Advertisement

An interdisciplinary review of the thanatomicrobiome in human decomposition

  • Gulnaz T. Javan
  • Sheree J. Finley
  • Sari Tuomisto
  • Ashley Hall
  • M. Eric Benbow
  • DeEtta Mills
Review

Abstract

Death does not occur instantaneously and organs do not decompose at the same rate or in the same way. Nulligravid human uteri and prostate glands are the last internal organs to deteriorate during decomposition; however, the reason for this very important observation is still enigmatic. Recent studies have elucidated that the composition and abundance of microbes in the human thanatomicrobiome (microbiome of death) varies by organ and changes as a function of time and temperature. The ileocecal area has the largest absolute postmortem burden that spreads to the liver and spleen and continues to the heart and brain depending on the cause of death. To truly understand the mechanisms of microbial assembly during decomposition, a thorough examination of different strategies utilized by the trillions of microbes that colonize decaying tissues is needed from a multi-organ and multidisciplinary approach. In this review, we highlight interdisciplinary research and provide an overview of human decomposition investigations of thanatomicrobiomic changes in internal organs.

Keywords

Human decomposition Internal organs Thanatomicrobiome Postmortem microbiome 

Notes

Acknowledgements

This review paper was supported by National Science Foundation HRD 1401075 and National Institute of Justice 2017-MU-MU-0042 grants.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Human and animal studies

The authors declare that no research involving human participants and/or animals was conducted in this review.

No identifying information about participants was used in this review.

References

  1. 1.
    Ford WW. On the bacteriology of normal organs. Epidemiol Infect. 1901;1:277–84.Google Scholar
  2. 2.
    Stewart EJ. Growing unculturable bacteria. J Bacteriol. 2012;194:4151–60.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gevers W. Biochemical aspects of cell death. Forensic Sci. 1975;6:25–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Can I, Javan GT, Pozhitkov AE, Noble PA. Distinctive thanatomicrobiome signatures found in the blood and internal organs of humans. J Microbiol Methods. 2014;106:1–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Javan GT, Finley SJ, Can I, Wilkinson JE, Hanson JD, Tarone AM. Human thanatomicrobiome succession and time since death. Sci Rep. 2016;6:29598.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Javan GT, Finley SJ, Abidin Z, Mulle JG. The thanatomicrobiome: a missing piece of the microbial puzzle of death. Front Microbiol. 2016;7:225.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Adserias Garriga J, Quijada NM, Hernandez M, Lázaro DR, Steadman D, Garcia-Gil J. Dynamics of the oral microbiota as a tool to estimate time since death. Mol Oral Microbiol. 2017;32:511–6.PubMedGoogle Scholar
  8. 8.
    DeBruyn JM, Hauther KA. Postmortem succession of gut microbial communities in deceased human subjects. PeerJ. 2017;5:e3437.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Vass AA. Beyond the grave-understanding human decomposition. Microbiol Today. 2001;28:190–3.Google Scholar
  10. 10.
    Stefanuto PH, Perrault KA, Grabherr S, Varlet V, Focant JF. Postmortem internal gas reservoir monitoring using GC× GC-HRTOF-MS. Separations. 2016;3:24.CrossRefGoogle Scholar
  11. 11.
    Carter DO, Tomberlin JK, Benbow ME, Metcalf JL. Perspectives on the future of forensic microbiology. In: Carter DO, Tomberlin JK, Benbow ME, Metcalf JL, editors. Forensic microbiology. New York City: Wiley; 2017. p. 376–8.CrossRefGoogle Scholar
  12. 12.
    Pascual J, von Hoermann C, Rottler-Hoermann AM, et al. Function of bacterial community dynamics in the formation of cadaveric semiochemicals during in situ carcass decomposition. Environ Microbiol. 2017;9:3310–22.CrossRefGoogle Scholar
  13. 13.
    Javan GT, Finley SJ, Smith T, Miller J, Wilkinson JE. Cadaver thanatomicrobiome signatures: the ubiquitous nature of Clostridium species in human decomposition. Front Microbiol. 2017;8:2096.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bell CR, Wilkinson JE, Robertson BK, Javan GT. Sex-related differences in the thanatomicrobiome in postmortem heart samples using bacterial gene regions V1-2 and V4. J Appl Microbiol. 2018;67:144–53.CrossRefGoogle Scholar
  15. 15.
    Pechal JL, Schmidt CJ, Jordan HR, Benbow ME. A large-scale survey of the postmortem human microbiome, and its potential to provide insight into the living health condition. Sci Rep. 2018;8:5724.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Tuomisto S, Pessi T, Collin P, Vuento R, Aittoniemi J, Karhunen PJ. Changes in gut bacterial populations and their translocation into liver and ascites in alcoholic liver cirrhotics. BMC Gastroenterol. 2014;14:40.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Belk A, Xu ZZ, Carter DO, Lynne A, Bucheli S, Knight R, et al. Microbiome data accurately predicts the postmortem interval using random forest regression models. Genes. 2018;9:104.CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Zhou C, Byard RW. Factors and processes causing accelerated decomposition in human cadavers–an overview. J Forensic Legal Med. 2011;18:6–9.CrossRefGoogle Scholar
  19. 19.
    Ellis KJ. Human body composition: in vivo methods. Physiol Rev. 2000;80:649–80.CrossRefPubMedGoogle Scholar
  20. 20.
    Matuszewski S, Konwerski S, Frątczak K, Szafałowicz M. Effect of body mass and clothing on decomposition of pig carcasses. Int J Legal Med. 2014;128:1039–48.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Vass AA, Barshick SA, Sega G, et al. Decomposition chemistry of human remains: a new methodology for determining the postmortem interval. J For Sci. 2002;47:542–53.Google Scholar
  22. 22.
    Olakanye AO, Nelson A, Ralebitso-Senior TK. A comparative in situ decomposition study using still born piglets and leaf litter from a deciduous forest. Forensic Sci Int. 2017;276:85–92.CrossRefPubMedGoogle Scholar
  23. 23.
    Dent BB, Forbes SL, Stuart BH. Review of human decomposition processes in soil. Environ Geol. 2004;45:576–85.CrossRefGoogle Scholar
  24. 24.
    Goff ML. Early post-mortem changes and stages of decomposition in exposed cadavers. Exp Appl Acarol. 2009;49:21–36.CrossRefPubMedGoogle Scholar
  25. 25.
    Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148:1258–70.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    DeVault TL, Rhodes OE Jr, Shivik JA. Scavenging by vertebrates: behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos. 2003;102:225–34.CrossRefGoogle Scholar
  27. 27.
    Wilson EE, Wolkovich EM. Scavenging: how carnivores and carrion structure communities. Trends Ecol Evol. 2011;26:129–35.CrossRefPubMedGoogle Scholar
  28. 28.
    Benbow ME, Lewis AJ, Tomberlin JK, Pechal JL. Seasonal necrophagous insect community assembly during vertebrate carrion decomposition. J Med Entomol. 2013;50:440–50.CrossRefPubMedGoogle Scholar
  29. 29.
    Damann FE, Williams DE, Layton AC. Potential use of bacterial community succession in decaying human bone for estimating postmortem interval. J Forensic Sci. 2015;60:844–50.CrossRefPubMedGoogle Scholar
  30. 30.
    Molina DK, DiMaio VJ. Normal organ weights in men: part II—the brain, lungs, liver, spleen, and kidneys. Am J Forensic Med Pathol. 2012;33:368–72.CrossRefPubMedGoogle Scholar
  31. 31.
    Gunn A, Pitt SJ. Microbes as forensic indicators. Trop Biomed. 2012;29:311–30.Google Scholar
  32. 32.
    Huang C, Sloan EA, Boerkoel CF. Chromatin remodeling and human disease. Curr Opin Genet Dev. 2003;13:246–52.CrossRefPubMedGoogle Scholar
  33. 33.
    Bär W, Kratzer A, Mächler M, Schmid W. Postmortem stability of DNA. Forensic Sci Int. 1988;39:59–70.CrossRefPubMedGoogle Scholar
  34. 34.
    Hynd MR, Lewohl JM, Scott HL, Dodd PR. Biochemical and molecular studies using human autopsy brain tissue. J Neurochem. 2003;85:543–62.CrossRefPubMedGoogle Scholar
  35. 35.
    Williams T, Soni S, White J, Can G, Javan GT. Evaluation of DNA degradation using flow cytometry: promising tool for postmortem interval determination. Am J Forensic Med Pathol. 2015;36:104–10.CrossRefPubMedGoogle Scholar
  36. 36.
    Di Nunno NR, Costantinides F, Bernasconi P, Bottin C, Melato M. Is flow cytometric evaluation of DNA degradation a reliable method to investigate the early postmortem period? Am J Forensic Med Pathol. 1998;19:50–3.CrossRefPubMedGoogle Scholar
  37. 37.
    Molina DK, DiMaio VJ. Normal organ weights in women: part I-the heart. Am J Forensic Med Pathol. 2015;36:176–81.CrossRefPubMedGoogle Scholar
  38. 38.
    Payne-James J, Simpson K. Simpson’s forensic medicine. Boca Raton: CRC Press; 2011.Google Scholar
  39. 39.
    Levy AD, Harcke HT Jr. Essentials of forensic imaging: a text-atlas. Boca Raton: CRC Press; 2010.CrossRefGoogle Scholar
  40. 40.
    Trotter SA, Brill Ii LB, Bennett JP. Stability of gene expression in postmortem brain revealed by cDNA gene array analysis. Brain Res. 2002;942:120–3.CrossRefPubMedGoogle Scholar
  41. 41.
    Yasojima K, McGeer EG, McGeer PL. High stability of mRNAs postmortem and protocols for their assessment by RT-PCR. Brain Res Protocol. 2001;8:212–8.CrossRefGoogle Scholar
  42. 42.
    Donaldson AE, Lamont IL. Biochemistry changes that occur after death: potential markers for determining post-mortem interval. PLoS One. 2013;8:e82011.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Cocariu EA, Mageriu V, Stăniceanu F, Bastian A, Socoliuc C, Zurac S. Correlations between the autolytic changes and postmortem interval in refrigerated cadavers. Rom J Intern Med. 2016;54:105–12.PubMedGoogle Scholar
  44. 44.
    Sibulesky L. Normal liver anatomy. Clin Liver Dis. 2013;2(S1).CrossRefGoogle Scholar
  45. 45.
    Tuomisto S, Karhunen PJ, Vuento R, Aittoniemi J, Pessi T. Evaluation of postmortem bacterial migration using culturing and real-time quantitative PCR. J Forensic Sci. 2013;58:910–6.CrossRefPubMedGoogle Scholar
  46. 46.
    Carpenter HM, Wilkins RM. Autopsy bacteriology: review of 2,033 cases. Arch Pathol. 1964;77:73–81.PubMedGoogle Scholar
  47. 47.
    Wilson SJ, Wilson ML, Reller LB. Diagnostic utility of postmortem blood cultures. Arch Pathol Lab Med. 1993;117:986–8.PubMedGoogle Scholar
  48. 48.
    Boutin EL, Battle E, Cunha GR. The response of female urogenital tract epithelia to mesenchymal inductors is restricted by the germ layer origin of the epithelium: prostatic inductions. Differentiation. 1991;48:99–105.CrossRefPubMedGoogle Scholar
  49. 49.
    Chang K, Zhang L. Steroid hormones and uterine vascular adaptation to pregnancy. Reprod Sci. 2008;15:336–48.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Casper JL. A handbook of the practice of forensic medicine: based upon personal experience. London: New Sydenham Society; 1861.Google Scholar
  51. 51.
    Tolbert M, Finley SJ, Visonà SD, Soni S, Osculati A, Javan GT. The thanatotranscriptome: gene expression of male reproductive organs after death. Gene. 2018;675:191–6.CrossRefPubMedGoogle Scholar
  52. 52.
    Lee CH, Akin-Olugbade O, Kirschenbaum A. Overview of prostate anatomy, histology, and pathology. Endocrinol Metab Clin N Am. 2011;40:565–75.CrossRefGoogle Scholar
  53. 53.
    Suzuki Y, Tsujimoto Y, Matsui H, Watanabe K. Decomposition of extremely hard-to-degrade animal proteins by thermophilic bacteria. J Biosci Bioeng. 2006;102:73–81.CrossRefPubMedGoogle Scholar
  54. 54.
    Hyde ER, Haarmann DP, Lynne AM, Bucheli SR, Petrosino JF. The living dead: bacterial community structure of a cadaver at the onset and end of the bloat stage of decomposition. PLoS One. 2013;8:e77733.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Hyde E, Haarmann DP, Petrosino JF, Lynne AM, Bucheli SR. Initial insights into bacterial succession during human decomposition. Int J Legal Med. 2015;129:661–71.CrossRefPubMedGoogle Scholar
  56. 56.
    Metcalf JL, Parfrey LW, Gonzalez A, et al. A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system. elife. 2013;2:e01104.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Thomas TB, Finley SJ, Wilkinson JE, Wescott DJ, Gorski A, Javan GT. Postmortem microbial communities in burial soil layers of skeletonized humans. J Forensic Legal Med. 2017;49:43–9.CrossRefPubMedGoogle Scholar
  58. 58.
    Pechal JL, Crippen TL, Tarone AM. Microbial community functional change during vertebrate carrion decomposition. PLoS One. 2013;8:e79035.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Pechal JL, Crippen TL, Benbow ME, Tarone AM, Dowd S, Tomberlin JK. The potential use of bacterial community succession in forensics as described by high throughput metagenomic sequencing. Int J Legal Med. 2014;128:193–205.CrossRefPubMedGoogle Scholar
  60. 60.
    Benbow ME, Pechal JL, Lang JM, Erb R, Wallace JR. The potential of high-throughput metagenomic sequencing of aquatic bacterial communities to estimate the postmortem submersion interval. J Forensic Sci. 2015;60:1500–10.CrossRefPubMedGoogle Scholar
  61. 61.
    Fredette JW. Bacteremias in the agonal period. Transl Res. 1916;2:180–8.Google Scholar
  62. 62.
    Fouts DE, Torralba M, Nelson KE, Brenner DA, Schnabl B. Bacterial translocation and changes in the intestinal microbiome in mouse models of liver disease. J Hepatol. 2012;56:1283–92.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Heimesaat MM, Boelke S, Fischer A, et al. Comprehensive postmortem analyses of intestinal microbiota changes and bacterial translocation in human flora associated mice. PLoS One. 2012;7:e40758.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Burcham ZM, Hood JA, Pechal JL, et al. Fluorescently labeled bacteria provide insight on post-mortem microbial transmigration. Forensic Sci Int. 2016;264:63–9.CrossRefPubMedGoogle Scholar
  65. 65.
    Dix J, Graham M. Time of death, decomposition and identification: an atlas. Boca Raton: CRC press; 1999.CrossRefGoogle Scholar
  66. 66.
    Latil M, Rocheteau P, Châtre L, et al. Skeletal muscle stem cells adopt a dormant cell state post mortem and retain regenerative capacity. Nat Commun. 2012;3:903.CrossRefPubMedGoogle Scholar
  67. 67.
    Mostafa EM, El-Elemi AH, El-Beblawy MA, Dawood AE. Adult sex identification using digital radiographs of the proximal epiphysis of the femur at Suez Canal University Hospital in Ismailia, Egypt. Egypt J Forensic Sci. 2012;2:81–8.CrossRefGoogle Scholar
  68. 68.
    Đurić M, Rakočević Z, Đonić D. The reliability of sex determination of skeletons from forensic context in the Balkans. Forensic Sci Int. 2005;147:159–64.CrossRefPubMedGoogle Scholar
  69. 69.
    Campobasso CP, Introna F. The forensic entomologist in the context of the forensic pathologist’s role. Forensic Sci Int. 2001;120:132–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physical Sciences Department, Forensic Science ProgramAlabama State UniversityMontgomeryUSA
  2. 2.Faculty of Medicine and Life Sciences, Department of Forensic MedicineUniversity of TampereTampereFinland
  3. 3.Department of Biopharmaceutical SciencesUniversity of Illinois at ChicagoChicagoUSA
  4. 4.Department of Entomology and Department of Osteopathic MedicineMichigan State UniversityEast LansingUSA
  5. 5.Department of Biological SciencesFlorida International UniversityMiamiUSA

Personalised recommendations