Sex determination in cremated human remains using the lateral angle of the pars petrosa ossis temporalis: is old age a limiting factor?

  • Sabrina Masotti
  • Alba PasiniEmail author
  • Emanuela Gualdi-Russo
Original Article


The significant role of the petrous bone in sex assessment of skeletal human remains has been highlighted by several studies. In previous work we applied the method of the measurement of the lateral angle of the petrous bone to a sample of cremated human remains of known age and sex from an Italian crematorium; the low accuracy of sex classification obtained was probably due to the high number of elderly individuals in our sample. In this paper we investigate the relationship between age and alterations of the petrous bone, by applying the same methodology we used previously, measuring the lateral angle of the petrous bone, in a new sample group that was subdivided into three different age groups. Results showed a moderate rate of accuracy in sex assessment for the first two age groups, for which a new sex-discriminating sectioning point was found; however, the method was found not to be applicable for individuals over 70 years of age. Measurement of the lateral angle in adults aged between 20 and 70 years is a reliable method for sex assessment of cremated remains in conjunction with classical methods, in both archaeological and forensic contexts.


Burned bones Sex determination Temporal bone Biological profile Forensic anthropology 


Compliance with ethical standards

Ethical approval

Not required.

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Schmidt CW, Symes SA, editors. The analysis of burned human remains. 2nd ed. London: Academic Press; 2015.Google Scholar
  2. 2.
    Fairgrieve SI. Forensic cremation. Recovery and analysis. Boca Raton: CRC Press; 2008.Google Scholar
  3. 3.
    Waterhouse K. Post-burning fragmentation of calcined bone: implications for remains recovery from fatal fire scenes. J Forensic Legal Med. 2013;20:1112–7.CrossRefGoogle Scholar
  4. 4.
    Gapert R, Rieder K. Non-invasive examination of a skull fragment recovered from a world war two aircraft crash site. Forensic Sci Med Pathol. 2013;9:395–402.CrossRefGoogle Scholar
  5. 5.
    Tsokos M. Heat-induced post-mortem defect of the skull simulating an exit gunshot wound of the calvarium. Forensic Sci Med Pathol. 2011;7:227–8.CrossRefGoogle Scholar
  6. 6.
    Byard RW. The autopsy evaluation of “straightforward” fire deaths. Forensic Sci Med Pathol. 2018;14:273–5.CrossRefGoogle Scholar
  7. 7.
    Ubelaker DH. The forensic evaluation of burned skeletal remains: a synthesis. Forensic Sci Int. 2009;183:1–5.CrossRefGoogle Scholar
  8. 8.
    Berketa JW, Simpson E, Graves S, O’Donohue G, Liu YL. The utilization of incinerated hip and knee prostheses for identification. Forensic Sci Med Pathol. 2015;11:432–7.CrossRefGoogle Scholar
  9. 9.
    Berketa JW. Maximizing postmortem oral-facial data to assist identification following severe incineration. Forensic Sci Med Pathol. 2014;10:208–16.CrossRefGoogle Scholar
  10. 10.
    Bennett JL. Thermal alteration of buried bone. J Archaeol Sci. 1999;26:1–8.CrossRefGoogle Scholar
  11. 11.
    Etok SE, Valsami-Jones E, Wess TJ, Hiller JC, Maxwell CA, Rogers KD, et al. Structural and chemical changes of thermally treated bone apatite. J Mater Sci. 2007;42:9807–16.CrossRefGoogle Scholar
  12. 12.
    Thompson TJU. Recent advances in the study of burned bone and their implications for forensic anthropology. Forensic Sci Int. 2004;146:203–25.CrossRefGoogle Scholar
  13. 13.
    Masotti S. Valutazione degli aspetti tafonomici nei resti ossei umani combusti. Ann dell’Università di Ferrara - Museol Sci e Nat. 2014;10:359–64.Google Scholar
  14. 14.
    Shipman P, Foster G, Schoeninger M. Burnt bones and teeth: an experimental study of color, morphology, crystal structure and shrinkage. J Archaeol Sci. 1984;11:307–25.CrossRefGoogle Scholar
  15. 15.
    Gonçalves D, Thompson TJU, Cunha E. Implications of heat-induced changes in bone on the interpretation of funerary behaviour and practice. J Archaeol Sci. 2011;38:1308–13.CrossRefGoogle Scholar
  16. 16.
    Buikstra JE, Ubelaker DH, editors. Standards for data collection from human skeletal remains. Fayetteville: Arkansas Archaeological Survey Research Series; 1994.Google Scholar
  17. 17.
    Lovejoy CO, Meindl RS, Pryzbeck TR, Mensforth RP. Chronological metamorphosis of the auricular surface of the ilium: a new method for the determination of adult skeletal age at death. Am J Phys Anthropol. 1985;68:15–28.CrossRefGoogle Scholar
  18. 18.
    Krogman WM, Iscan MY. Human skeleton in forensic medicine. Springfield: Charles C Thomas; 1986.Google Scholar
  19. 19.
    Ferembach D, Schwydeski I, Stloukal M. Recommendations for age and sex diagnoses of skeletons. J Hum Evol. 1980;9:517–49.CrossRefGoogle Scholar
  20. 20.
    Gualdi-Russo E. Sex determination from the talus and calcaneus measurements. Forensic Sci Int. 2007;171:151–6.CrossRefGoogle Scholar
  21. 21.
    Acsádi G, Nemeskéri J. History of human life span and mortality. Budapest: Akadémiai Kiadó; 1970.Google Scholar
  22. 22.
    Brooks S, Suchey JM. Skeletal age determination based on the os pubis: a comparison of the Acsádi-Nemeskéri and Suchey-Brooks methods. Hum Evol. 1990;5:227–38.CrossRefGoogle Scholar
  23. 23.
    Thompson T. The assessment of sex in cremated individuals: some cautionary notes. J Can Soc Forensic Sci. 2002;35:49–56.CrossRefGoogle Scholar
  24. 24.
    Gonçalves D. The reliability of osteometric techniques for the sex determination of burned human skeletal remains. HOMO- J Comp Hum Biol. 2011;62:351–8.CrossRefGoogle Scholar
  25. 25.
    Gonçalves D, Thompson TJU, Cunha E. Osteometric sex determination of burned human skeletal remains. J Forensic Legal Med. 2013;20:906–11.CrossRefGoogle Scholar
  26. 26.
    Norén A, Lynnerup N, Czarnetzki A, Graw M. Lateral angle: a method for sexing using the petrous bone. Am J Phys Anthropol. 2005;128:318–23.CrossRefGoogle Scholar
  27. 27.
    Graw M, Wahl J, Ahlbrecht M. Course of the meatus acusticus internus as criterion for sex differentiation. Forensic Sci Int. 2005;147:113–7.CrossRefGoogle Scholar
  28. 28.
    Wahl J, Graw M. Metric sex differentiation of the pars petrosa ossis temporalis. Int J Legal Med. 2001;114:215–23.CrossRefGoogle Scholar
  29. 29.
    Gonçalves D, Thompson TJU, Cunha E. Sexual dimorphism of the lateral angle of the internal auditory canal and its potential for sex estimation of burned human skeletal remains. Int J Legal Med. 2015;129:1183–6.CrossRefGoogle Scholar
  30. 30.
    Masotti S, Succi-Leonelli E, Gualdi-Russo E. Cremated human remains: is measurement of the lateral angle of the meatus acusticus internus a reliable method of sex determination? Int J Legal Med. 2013;127:1039–44.CrossRefGoogle Scholar
  31. 31.
    Midori AA, Ricanek K, Patterson E. A review of the literature on the aging adult skull and face: implications for forensic science research and applications. Forensic Sci Int. 2007;172:1–9.CrossRefGoogle Scholar
  32. 32.
    Akgül AA, Toygar TU. Natural craniofacial changes in the third decade of life: a longitudinal study. Am J Orthod Dentofac Orthop. 2002;122:512–22.CrossRefGoogle Scholar
  33. 33.
    Mydlová M, Dupej J, Koudelová J, Velemínská J. Sexual dimorphism of facial appearance in ageing human adults: a cross-sectional study. Forensic Sci Int. 2015;257:519.e1–9.CrossRefGoogle Scholar
  34. 34.
    Ashley-Montagu MF. Aging of the skull. Am J Phys Anthropol. 1938;23:355–75.CrossRefGoogle Scholar
  35. 35.
    Avelar LET, Cardoso MA, Bordoni LS, De Miranda Avelar L, De Miranda Avelar JV. Aging and sexual differences of the human skull. Plast Reconstr Surg - Glob Open. 2017;5:1–6.Google Scholar
  36. 36.
    Susanne C. Individual age changes of the morphological characteristics. J Hum Evol. 1977;6:181–9.CrossRefGoogle Scholar
  37. 37.
    Susanne C. Ageing, continuous changes of adulthood. In: Johnston FE, Roche AF, Susanne C, editors. Human physical growth and maturation. Boston: Springer; 1980. p. 203–18.CrossRefGoogle Scholar
  38. 38.
    Gualdi-Russo E. Longitudinal study of anthropometric changes with aging in an urban Italian population. HOMO. 1998;49:241–59.Google Scholar
  39. 39.
    Orimo H, Ito H, Suzuki T, Araki A, Hosoi T, Sawabe M. Reviewing the definition of “elderly”. Geriatr Gerontol Int. 2006;6:149–58.CrossRefGoogle Scholar
  40. 40.
    Chang AY, Skirbekk VF, Tyrovolas S, Kassebaum NJ, Dieleman JL. Measuring population ageing: an analysis of the global burden of disease study 2017. Lancet Public Heal. 2019;4:e159–67.CrossRefGoogle Scholar
  41. 41.
    Sjögren M, Vanderstichele H, Ågren H, Zachrisson O, Edsbagge M, Wikkelsø C, et al. Tau and Aβ42 in cerebrospinal fluid from healthy adults 21–93 years of age: establishment of reference values. Clin Chem. 2001;47:177681.Google Scholar
  42. 42.
    Tsai A, Malek-Ahmadi M, Kahlon V, Sabbagh MN. Differences in cerebrospinal fluid biomarkers between clinically diagnosed idiopathic normal pressure hydrocephalus and Alzheimer’s disease. J Alzheimer’s Dis Park. 2014;4:1000150.
  43. 43.
    Chen JW, Zhou CF, Lin ZX. The influence of different classification standards of age groups on prognosis in high-grade hemispheric glioma patients. J Neurol Sci. 2015;356:148–52.CrossRefGoogle Scholar
  44. 44.
    DiGangi E, Moore MK, editors. Research methods in human skeletal biology. Waltham: Academic Press; 2013.Google Scholar
  45. 45.
    Kalmey JK, Rathbun TA. Sex determination by discriminant function analysis of the petrous portion of the temporal bone. J Forensic Sci. 1996;41:865–7.CrossRefGoogle Scholar
  46. 46.
    Schutkowski H. Über den diagnostischen wert der pars petrosa ossis temporalis für die geschlechtsbestimmung. zeitschrift für morphol und anthropol. E. Schweizerbart’sche Verlagsbuchhandlung. 1983;74:129–44.Google Scholar
  47. 47.
    Kozerska M, Skrzat J, Szczepanek A. Application of the temporal bone for sex determination from the skeletal remains. Folia Med Cracov. 2015;55:33–9.Google Scholar
  48. 48.
    Lynnerup N, Schulz M, Madelung A, Graw M. Diameter of the human internal acoustic meatus and sex determination. Int J Osteoarchaeol. 2006;16:118–23.CrossRefGoogle Scholar
  49. 49.
    Wahl J, Henke W. Die pars petrosa als diagnostikum für die multivariat-biometrische geschlechtsbestimmung von leichenbrandmaterial. Z Morphol Anthropol E Schweizerbart’sche Verlagsbuchhandlung. 1980;70:258–68.Google Scholar
  50. 50.
    Thompson TJU. Heat-induced dimensional changes in bone and their consequences for forensic anthropology. J Forensic Sci. 2005;50:1008–15.CrossRefGoogle Scholar
  51. 51.
    Urban JE, Weaver AA, Lillie EM, Maldjian JA, Whitlow CT, Stitzel JD. Evaluation of morphological changes in the adult skull with age and sex. J Anat England. 2016;229:838–46.CrossRefGoogle Scholar
  52. 52.
    Lillie EM, Urban JE, Lynch SK, Weaver AA, Stitzel JD. Evaluation of skull cortical thickness changes with age and sex from computed tomography scans. J Bone Miner Res. 2016;31:299–307.CrossRefGoogle Scholar
  53. 53.
    Shipman P, Walker A, Bichell D. The human skeleton. Cambridge: Harvard University Press; 1985.CrossRefGoogle Scholar
  54. 54.
    Gulya AJ. Anatomy of the temporal bone with surgical implications. 3rd ed. New York: Informa Healthcare USA Inc; 2007.CrossRefGoogle Scholar
  55. 55.
    Wahl J. Ein Beitrag zur metrischen Geschlechtsdiagnose verbrannter und unverbrannter menschlicher Knochenreste-ausgearbeitet an der Pars petrosa ossis temporalis. Zeitschrift für Rechtsmedizin. 1981;86:79–101.CrossRefGoogle Scholar
  56. 56.
    Wolf M, Streit B, Dokládal M, Schultz M. Determining human age at death using cremated bone microstructure. Biomed J Sci Tech Res. 2017;1:785–91.Google Scholar
  57. 57.
    Piers MD, Brickley M, editors. Updated guidelines to the standards for recording human remains. Earley: Chartered Institute for Archaeologists; 2017.Google Scholar
  58. 58.
    Wendell Todd N, Graw M, Dietzel M. “Lateral angle” of the internal auditory canal: non-association with temporal bone pneumatization. J Forensic Sci. 2010;55:141–4.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biomedical Sciences and Surgical Specialties, Faculty of Medicine, Pharmacy and PreventionUniversity of FerraraFerraraItaly

Personalised recommendations