Immunologic Research

, Volume 66, Issue 4, pp 491–502 | Cite as

Galectin-3 deficiency enhances type 2 immune cell-mediated myocarditis in mice

  • Marina Miletic Kovacevic
  • Nada Pejnovic
  • Slobodanka Mitrovic
  • Nemanja Jovicic
  • Ivica Petrovic
  • Nebojsa Arsenijevic
  • Miodrag L. LukicEmail author
  • Biljana Ljujic
Original Article


Experimental autoimmune myocarditis (EAM) is a mouse model of immune-mediated myocarditis and cardiomyopathy. The role of Galectin-3 (Gal-3), a β-galactoside-binding lectin, in autoimmune myocarditis has not been studied. Therefore, the aim of this study was to delineate the role of Gal-3 in myosin peptide-induced autoimmune myocarditis in mice. EAM was induced in relatively resistant C57BL/6J mice (wild type, WT) and in mice with a targeted deletion of Gal-3 gene (Gal-3KO) by immunization with myosin peptide MyHCα334–352. Gal-3KO mice developed more severe myocarditis and more pronounced heart hypertrophy than WT mice. Increased infiltration of CD45+ leucocytes, CD3+ T cells, F4/80+ macrophages, and eosinophils was observed in hearts of Gal-3KO mice compared to WT mice on day 21 after EAM induction. Moreover, hearts of Gal-3KO mice had more T helper type 2 (Th2) cells, alternatively activated M2 macrophages, higher amounts of IgG deposits, and higher serum levels of IL-4 and IL-33 than WT mice. Ablation of Gal-3 in Th1-dominant C57BL/6J mice that are relatively resistant to EAM resulted in more severe disease characterized by type 2 cardiac inflammation. The complex effects of Gal-3 on EAM progression might be important in the consideration of therapeutic options for the treatment of EAM.


Experimental autoimmune myocarditis Galectin-3 Type 2 immune response 



We thank our colleagues Prof. Marija Milovanovic (University of Kragujevac, Serbia, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research), Prof. Zoran Milosavljevic (University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Histology and embryology), Ilija Jeftic (University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Pathophysiology), Petar Milosavljevic (Institute for medical research, Military Medical Academy, Belgrade, Serbia), and Vesna Matovic for collegial help. We also thank Miljan Nedeljkovic for excellent technical assistance.

Sources of funding

This work was financially supported by grants from the Serbian Ministry of Science and Technological Development (ON175103 and ON17506), Serbia and Faculty of Medicine, University of Kragujevac, Serbia (Grant No. MP 01/14), and Swiss Science Foundation, No. SCOPES, IZ73ZO_152407/1.

The research was performed at Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Serbia.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All animal experiments were approved by the Ethical Committee of the Faculty of Medical Sciences, University of Kragujevac, Serbia (01-2630). The animal experiments were performed conform the guidelines from Directive 2010/63/EU of the European Parliament on the protection of animals used for scientific purposes.


  1. 1.
    Brown CA, O’Connell JB. Myocarditis and idiopathic dilated cardiomyopathy. Am J Med. 1995;99(3):309–14.CrossRefPubMedGoogle Scholar
  2. 2.
    Lv H, Havari E, Pinto S, Gottumukkala RVSRK, Cornivelli L, Raddassi K, et al. Impaired thymic tolerance to α-myosin directs autoimmunity to the heart in mice and humans. J Clin Invest. 2011;121(4):1561–73.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cihakova D, Rose NR. Pathogenesis of myocarditis and dilated cardiomyopathy. Adv Immunol. 2008;99:95–114.CrossRefPubMedGoogle Scholar
  4. 4.
    Fairweather D, Kaya Z, Shellam GR, Lawson CM, Rose NR. From infection to autoimmunity. J Autoimmun. 2001;16(3):175–86.CrossRefPubMedGoogle Scholar
  5. 5.
    Caforio AL, Goldman JH, Haven AJ, Baig KM, McKenna WJ. Evidence for autoimmunity to myosin and other heart-specific autoantigens in patients with dilated cardiomyopathy and their relatives. Int J Cardiol. 1996;54(2):157–63.CrossRefPubMedGoogle Scholar
  6. 6.
    Lauer B, Schannwell M, Kuhl U, Strauer BE, Schultheiss HP. Antimyosin autoantibodies are associated with deterioration of systolic and diastolic left ventricular function in patients with chronic myocarditis. J Am Coll Cardiol. 2000;35(1):11–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Eriksson U, Ricci R, Hunziker L, Kurrer MO, Oudit GY, Watts TH, et al. Dendritic cell-induced autoimmune heart failure requires cooperation between adaptive and innate immunity. Nat Med. 2003;9(12):1484–90.CrossRefPubMedGoogle Scholar
  8. 8.
    Afanasyeva M, Wang Y, Kaya Z, Stafford EA, Dohmen KM, Sadighi Akha AA, et al. Interleukin-12 receptor/STAT4 signaling is required for the development of autoimmune myocarditis in mice by an interferon-gamma-independent pathway. Circulation. 2001;104(25):3145–51.CrossRefPubMedGoogle Scholar
  9. 9.
    Afanasyeva M, Wang Y, Kaya Z, Park S, Zilliox MJ, Schofield BH, et al. Experimental autoimmune myocarditis in A/J mice is an interleukin-4-dependent disease with a Th2 phenotype. Am J Pathol. 2001;159(1):193–203.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cihakova D, Sharma RB, Fairweather D, Afanasyeva M, Rose NR. Animal models for autoimmune myocarditis and autoimmune thyroiditis. Methods Mol Med. 2004;102:175–93.PubMedGoogle Scholar
  11. 11.
    Cunningham MW. Cardiac myosin and the TH1/TH2 paradigm in autoimmune myocarditis. Am J Pathol. 2001;159(1):5–12.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Daniels MD, Hyland KV, Wang K, Engman DM. Recombinant cardiac myosin fragment induces experimental autoimmune myocarditis via activation of Th1 and Th17 immunity. Autoimmunity. 2008;41(6):490–9.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Cihakova D, Barin JG, Afanasyeva M, Kimura M, Fairweather DL, Berg M, et al. Interleukin-13 protects against experimental autoimmune myocarditis by regulating macrophage differentiation. Am J Pathol. 2008;172(5):1195–208.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Afanasyeva M, Georgakopoulos D, Belardi DF, Ramsundar AC, Barin JG, Kass DA, et al. Quantitative analysis of myocardial inflammation by flow cytometry in murine autoimmune myocarditis: correlation with cardiac function. Am J Pathol. 2004;164(3):807–15.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Okabe TA, Hattori M, Yuan Z, Kishimoto C. L-arginine ameliorates experimental autoimmune myocarditis by maintaining extracellular matrix and reducing cytotoxic activity of lymphocytes. Int J Exp Pathol. 2008;89(5):382–8.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 2000;164(12):6166–73.CrossRefPubMedGoogle Scholar
  17. 17.
    Jovicic N, Jeftic I, Jovanovic I, et al. Differential immunometabolic phenotype in Th1 and Th2 dominant mouse strains in response to high-fat feeding. PLoS One. 10(7):e0134089.Google Scholar
  18. 18.
    Diny NL, Baldeviano GC, Talor MV, Barin JG, Ong SF, Bedja D, et al. Eosinophil-derived IL-4 drives progression of myocarditis to inflammatory dilated cardiomyopathy. J Exp Med. 2017;214(4):943–57.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chow LH, Gauntt CJ, McManus BM. Differential effects of myocarditic variants of Coxsackievirus B3 in inbred mice. A pathologic characterization of heart tissue damage. Lab Investig. 1991;64(1):55–64.PubMedGoogle Scholar
  20. 20.
    Gangaplara A, Massilamany C, Steffen D, Reddy J. Gender differences in the development of autoimmune myocarditis induced with cardiac myosin heavy chain-alpha, 334-352 in C57Bl/6 mice. J Immunol. 2014;192(1 Supplement):179.6.Google Scholar
  21. 21.
    Rabinovich GA, Liu FT, Hirashima M, Anderson A. An emerging role for galectins in tuning the immune response: lessons from experimental models of inflammatory disease, autoimmunity and cancer. Scand J Immunol. 2007;66(2–3):143–58.CrossRefPubMedGoogle Scholar
  22. 22.
    Hsu DK, Chen HY, Liu FT. Galectin-3 regulates T-cell functions. Immunol Rev. 2009;230(1):114–27.CrossRefPubMedGoogle Scholar
  23. 23.
    Radosavljevic G, Volarevic V, Jovanovic I, Milovanovic M, Pejnovic N, Arsenijevic N, et al. The roles of Galectin-3 in autoimmunity and tumor progression. Immunol Res. 2012;52(1–2):100–10.CrossRefPubMedGoogle Scholar
  24. 24.
    Burguillos MA, Svensson M, Schulte T, Boza-Serrano A, Garcia-Quintanilla A, Kavanagh E, et al. Microglia-secreted Galectin-3 acts as a toll-like receptor 4 ligand and contributes to microglial activation. Cell Rep. 2015;10(9):1626–38.CrossRefGoogle Scholar
  25. 25.
    Lerman BJ, Hoffman EP, Sutherland ML, Bouri K, Hsu DK, Liu FT, et al. Deletion of galectin-3 exacerbates microglial activation and accelerates disease progression and demise in a SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Brain Behav. 2012;2(5):563–75.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    de Oliveira FL, Gatto M, Bassi N, Luisetto R, Ghirardello A, Punzi L, et al. Galectin-3 in autoimmunity and autoimmune diseases. Exp Biol Med. 2015;240(8):1019–28.CrossRefGoogle Scholar
  27. 27.
    Ho JE, Liu C, Lyass A, Courchesne P, Pencina MJ, Vasan RS, et al. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol. 2012;60(14):1249–56.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lok DJ, Lok SI, Bruggink-Andre de la Porte PW, et al. Galectin-3 is an independent marker for ventricular remodeling and mortality in patients with chronic heart failure. Clin Res Cardiol. 2013;102(2):103–10.CrossRefPubMedGoogle Scholar
  29. 29.
    Jaquenod De Giusti C, Ure AE, Rivadeneyra L, Schattner M, Gomez RM. Macrophages and galectin 3 play critical roles in CVB3-induced murine acute myocarditis and chronic fibrosis. J Mol Cell Cardiol. 2015;85:58–70.CrossRefPubMedGoogle Scholar
  30. 30.
    Hsu DK, Yang RY, Pan Z, Yu L, Salomon DR, Fung-Leung WP, et al. Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses. Am J Pathol. 2000;156(3):1073–83.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Valaperti A, Marty R, Kania G, et al. CD11b+ monocytes abrogate Th17 CD4+ T cell-mediated experimental autoimmune myocarditis. J Immunol. 2008;180(4):2686–95.CrossRefPubMedGoogle Scholar
  32. 32.
    Afanasyeva M, Georgakopoulos D, Rose NR. Autoimmune myocarditis: cellular mediators of cardiac dysfunction. Autoimmun Rev. 2004;3(7–8):476–86.CrossRefPubMedGoogle Scholar
  33. 33.
    Hazenbos WL, Heijnen IA, Meyer D, et al. Murine IgG1 complexes trigger immune effector functions predominantly via Fc gamma RIII (CD16). J Immunol. 1998;161(6):3026–32.PubMedGoogle Scholar
  34. 34.
    Noel R. Rose. Critical cytokine pathways to cardiac inflammation. J Interf Cytokine Res. 2011;31(10):705–10.CrossRefGoogle Scholar
  35. 35.
    Barin JG, Baldeviano GC, Talor MV, Wu L, Ong S, Fairweather D, et al. Fatal eosinophilic myocarditis develops in the absence of IFN-γ and IL-17A. J Immunol. 2013;191(8):4038–47.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Vitetta ES, Ohara J, Myers CD, Layton JE, Krammer PH, Paul WE. Serological, biochemical, and functional identity of B cell-stimulatory factor 1 and B cell differentiation factor for IgG1. J Exp Med. 1985;162(5):1726–31.CrossRefPubMedGoogle Scholar
  37. 37.
    Baldeviano GC, Barin JG, Talor MV, Srinivasan S, Bedja D, Zheng D, et al. Interleukin-17A is dispensable for myocarditis but essential for the progression to dilated cardiomyopathy. Circ Res. 2010;106(10):1646–55.CrossRefPubMedGoogle Scholar
  38. 38.
    Joo HG, Goedegebuure PS, Sadanaga N, Nagoshi M, von Bernstorff W, Eberlein TJ. Expression and function of galectin-3, a beta-galactoside binding protein in activated T lymphocytes. J Leukoc Biol. 2001;69(4):555–64.PubMedGoogle Scholar
  39. 39.
    Chen HY, Fermin A, Vardhana S, Weng IC, Lo KFR, Chang EY, et al. Galectin-3 negatively regulates TCR-mediated CD4+ T-cell activation at the immunological synapse. Proc Natl Acad Sci U S A. 2009;106(34):14496–501.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Oliveira FL, Chammas R, Ricon L, Fermino ML, Bernardes ES, Hsu DK, et al. Galectin-3 regulates peritoneal B1-cell differentiation into plasma cells. Glycobiology. 2009;19(11):1248–58.CrossRefPubMedGoogle Scholar
  41. 41.
    Clark AG, Weston ML, Foster MH. Lack of galectin-1 or galectin-3 alters B cell deletion and anergy in an autoantibody transgene model. Glycobiology. 2013;23(7):893–903.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Acosta-Rodríguez EV, Montes CL, Motrán CC, et al. Galectin-3 mediates IL-4-induced survival and differentiation of B cells: functional cross-talk and implications during Trypanosomacruzi infection. J Immunol. 2004;172(1):493–502.CrossRefPubMedGoogle Scholar
  43. 43.
    Frisancho-Kiss S, Coronado MJ, Frisancho JA, Lau VM, Rose NR, Klein SL, et al. Gonadectomy of male BALB/c mice increases Tim-3+ alternatively activated M2 macrophages, Tim-3+ T cells, Th2 cells and Treg in the heart during acute coxsackievirus-induced myocarditis. Brain Behav Immun. 2009;23(5):649–57.CrossRefPubMedGoogle Scholar
  44. 44.
    Bellinghausen I, Brand P, Böttcher I, Klostermann B, Knop J, Saloga J. Production of interleukin-13 by human dendritic cells after stimulation with protein allergens is a key factor for induction of T helper 2 cytokines and is associated with activation of signal transducer and activator of transcription-6. Immunology. 2003;108(2):167–76.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Histology and Embryology, Faculty of Medical SciencesUniversity of KragujevacKragujevacSerbia
  2. 2.Center for Molecular Medicine and Stem Cell Research, Faculty of Medical SciencesUniversity of KragujevacKragujevacSerbia
  3. 3.Department of Pathophysiology, Faculty of Medical SciencesUniversity of KragujevacKragujevacSerbia
  4. 4.Department of Pathology, Faculty of Medical SciencesUniversity of KragujevacKragujevacSerbia
  5. 5.Department of Genetics, Faculty of Medical SciencesUniversity of KragujevacKragujevacSerbia

Personalised recommendations