SACMDA: MiRNA-Disease Association Prediction with Short Acyclic Connections in Heterogeneous Graph

Original Article
  • 32 Downloads

Abstract

MiRNA-disease association is important to disease diagnosis and treatment. Prediction of miRNA-disease associations is receiving increasing attention. Using the huge number of known databases to predict potential associations between miRNAs and diseases is an important topic in the field of biology and medicine. In this paper, we propose a novel computational method of with Short Acyclic Connections in Heterogeneous Graph (SACMDA). SACMDA obtains AUCs of 0.8770 and 0.8368 during global and local leave-one-out cross validation, respectively. Furthermore, SACMDA has been applied to three important human cancers for performance evaluation. As a result, 92% (Colon Neoplasms), 96% (Carcinoma Hepatocellular) and 94% (Esophageal Neoplasms) of top 50 predicted miRNAs are confirmed by recent experimental reports. What’s more, SACMDA could be effectively applied to new diseases and new miRNAs without any known associations, which overcomes the limitations of many previous methods.

Keywords

SACMDA MiRNA-disease association Computational model 

Notes

Acknowledgments

This work is supported by National Nature Science Foundation of China (61701149, 61525206, 61671196, 61327902), Zhejiang Province Nature Science Foundation of China LR17F030006.

References

  1. Ambros, V. (2004). The functions of animal micrornas. Nature, 431(7006), 350–355.CrossRefPubMedGoogle Scholar
  2. Bartel, D.P. (2004). Micrornas: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.CrossRefPubMedGoogle Scholar
  3. Bartel, D.P. (2009). Micrornas: target recognition and regulatory functions. Cell, 136(2), 215–233.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chen, J., Bushman, F.D., Lewis, J.D., Wu, G.D., Li, H. (2012). Structure-constrained sparse canonical correlation analysis with an application to microbiome data analysis. Biostatistics, 14(2), 244–258.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chen, X., Liu, M.X., Yan, G.Y. (2012). Rwrmda: predicting novel human microrna–disease associations. Molecular BioSystems, 8(10), 2792–2798.CrossRefPubMedGoogle Scholar
  6. Chen, X., Yan, C.C., Zhang, X., Li, Z., Deng, L., Zhang, Y., Dai, Q. (2015). Rbmmmda: predicting multiple types of disease-microrna associations. Scientific Reports, 5(13), 877.Google Scholar
  7. Chen, X., Yan, C.C., Zhang, X., You, Z.H., Deng, L., Liu, Y., Zhang, Y., Dai, Q. (2016). Wbsmda: within and between score for mirna-disease association prediction. Scientific Reports, 6.Google Scholar
  8. Chen, X., Yan, C.C., Zhang, X., You, Z.H., Huang, Y.A., Yan, G.Y. (2016). Hgimda: Heterogeneous graph inference for mirna-disease association prediction. Oncotarget, 7(40), 65,257.Google Scholar
  9. Chen, X., & Yan, G.Y. (2014). Semi-supervised learning for potential human microrna-disease associations inference. Scientific Reports, 4, 5501.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Daly, J.M., Fry, W.A., Little, A.G., Winchester, D.P., McKee, R.F., Stewart, A.K., Fremgen, A.M. (2000). Esophageal cancer: results of an american college of surgeons patient care evaluation study. Journal of the American College of Surgeons, 190(5), 562–572.CrossRefPubMedGoogle Scholar
  11. Drusco, A., Nuovo, G.J., Zanesi, N., Di Leva, G., Pichiorri, F., Volinia, S., Fernandez, C., Antenucci, A., Costinean, S., Bottoni, A., et al. (2014). Microrna profiles discriminate among colon cancer metastasis. PloS One, 9(6), e96,670.CrossRefGoogle Scholar
  12. Du, L., Huang, H., Yan, J., Kim, S., Risacher, S., Inlow, M., Moore, J., Saykin, A., Shen, L. (2016). Structured sparse cca for brain imaging genetics via graph oscar. BMC Systems Biology, 10(3), 68.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Jiang, Q., Wang, Y., Hao, Y., Juan, L., Teng, M., Zhang, X., Li, M., Wang, G. (2009). Liu, y.: mir2disease: a manually curated database for microrna deregulation in human disease. Nucleic Acids Research, 37 (suppl 1), D98–D104.CrossRefPubMedGoogle Scholar
  14. Kim, T., Grobmyer, S.R., Smith, R., Ben-David, K., Ang, D., Vogel, S.B., Hochwald, S.N. (2011). Esophageal cancer—the five year survivors. Journal of Surgical Oncology, 103(2), 179–183.CrossRefPubMedGoogle Scholar
  15. van Laarhoven, T., Nabuurs, S.B., Marchiori, E. (2011). Gaussian interaction profile kernels for predicting drug–target interaction. Bioinformatics, 27(21), 3036–3043.CrossRefPubMedGoogle Scholar
  16. Lee, R.C., Feinbaum, R.L., Ambros, V. (1993). The c. elegans heterochronic gene lin-4 encodes small rnas with antisense complementarity to lin-14. Cell, 75(5), 843–854.CrossRefPubMedGoogle Scholar
  17. Li, Y., Qiu, C., Tu, J., Geng, B., Yang, J., Jiang, T., Cui, Q. (2014). Hmdd v2. 0: a database for experimentally supported human microrna and disease associations. Nucleic Acids Research, 42(D1), D1070–D1074.CrossRefPubMedGoogle Scholar
  18. Lu, M., Zhang, Q., Deng, M., Miao, J., Guo, Y., Gao, W., Cui, Q. (2008). An analysis of human microrna and disease associations. PloS One, 3(10), e3420.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ogata-Kawata, H., Izumiya, M., Kurioka, D., Honma, Y., Yamada, Y., Furuta, K., Gunji, T., Ohta, H., Okamoto, H., Sonoda, H., et al. (2014). Circulating exosomal micrornas as biomarkers of colon cancer. PloS One, 9(4), e92,921.CrossRefGoogle Scholar
  20. Sohel, M.H. (2016). Extracellular/circulating micrornas: Release mechanisms, functions and challenges. Achievements in the Life Sciences, 10(2), 175–186.CrossRefGoogle Scholar
  21. Xu, J., Li, C.X., Lv, J.Y., Li, Y.S., Xiao, Y., Shao, T.T., Huo, X., Li, X., Zou, Y., Han, Q.L., et al. (2011). Prioritizing candidate disease mirnas by topological features in the mirna target–dysregulated network: Case study of prostate cancer. Molecular Cancer Therapeutics, 10(10), 1857–1866.CrossRefPubMedGoogle Scholar
  22. Xuan, P., Han, K., Guo, M., Guo, Y., Li, J., Ding, J., Liu, Y., Dai, Q., Li, J., Teng, Z., et al. (2013). Prediction of micrornas associated with human diseases based on weighted k most similar neighbors. PloS One, 8(8), e70,204.CrossRefGoogle Scholar
  23. Yan, C., Xie, H., Liu, S., Yin, J., Zhang, Y., Dai, Q. (2017a). Effective uyghur language text detection in complex background images for traffic prompt identification. IEEE Transactions on Intelligent Transportation Systems.Google Scholar
  24. Yan, C., Xie, H., Yang, D., Yin, J., Zhang, Y., Dai, Q. (2017b). Supervised hash coding with deep neural network for environment perception of intelligent vehicles. IEEE Transactions on Intelligent Transportation Systems.Google Scholar
  25. Yan, C., Zhang, Y., Xu, J., Dai, F., Li, L., Dai, Q., Wu, F. (2014a). A highly parallel framework for hevc coding unit partitioning tree decision on many-core processors. IEEE Signal Processing Letters, 21(5), 573–576.CrossRefGoogle Scholar
  26. Yan, C., Zhang, Y., Xu, J., Dai, F., Zhang, J., Dai, Q., Wu, F. (2014b). Efficient parallel framework for hevc motion estimation on many-core processors. IEEE Transactions on Circuits and Systems for Video Technology, 24(12), 2077–2089.CrossRefGoogle Scholar
  27. Yang, Z., Ren, F., Liu, C., He, S., Sun, G., Gao, Q., Yao, L., Zhang, Y., Miao, R., Cao, Y., et al. (2010). dbdemc: a database of differentially expressed mirnas in human cancers. BMC Genomics, 11(4), S5.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hangzhou Dianzi UniversityHangzhouChina

Personalised recommendations