelitis in the Lewis rat. A model of predictable relapse by cyclophosphamide. J Neurol Sci. 1987;78:225–35.CrossRefGoogle Scholar
  74. 74.
    Polman CH, Matthaei I, de Groot CJ, Koetsier JC, Sminia T, Dijkstra CD. Low-dose cyclosporin A induces relapsing remitting experimental allergic encephalomyelitis in the Lewis rat. J Neuroimmunol. 1988;17:209–16.CrossRefGoogle Scholar
  75. 75.
    Mancardi GL, Sormani MP, Gualandi F, Saiz A, Carreras E, Merelli E, et al. Autologous hematopoietic stem cell transplantation in multiple sclerosis: a phase II trial. Neurology. 2015;84:981–8.CrossRefGoogle Scholar
  76. 76.
    Nash RA, Hutton GJ, Racke MK, Popat U, Devine SM, Griffith LM, et al. High-dose immunosuppressive therapy and autologous hematopoietic cell transplantation for relapsing-remitting multiple sclerosis (HALT-MS): a 3-year interim report. JAMA Neurol. 2015;72:159–69.CrossRefGoogle Scholar
  77. 77.
    Chen JT, Collins DL, Atkins HL, Freedman MS, Galal A, Arnold DL, et al. Brain atrophy after immunoablation and stem cell transplantation in multiple sclerosis. Neurology. 2006;66:1935–7.CrossRefGoogle Scholar
  78. 78.
    Sormani MP, Muraro PA, Schiavetti I, Signori A, Laroni A, Saccardi R, et al. Autologous hematopoietic stem cell transplantation in multiple sclerosis: a meta-analysis. Neurology. 2017;88:2115–22.CrossRefGoogle Scholar
  79. 79.
    Giovannoni G, Marta M, Davis A, Turner B, Gnanapavan S, Schmierer K. Switching patients at high risk of PML from natalizumab to another disease-modifying therapy. Pract Neurol. 2016;16:389–93.CrossRefGoogle Scholar
  80. 80.
    Coles AJ, Cohen JA, Fox EJ, Giovannoni G, Hartung HP, Havrdova E, Schippling S, et al. CARE-MS II and CAMMS03409 Investigators. Alemtuzumab CARE-MS II 5-year follow-up: efficacy and safety findings. Neurology. 2017;89(11):1117–26.
  81. 81.
    Havrdova E, Arnold DL, Cohen JA, Hartung HP, Fox EJ, Giovannoni G, Schippling S, et al. CARE-MS I and CAMMS03409 investigators. Alemtuzumab CARE-MS I 5-year follow-up: durable efficacy in the absence of continuous MS therapy. Neurology. 2017;89(11):1107-16.
  82. 82.
    Giovannoni G. Cladribine to treat relapsing forms of multiple sclerosis. Neurotherapeutics. 2017;14:874–87.CrossRefGoogle Scholar
  83. 83.
    Giovannoni G, Soelberg Sorensen P, Cook S, Rammohan K, Rieckmann P, Comi G, et al. Safety and efficacy of cladribine tablets in patients with relapsing-remitting multiple sclerosis: results from the randomized extension trial of the CLARITY study. Mult Scler. 2017;24(12):1594–1604.CrossRefGoogle Scholar
  84. 84.
    Leist TP, Weissert R. Cladribine: mode of action and implications for treatment of multiple sclerosis. Clin Neuropharmacol. 2011;34:28–35.CrossRefGoogle Scholar
  85. 85.
    Pakpoor J, Disanto G, Altmann DR, Pavitt S, Turner BP, Marta M, et al. No evidence for higher risk of cancer in patients with multiple sclerosis taking cladribine. Neurol Neuroimmunol Neuroinflamm. 2015;2:e158.CrossRefGoogle Scholar
  86. 86.
    Leist TP, Comi G, Cree BA, Coyle PK, Freedman MS, Hartung HP, et al. Effect of oral cladribine on time to conversion to clinically definite multiple sclerosis in patients with a first demyelinating event (ORACLE MS): a phase 3 randomised trial. Lancet Neurol. 2014;13:257–67.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.MS Center and Unit of Neuroimmunology, Department of NeurologyHadassah Medical CenterJerusalemIsrael

Personalised recommendations