Decreased Cerebral Blood Flow in Mesial Thalamus and Precuneus/PCC during Midazolam Induced Sedation Assessed with ASL
- 31 Downloads
Abstract
While some previous work suggests that midazolam-induced light sedation results from the functional disconnection within resting state network, little is known about the underlying alterations of cerebral blood flow (CBF) associated with its effects. A randomized, double-blind, within-subject, cross-over design was adopted, while 12 healthy young volunteers were scanned with arterial spin-labeling (ASL) perfusion MRI both before and after an injection of either saline or midazolam. The contrast of MRI signal before and after midazolam administration revealed the CBF decrease in the bilateral mesial thalamus and precuneus/posterior cingulate cortex (PCC). These effects were confirmed after controlling for any effect of injection as well as head motions. These findings provide new evidences that midazolam-induced light sedation is related to the disruption of cortical functional integration, and have new implications to the neural basis of consciousness.
Keywords
Arterial spin labeling (ASL) Magnetic resonance imaging (MRI) Midazolam SedationNotes
Acknowledgements
This work was supported by the Natural Science Foundation of China (Grant Nos. 61473196) and Beijing Talents foundation (2016000021223TD07). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We’d like to thank Dr. Xiaoxuan He in assisting the data analysis.
Compliance with Ethical Standards
Conflict of Interest
All authors declare no conflict of interest.
References
- Alkire, M. T., Haier, R. J., Shah, N. K., & Anderson, C. T. (1997). Positron emission tomography study of regional cerebral metabolism in humans during isoflurane anesthesia. Anesthesiology, 86, 549–557.CrossRefPubMedGoogle Scholar
- Alkire, M. T., Hudetz, A. G., & Tononi, G. (2008). Consciousness and anesthesia. Science, 322, 876–880.CrossRefPubMedPubMedCentralGoogle Scholar
- Arend, I., Rafal, R., & Ward, R. (2008). Spatial and temporal deficits are regionally dissociable in patients with pulvinar lesions. Brain, 131(8), 2140–2152.CrossRefPubMedGoogle Scholar
- Birn, R. M., Smith, M. A., Jones, T. B., & Bandettini, P. A. (2008). The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration. NeuroImage, 40, 644–654.CrossRefPubMedGoogle Scholar
- Boveroux, P., Vanhaudenhuyse, A., Bruno, M. A., Noirhomme, Q., Lauwick, S., Luxen, A., et al. (2010). Breakdown of within- and betweennetwork resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology, 113, 1038–1053.Google Scholar
- Chernik, D. A., Gillings, D., Laine, H., Hendler, J., Silver, J. M., Davidson, A. B., et al. (1990). Validity and reliability of the observer’s assessment of alertness/sedation scale: Study with intravenous midazolam. Journal of Clinical Psychopharmacology, 10, 244–251.Google Scholar
- Fiset, P., Paus, T., Daloze, T., Plourde, G., Meuret, P., et al. (1999). Brain mechanisms of propofol-induced loss of consciousness in humans: A positron emission tomographic study. The Journal of Neuroscience, 19, 5506–5513.PubMedGoogle Scholar
- Franks, N. P. (2008). General anaesthesia: From molecular targets to neuronal pathways of sleep and arousal. Nature Reviews. Neuroscience, 9, 370–386.CrossRefPubMedGoogle Scholar
- Greicius, M. D., Kiviniemi, V., Tervonen, O., Vainionpää, V., Alahuhta, S., Reiss, A. L., & Menon, V. (2008). Persistent default-mode network connectivity during light sedation. Human Brain Mapping, 29, 839–847.CrossRefPubMedPubMedCentralGoogle Scholar
- Guldenmund, P., Demertzi, A., Boveroux, P., Boly, M., Vanhaudenhuyse, A., Bruno, M. A., Gosseries, O., Noirhomme, Q., Brichant, J. F., Bonhomme, V., Laureys, S., & Soddu, A. (2013). Thalamus, brainstem and salience network connectivity changes during propofolinduced sedation and unconsciousness. Brain Connectivity, 3, 273–285.CrossRefPubMedGoogle Scholar
- Johnston, A. J., Steiner, L. A., Chatfield, D. A., Coleman, M. R., Coles, J. P., et al. (2003). Effects of propofol on cerebral oxygenation and metabolism after head injury. British Journal of Anaesthesia, 91, 781–786.CrossRefPubMedGoogle Scholar
- Jordan, D., Ilg, R., Riedl, V., Schorer, A., Grimberg, S., Neufang, S., et al. (2013). Simultaneous electroencephalographic and functional magnetic resonance imaging indicate impaired cortical top-down processing in association with anesthetic-induced unconsciousness. Anesthesiology, 119, 1031–1042.CrossRefPubMedGoogle Scholar
- Kaisti, K. K., Metsähonkala, L., Teräs, M., Oikonen, V., Aalto, S., Jääskeläinen, S., Hinkka, S., & Scheinin, H. (2002). Effects of surgical levels of propofol and sevoflurane anesthesia on cerebral blood flow in healthy subjects studied with positron emission tomography. Anesthesiology, 96(6), 1358–1370.CrossRefPubMedGoogle Scholar
- Kim, S. G., & Duong, T. Q. (2002). Mapping cortical columnar structures using fMRI. Physiology & Behavior, 77, 641–644.CrossRefGoogle Scholar
- Kiviniemi, V. J., Haanpää, H., Kantola, J. H., Jauhiainen, J., Vainionpää, V., Alahuhta, S., & Tervonen, O. (2005). Midazolam sedation increases fluctuation and synchrony of the resting brain BOLD signal. Magnetic Resonance Imaging, 23, 531–537.CrossRefPubMedGoogle Scholar
- Långsjö, J. W., Maksimow, A., Salmi, E., Kaisti, K., Aalto, S., Oikonen, V., Hinkka, S., Aantaa, R., Sipilä, H., Viljanen, T., Parkkola, R., & Scheinin, H. (2005). S-ketamine anesthesia increases cerebral blood flow in excess of the metabolic needs in humans. Anesthesiology, 103(2), 258–268.CrossRefPubMedGoogle Scholar
- Laureys, S., Owen, A. M., & Schiff, N. D. (2004). Brain function in coma, vegetative state, and related disorders. Lancet Neurology, 3, 537–546.CrossRefPubMedGoogle Scholar
- Liang, P., Manelis, A., Liu, X., Aizenstein, H. J., Gyulai, F., Quinlan, J. J., & Reder, L. M. (2012). Using arterial spin labeling perfusion MRI to explore how midazolam produces anterograde amnesia. Neuroscience Letters, 522, 113–117.CrossRefPubMedPubMedCentralGoogle Scholar
- Liang, P., Zhang, H., Xu, Y., Jia, W., Zang, Y., & Li, K. (2015). Disruption of cortical integration during midazolam-induced light sedation. Human Brain Mapping, 36(11), 4247–4261.CrossRefPubMedPubMedCentralGoogle Scholar
- Liu, T. T., & Brown, G. G. (2007). Measurement of cerebral perfusion with arterial spin labeling: Part 1. Methods. Journal of the International Neuropsychological Society, 13, 517–525.CrossRefPubMedGoogle Scholar
- MacDonald, A. A., Naci, L., MacDonald, P. A., & Owen, A. M. (2015). Anesthesia and neuroimaging: Investigating the neural correlates of unconsciousness. Trends in Cognitive Science, 19, 100–107.CrossRefGoogle Scholar
- Nyhus, E., & Curran, T. (2012). Midazolam-induced amnesia reduces memory for details and affects the ERP correlates of recollection and familiarity. Journal of Cognitive Neuroscience, 24, 416–427.CrossRefPubMedGoogle Scholar
- Park, H., Quinlan, J., Thornton, E., & Reder, L. M. (2004). The effect of midazolam on visual search: Implications for understanding amnesia. Proceedings of the National Academy of Sciences of the United States of America, 101, 17879–17883.CrossRefPubMedPubMedCentralGoogle Scholar
- Reder, L. M., Oates, J. M., Thornton, E. R., Quinlan, J. J., Kaufer, A., & Sauer, J. (2006). Drug induced amnesia hurts recognition, but only for memories that can be unitized. Psychology Science, 17, 562–567.CrossRefGoogle Scholar
- Schlunzen, L., Vafaee, M. S., Cold, G. E., Rasmussen, M., Nielsen, J. F., & Gjedde, A. (2004). Effects of subanaesthetic and anaesthetic doses of sevoflurane on regional cerebral blood flow in healthy volunteers. A positron emission tomographic study. Acta Anaesthesiologica Scandinavica, 48, 1268–1276.CrossRefPubMedGoogle Scholar
- Shmueli, K., van Gelderen, P., de Zwart, J. A., Horovitz, S. G., Fukunaga, M., Jansma, J. M., & Duyn, J. H. (2007). Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal. NeuroImage, 38, 306–320.CrossRefPubMedPubMedCentralGoogle Scholar
- Veselis, R. A., Reinsel, R. A., Beattie, B. J., et al. (1997). Midazolam changes cerebral blood flow in discrete brain regions. An H215O positron emission tomography study. Anesthesiology, 87, 1106–1117.CrossRefPubMedGoogle Scholar
- Veselis, R. A., Feshchenko, V. A., Reinsel, R. A., Dnistrian, A. M., Beattie, B., & Akhurst, T. J. (2004). Thiopental and propofol affect different regions of the brain at similar pharmacologic effects. Anesthesia and Analgesia, 99, 399–408.PubMedGoogle Scholar
- Veselis, R. A., Feshchenko, V. A., Reinsel, R. A., Beattie, B., & Akhurst, T. J. (2005). Propofol and thiopental do not interfere with regional cerebral blood flow response at sedative concentrations. Anesthesiology, 102(1), 26–34.CrossRefPubMedGoogle Scholar
- Wang, J., Aguirre, G. K., Kimberg, D. Y., Roc, A. C., Li, L., & Detre, J. A. (2003). Arterial spin labeling perfusion fMRI with very low task frequency. Magnetic Resonance in Medicine, 49, 796–802.CrossRefPubMedGoogle Scholar
- Wang, J., Aguirre, G. K., Kimberg, D. Y., Roc, A. C., Li, L., & Detre, J. A. (2004). Reduced susceptibility effects in perfusion fMRI with single-shot spin-echo EPI acquisitions at 1.5 tesla. Magnetic Resonance Imaging, 22, 1–7.CrossRefPubMedGoogle Scholar
- Wang, J., Zhang, Y., Wolf, R. L., Roc, A. C., Alsop, D. C., & Detre, J. A. (2005). Amplitude modulated continuous arterial spin labeling perfusion MR with single coil at 3T-feasibility. Radiology, 235, 218–228.CrossRefPubMedGoogle Scholar
- Wang, Z., Aguirre, G. K., Rao, H., Wang, J., Fernández-Seara, M. A., Childress, A. R., & Detre, J. A. (2008). Empirical ASL data analysis using an ASL data processing toolbox: ASLtbx. Magnetic Resonance Imaging, 26, 261–269.CrossRefPubMedGoogle Scholar
- Xie, G., et al. (2011). Critical involvement of the thalamus and precuneus during restoration of consciousness with physostigmine in humans during propofol anaesthesia: A positron emission tomography study. British Journal of Anaesthesia, 106(4), 548–557.CrossRefPubMedGoogle Scholar
- Young, A. B., & Chu, D. (1990). Distribution of GABAA and GABAB receptors in mammalian brain: Potential targets for drug development. Drug Development Research, 21, 161–167.CrossRefGoogle Scholar