Advertisement

A Systematic Review and Meta-Analysis of the Diagnostic Performance of BRAF V600E Immunohistochemistry in Thyroid Histopathology

  • Ranjit Singarayer
  • Ozgur Mete
  • Laure Perrier
  • Lehana Thabane
  • Sylvia L. Asa
  • Stan Van Uum
  • Shereen Ezzat
  • David P. Goldstein
  • Anna M. SawkaEmail author
Article

Abstract

Immunohistochemistry (IHC) in evaluating thyroid surgical specimens may facilitate diagnostic and prognostic evaluation, with potential therapeutic implications. We performed a systematic review and meta-analysis examining the analytic validity of IHC in detecting BRAFV600E mutations in thyroid cancer (primary or metastatic). We screened citations from three electronic databases (until December 20, 2018), supplemented by a hand search of authors’ files and cross-references of reviews. Citations and full-text papers were independently reviewed in duplicate, and consensus was achieved on inclusion of papers. Two reviewers independently critically appraised and abstracted data from included papers. Random-effect meta-analyses were conducted for sensitivity and specificity estimates. We reviewed 1499 unique citations and 93 full-text articles. We included 1 systematic review and 30 original articles. The published review (from 2015) needed to be updated as there were multiple subsequent original studies. The pooled sensitivity of IHC in detecting a BRAFV600E mutation was 96.8% (95% confidence interval [CI] at 94.1%, 98.3%) (29 studies, including 2659 BRAFV600E mutant tumors). The IHC pooled specificity was 86.3% (95% CI 80.7%, 90.4%) (28 studies, including 1107 BRAFV600E wild-type specimens). These meta-analyses were subject to statistically significant heterogeneity, partly explained by antibody type (sensitivity and specificity) and tissue/tumor type (specificity). In conclusion, BRAF IHC is highly sensitive and reasonably specific in detecting the BRAFV600E mutation; however, there is some variability in analytic performance.

Keywords

BRAFV600E Thyroid cancer Diagnostic accuracy Systematic review Meta-analysis Papillary thyroid carcinoma 

Notes

Acknowledgments

The authors would like to thank Mrs. Coreen Marino, for assistance in retrieving full-text papers.

Funding information

None.

Compliance with Ethical Standards

Conflict of Interest

None declared.

References

  1. 1.
    Lim H, Devesa SS, Sosa JA, Check D, Kitahara CM. (2017) Trends in thyroid cancer incidence and mortality in the United States, 1974–2013. JAMA. 317(13):1338–1348.  https://doi.org/10.1001/jama.2017.2719.CrossRefGoogle Scholar
  2. 2.
    Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell 2014; 159(3): 676–690.CrossRefGoogle Scholar
  3. 3.
    Vuong HG, Altibi AM, Abdelhamid AH, Ngoc PU, Quan VD, Tantawi MY, Elfil M, Vu TL, Elgebaly A, Oishi N, Nakazawa T, Hirayama K, Katoh R, Huy NT, Kondo T. (2017) The changing characteristics and molecular profiles of papillary thyroid carcinoma over time: a systematic review. Oncotarget 8(6):10637–10649.  https://doi.org/10.18632/oncotarget.12885.CrossRefGoogle Scholar
  4. 4.
    Lloyd RV, Osamura RV, Kloppel G, Rosai J, editors. WHO classification of tumors of endocrine organs (4th edition). IARC: Lyon 2017.Google Scholar
  5. 5.
    Lo MC, Paterson A, Maraka J, Clark R, Goodwill J, Nobes J, Garioch J, Moncrieff M, Rytina E, Igali L. (2016). A UK feasibility and validation study of the VE1 monoclonal antibody immunohistochemistry stain for BRAF-V600E mutations in metastatic melanoma. Br J Cancer 115(2), 223–227.  https://doi.org/10.1038/bjc.2016.106.CrossRefGoogle Scholar
  6. 6.
    Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, Sterne JA, Bossuyt PM; QUADAS-2 Group. (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155(8):529–536.  https://doi.org/10.7326/0003-4819-155-8-201110180-00009.CrossRefGoogle Scholar
  7. 7.
    Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, Moher D, Tugwell P, Welch V, Kristjansson E, Henry DA. (2017) AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 358:j4008. https://doi.org/10.1136/bmj.j4008 CrossRefGoogle Scholar
  8. 8.
    Cochran WG. (1954) The combination of estimates from different experiments. Biometrics 101: 101–129.CrossRefGoogle Scholar
  9. 9.
    Higgins JP, Thompson SG, Deeks JJ, Altman DG. (2003) Measuring inconsistency in meta-analyses. BMJ 327: 557–560. https://doi.org/10.1136/bmj.327.7414.557 CrossRefGoogle Scholar
  10. 10.
    Bürkner PC, Doebler P. (2014) Testing for publication bias in diagnostic meta-analysis: a simulation study. Stat Med 33(18):3061–3067. https://doi.org/10.1002/sim.6177 CrossRefGoogle Scholar
  11. 11.
    Abd Elmageed ZY, Sholl AB, Tsumagari K, Al-Qurayshi Z, Basolo F, Moroz K, Boulares AH, Friedlander P, Miccoli P, Kandil E. (2017) Immunohistochemistry as an accurate tool for evaluating BRAF-V600E mutation in 130 samples of papillary thyroid cancer. Surgery 161(4):1122–1128. https://doi.org/10.1016/j.surg.2016.06.081.CrossRefGoogle Scholar
  12. 12.
    Bullock M, O'Neill C, Chou A, Clarkson A, Dodds T, Toon C, Sywak M, Sidhu SB, Delbridge LW, Robinson BG, Learoyd DL, Capper D, von Deimling A, Clifton-Bligh RJ, Gill AJ. (2012) Utilization of a MAB for BRAF(V600E) detection in papillary thyroid carcinoma. Endocr Relat Cancer 19(6):779–784. https://doi.org/10.1530/ERC-12-0239.CrossRefGoogle Scholar
  13. 13.
    Capper D, Preusser M, Habel A, Sahm F, Ackermann U, Schindler G, Pusch S, Mechtersheimer G, Zentgraf H, von Deimling A. (2011) Assessment of BRAF V600E mutation status by immunohistochemistry with a mutation-specific monoclonal antibody. Acta Neuropathol 122(1):11–19.  https://doi.org/10.1007/s00401-011-0841-z.CrossRefGoogle Scholar
  14. 14.
    Chen D, Qi W, Zhang P, Zhang Y, Liu Y, Guan H, Wang L. (2018) Investigation of BRAFV600E detection approaches in papillary thyroid carcinoma. Pathol Res Pract 214(2):303–307.  https://doi.org/10.1016/j.prp.2017.09.001.CrossRefGoogle Scholar
  15. 15.
    Crescenzi A, Guidobaldi L, Nasrollah N, Taccogna S, Cicciarella Modica DD, Turrini L, Nigri G, Romanelli F, Valabrega S, Giovanella L, Onetti Muda A, Trimboli P. (2014) Immunohistochemistry for BRAF(V600E) antibody VE1 performed in core needle biopsy samples identifies mutated papillary thyroid cancers. Horm Metab Res 46(5):370–374.  https://doi.org/10.1055/s-0034-1368700.CrossRefGoogle Scholar
  16. 16.
    da Silva RC, de Paula HS, Leal CB, Cunha BC, de Paula EC, Alencar RC, Meneghini AJ, Silva AM, Gontijo AP, Wastowski IJ, Saddi VA. (2015) BRAF overexpression is associated with BRAF V600E mutation in papillary thyroid carcinomas. Genet Mol Res 14(2):5065–5075.  https://doi.org/10.4238/2015.CrossRefGoogle Scholar
  17. 17.
    de Biase D, Cesari V, Visani M, Casadei GP, Cremonini N, Gandolfi G, Sancisi V, Ragazzi M, Pession A, Ciarrocchi A, Tallini G. (2014) High-sensitivity BRAF mutation analysis: BRAF V600E is acquired early during tumor development but is heterogeneously distributed in a subset of papillary thyroid carcinomas. J Clin Endocrinol Metab 99(8):E1530–8.  https://doi.org/10.1210/jc.2013-4389.CrossRefGoogle Scholar
  18. 18.
    Fisher KE, Neill SG, Ehsani L, Caltharp SA, Siddiqui MT, Cohen C. (2014) Immunohistochemical Investigation of BRAF p.V600E mutations in thyroid carcinoma using 2 separate BRAF antibodies. Appl Immunohistochem Mol Morphol 22(8):562–567.  https://doi.org/10.1097/PAI.0b013e3182a2f75f.CrossRefGoogle Scholar
  19. 19.
    Ghossein RA, Katabi N, Fagin JA. (2013) Immunohistochemical detection of mutated BRAF V600E supports the clonal origin of BRAF-induced thyroid cancers along the spectrum of disease progression. J Clin Endocrinol Metab 98(8):E1414–E1421.  https://doi.org/10.1210/jc.2013-1408.CrossRefGoogle Scholar
  20. 20.
    Ilie MI, Lassalle S, Long-Mira E, Bonnetaud C, Bordone O, Lespinet V, Lamy A, Sabourin JC, Haudebourg J, Butori C, Guevara N, Peyrottes I, Sadoul JL, Bozec A, Santini J, Capper D, von Deimling A, Emile JF, Hofman V, Hofman P. (2014) Diagnostic value of immunohistochemistry for the detection of the BRAF(V600E) mutation in papillary thyroid carcinoma: comparative analysis with three DNA-based assays. Thyroid 24(5):858–866.  https://doi.org/10.1089/thy.2013.0302.CrossRefGoogle Scholar
  21. 21.
    Jung YY, Yoo JH, Park ES, Kim MK, Lee TJ, Cho BY, Chung YJ, Kang KH, Ahn HY, Kim HS. (2015) Clinicopathologic correlations of the BRAFV600E mutation, BRAF V600E immunohistochemistry, and BRAF RNA in situ hybridization in papillary thyroid carcinoma. Pathol Res Pract 211(2):162–170. https://doi.org/10.1016/j.prp.2014.10.005.CrossRefGoogle Scholar
  22. 22.
    Kim YH, Choi SE, Yoon SO, Hong SW. (2014) A testing algorithm for detection of the B-type Raf kinase V600E mutation in papillary thyroid carcinoma. Hum Pathol 45(7):1483–1488.  https://doi.org/10.1016/j.humpath.2014.02.025.CrossRefGoogle Scholar
  23. 23.
    Kim JK, Seong CY, Bae IE, Yi JW, Yu HW, Kim SJ, Won JK, Chai YJ, Choi JY, Lee KE. (2018) Comparison of immunohistochemistry and direct sequencing methods for identification of the BRAF(V600E) mutation in papillary thyroid carcinoma. Ann Surg Oncol 25(6):1775–1781.  https://doi.org/10.1245/s10434-018-6460-3.CrossRefGoogle Scholar
  24. 24.
    Lin JD, Fu SS, Chen JY, Lee CH, Chau WK, Cheng CW, Wang YH, Lin YF, Fang WF, Tang KT. (2016) Clinical manifestations and gene expression in patients with conventional papillary thyroid carcinoma carrying the BRAF(V600E) mutation and BRAF pseudogene. Thyroid 26(5):691–704.  https://doi.org/10.1089/thy.2015.0044.CrossRefGoogle Scholar
  25. 25.
    Lin DM, Javidiparsijani S, Vardouniotis A, Buckingham L, Reddy SB, Gattuso P. (2018) Ectopic thyroid tissue: Immunohistochemistry and molecular analysis. Appl Immunohistochem Mol Morphol 26(10):734–739.  https://doi.org/10.1097/PAI.0000000000000515.Google Scholar
  26. 26.
    Loo E, Khalili P, Beuhler K, Siddiqi I, Vasef MA. (2018) BRAF V600E mutation across multiple tumor types: correlation between DNA-based sequencing and mutation-specific immunohistochemistry. Appl Immunohistochem Mol Morphol 26(10):709–713.  https://doi.org/10.1097/PAI.0000000000000516.Google Scholar
  27. 27.
    Martinuzzi C, Pastorino L, Andreotti V, Garuti A, Minuto M, Fiocca R, Bianchi-Scarrà G, Ghiorzo P, Grillo F, Mastracci L. (2016) A combination of immunohistochemistry and molecular approaches improves highly sensitive detection of BRAF mutations in papillary thyroid cancer. Endocrine 53(3):672–680.  https://doi.org/10.1007/s12020-015-0720-9.CrossRefGoogle Scholar
  28. 28.
    McKelvie PA, Chan F, Yu Y, Waring P, Gresshoff I, Farrell S, Williams RA. The prognostic significance of the BRAF V600E mutation in papillary thyroid carcinoma detected by mutation-specific immunohistochemistry. (2013) Pathology 45(7):637–644.  https://doi.org/10.1097/PAT.0000000000000008.CrossRefGoogle Scholar
  29. 29.
    Na JI, Kim JH, Kim HJ, Kim HK, Moon KS, Lee JS, Lee JH, Lee KH, Park JT. (2015) VE1 immunohistochemical detection of the BRAF V600E mutation in thyroid carcinoma: a review of its usefulness and limitations. Virchows Arch 467(2):155–168.  https://doi.org/10.1007/s00428-015-1773-0.CrossRefGoogle Scholar
  30. 30.
    Oh HS, Kwon H, Park S, Kim M, Jeon MJ, Kim TY, Shong YK, Kim WB, Choi J, Kim WG, Song DE. (2018) Comparison of immunohistochemistry and direct sanger sequencing for detection of the BRAF(V600E) mutation in thyroid neoplasm. Endocrinol Metab (Seoul) 33(1):62–69.  https://doi.org/10.3803/EnM.2018.33.1.62.CrossRefGoogle Scholar
  31. 31.
    Paja Fano M, Ugalde Olano A, Fuertes Thomas E, Oleaga Alday A. Immunohistochemical detection of the BRAF V600E mutation in papillary thyroid carcinoma. Evaluation against real-time polymerase chain reaction. (2017) Endocrinol Diabetes Nutr 64(2):75–81.  https://doi.org/10.1016/j.endinu.2016.12.004.CrossRefGoogle Scholar
  32. 32.
    Qiu T, Lu H, Guo L, Huang W, Ling Y, Shan L, Li W, Ying J, Lv N. (2015) Detection of BRAF mutation in Chinese tumor patients using a highly sensitive antibody immunohistochemistry assay. Sci Rep 5:9211.  https://doi.org/10.1038/srep09211.CrossRefGoogle Scholar
  33. 33.
    Routhier CA, Mochel MC, Lynch K, Dias-Santagata D, Louis DN, Hoang MP. (2013) Comparison of 2 monoclonal antibodies for immunohistochemical detection of BRAF V600E mutation in malignant melanoma, pulmonary carcinoma, gastrointestinal carcinoma, thyroid carcinoma, and gliomas. Hum Pathol 44(11):2563–2570.  https://doi.org/10.1016/j.humpath.2013.06.018.CrossRefGoogle Scholar
  34. 34.
    Rushton S, Burghel G, Wallace A, Nonaka D. (2016) Immunohistochemical detection of BRAF V600E mutation status in anaplastic thyroid carcinoma. Histopathology 69(3):524–526.  https://doi.org/10.1111/his.12964.CrossRefGoogle Scholar
  35. 35.
    Sun J, Zhang J, Lu J, Gao J, Lu T, Ren X, Duan H, Liang Z. (2015) Immunohistochemistry is highly sensitive and specific for detecting the BRAF V600E mutation in papillary thyroid carcinoma. Int J Clin Exp Pathol 8(11):15072–15078.Google Scholar
  36. 36.
    Szymonek M, Kowalik A, Kopczyński J, Gąsior-Perczak D, Pałyga I, Walczyk A, Gadawska-Juszczyk K, Płusa A, Mężyk R, Chrapek M, Góźdź S, Kowalska A. (2017) Immunohistochemistry cannot replace DNA analysis for evaluation of BRAF V600E mutations in papillary thyroid carcinoma. Oncotarget 8(43):74897–74909.  https://doi.org/10.18632/oncotarget.20451.CrossRefGoogle Scholar
  37. 37.
    Takada N, Mussazhanova Z, Hirokawa M, Nakashima M, Miyauchi A. (2018) Immunohistochemical and molecular analyses focusing on mesenchymal cells in papillary thyroid carcinoma with desmoid-type fibromatosis. Pathobiology 85(5–6):300–303.  https://doi.org/10.1159/000492117.CrossRefGoogle Scholar
  38. 38.
    Zagzag J, Pollack A, Dultz L, Dhar S, Ogilvie JB, Heller KS, Deng FM, Patel KN. (2013) Clinical utility of immunohistochemistry for the detection of the BRAF v600e mutation in papillary thyroid carcinoma. Surgery 154(6):1199–1204.  https://doi.org/10.1016/j.surg.2013.06.020.CrossRefGoogle Scholar
  39. 39.
    Zhang X, Wang L, Wang J, Zhao H, Wu J, Liu S, Zhang L, Li Y, Xing X. (2018) Immunohistochemistry is a feasible method to screen BRAF V600E mutation in colorectal and papillary thyroid carcinoma. Exp Mol Pathol 105(1):153–159.  https://doi.org/10.1016/j.yexmp.2018.07.006.CrossRefGoogle Scholar
  40. 40.
    Zhu X, Luo Y, Bai Q, Lu Y, Lu Y, Wu L, Zhou X. (2016) Specific immunohistochemical detection of the BRAF V600E mutation in primary and metastatic papillary thyroid carcinoma. Exp Mol Pathol 100(1):236–241. https://doi.org/10.1016/j.yexmp.2016.01.004.CrossRefGoogle Scholar
  41. 41.
    Pyo JS, Sohn JH, Kang G. (2015). BRAF immunohistochemistry using clone VE1 is strongly concordant with BRAF(V600E) mutation test in papillary thyroid carcinoma. Endocr Pathol 26(3):211–217.  https://doi.org/10.1007/s12022-015-9374-7.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ranjit Singarayer
    • 1
    • 2
  • Ozgur Mete
    • 3
    • 4
  • Laure Perrier
    • 5
  • Lehana Thabane
    • 6
    • 7
  • Sylvia L. Asa
    • 3
    • 4
  • Stan Van Uum
    • 8
    • 9
  • Shereen Ezzat
    • 10
    • 11
  • David P. Goldstein
    • 12
    • 13
  • Anna M. Sawka
    • 14
    • 15
    Email author
  1. 1.Thyroid FellowUniversity of TorontoTorontoCanada
  2. 2.Toronto General HospitalTorontoCanada
  3. 3.Department of PathologyUniversity Health Network and University of TorontoTorontoCanada
  4. 4.Toronto General HospitalTorontoCanada
  5. 5.University of Toronto LibrariesUniversity of TorontoTorontoCanada
  6. 6.Department of Health Research Methods, Evidence, and ImpactMcMaster UniversityHamiltonCanada
  7. 7.St. Joseph’s Healthcare HamiltonHamiltonCanada
  8. 8.Division of EndocrinologyWestern UniversityLondonCanada
  9. 9.Division of Endocrinology & MetabolismSt Joseph’s Health Care LondonLondonCanada
  10. 10.Department of Endocrine OncologyPrincess Margaret Cancer CentreTorontoCanada
  11. 11.Toronto General HospitalTorontoCanada
  12. 12.Department of Otolaryngology, Head and Neck SurgeryUniversity Health Network and University of TorontoTorontoCanada
  13. 13.Princess Margaret Cancer CentreTorontoCanada
  14. 14.Division of EndocrinologyUniversity Health Network and University of TorontoTorontoCanada
  15. 15.Toronto General HospitalTorontoCanada

Personalised recommendations