Advertisement

Neuroinformatics

, Volume 14, Issue 4, pp 369–385 | Cite as

Neuron-Miner: An Advanced Tool for Morphological Search and Retrieval in Neuroscientific Image Databases

  • Sailesh ConjetiEmail author
  • Sepideh Mesbah
  • Mohammadreza Negahdar
  • Philipp L. Rautenberg
  • Shaoting Zhang
  • Nassir Navab
  • Amin Katouzian
Original Article

Abstract

The steadily growing amounts of digital neuroscientific data demands for a reliable, systematic, and computationally effective retrieval algorithm. In this paper, we present Neuron-Miner, which is a tool for fast and accurate reference-based retrieval within neuron image databases. The proposed algorithm is established upon hashing (search and retrieval) technique by employing multiple unsupervised random trees, collectively called as Hashing Forests (HF). The HF are trained to parse the neuromorphological space hierarchically and preserve the inherent neuron neighborhoods while encoding with compact binary codewords. We further introduce the inverse-coding formulation within HF to effectively mitigate pairwise neuron similarity comparisons, thus allowing scalability to massive databases with little additional time overhead. The proposed hashing tool has superior approximation of the true neuromorphological neighborhood with better retrieval and ranking performance in comparison to existing generalized hashing methods. This is exhaustively validated by quantifying the results over 31266 neuron reconstructions from Neuromorpho.org dataset curated from 147 different archives. We envisage that finding and ranking similar neurons through reference-based querying via Neuron Miner would assist neuroscientists in objectively understanding the relationship between neuronal structure and function for applications in comparative anatomy or diagnosis.

Keywords

Neuroscientific databases Data mining Hashing Neuromorphological space Random Forests 

Notes

Acknowledgments

We thank Ajayrama Kumaraswamy, Computational Neuroscience Department Biology II, Ludwigs Maximillian Universität München, Germany for insightful discussion in the early conception of this work. We thank the assistance of Bastien Saquet of Max Plank Digital Library, München, Germany in maintaining the web-service. We would like to thank the Max Plank Digital Library, München, Germany for providing computing resources for hosting the Neuron-Miner software and making it publicly accessible.

Conflict of interests

We have no conflict of interest to declare.

Supplementary material

(WMV 3.49 MB)

References

  1. Albalate, A., & Suendermann, D. (2009). A combination approach to cluster validation based on statistical quantiles. In 2009. IJCBS’09. International Joint Conference on (pp. 549-555) Bioinformatics, Systems Biology and Intelligent Computing: IEEE.Google Scholar
  2. Ascoli, G.A., Donohue, D.E., & Halavi, M. (2007). Neuromorpho. Org: a central resource for neuronal morphologies. The Journal of Neuroscience, 27(35), 9247–9251.CrossRefPubMedGoogle Scholar
  3. Costa, M., Ostrovsky, A.D., Manton, J.D., Prohaska, S., & Jefferis, G.S. (2014). NBLAST: Rapid, sensitive comparison of neuronal structure and construction of neuron family databases. bioRxiv, p.006346.Google Scholar
  4. Costa, L.D.F., Zawadzki, K., Miazaki, M., Viana, M.P., & Taraskin, S. (2010). Unveiling the neuromorphological space. Frontiers in Computational Neuroscience, 4, 150.CrossRefPubMedCentralGoogle Scholar
  5. Desgraupes, B. (2013). Clustering indices. University of Paris Ouest-Lab Modal’X, 1, 34.Google Scholar
  6. Gionis, A., Indyk, P., & Motwani, R. (1999). Similarity search in high dimensions via hashing. In VLDB 99(6), p. 518-529. Vancouver.Google Scholar
  7. He, X., Cai, D., Yan, S., & Zhang, H.J. (2005). Neighborhood preserving embedding. In 2005. ICCV 2005. Tenth IEEE International Conference on (Vol. 2, pp. 1208-1213) Computer Vision: IEEE.Google Scholar
  8. Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of educational psychology, 24(6), 417.CrossRefGoogle Scholar
  9. Joly, A., & Buisson, O. (2011). Random maximum margin hashing. In 2011 IEEE Conference on (pp. 873-880) Computer Vision and Pattern Recognition (CVPR): IEEE.Google Scholar
  10. Kendall, M.G. (1948). Rank correlation methods. Biometrika, 44(1/2), 298.CrossRefGoogle Scholar
  11. Kovács, F., Legány, C., & Babos, A. (2005). Cluster validity measurement techniques. In Proceedings of the 6th International Symposium of Hungarian Researchers on Computational Intelligence (pp. 18–19). Budapest.Google Scholar
  12. Literature Search Main Results (2015). Available at: http://neuromorpho.org/neuroMorpho/LS_queryStatus.jsp, (Accessed: 09 February 2016).
  13. Liu, X., Huang, L., Deng, C., Lu, J., & Lang, B. (2015). Multi-View Complementary hash tables for nearest neighbor search. In Proceedings of the IEEE International Conference on Computer Vision (pp. 1107–1115).Google Scholar
  14. Louppe, G. (2014). Understanding random forests: From theory to practice.arXiv preprint arXiv:1407.7502.
  15. Menze, B.H., Kelm, B.M., Splitthoff, D.N., Koethe, U., & Hamprecht, F.A. (2011). On oblique random forests. In Machine Learning and Knowledge Discovery in Databases (pp. 453-469): Springer Berlin Heidelberg.Google Scholar
  16. Mesbah, S., Conjeti, S., Kumaraswamy, A., Rautenberg, P., Navab, N., & Katouzian, A. (2015). Hashing Forests for Morphological Search and Retrieval in Neuroscientific Image Databases. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015 (pp. 135-143): Springer International Publishing.Google Scholar
  17. Overview of L-Measure (2015). Available at: http://cng.gmu.edu:8080/Lm/help/index.htm, (Accessed: 09 February 2016).
  18. Polavaram, S., Gillette, T.A., Parekh, R., & Ascoli, G.A. (2014). Statistical analysis and data mining of digital reconstructions of dendritic morphologies. Frontiers in Neuroanatomy, 8, 138.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Rautenberg, P.L., Grothe, B., & Felmy, F. (2009). Quantification of the three dimensional morphology of coincidence detector neurons in the medial superior olive of gerbils during late postnatal development. Journal of Comparative Neurology, 517(3), 385– 396.CrossRefPubMedGoogle Scholar
  20. Rautenberg, P.L., Kumaraswamy, A., Tejero-Cantero, A., Doblander, C., Norouzian, M.R., Kai, K., Jacobsen, H.A., Ai, H., Wachtler, T., & Ikeno, H. (2014). Neurondepot: keeping your colleagues in sync by combining modern cloud storage services, the local file system, and simple web applications. Frontiers in Neuroinformatics, 8, 55.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Scorcioni, R., Polavaram, S., & Ascoli, G.A. (2008). L-measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nature protocols, 3(5), 866–876.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Search by Morphometry (2015). Available at: http://neuromorpho.org/neuroMorpho/MorphometrySearch.jsp.
  23. Slaney, M., & Casey, M. (2008). Locality-sensitive hashing for finding nearest neighbors [lecture notes]. IEEE Signal Processing Magazine, 25(2), 128–131.CrossRefGoogle Scholar
  24. Scikit-learn: machine learning in Python – scikit-learn 0.16.1 documentation (2015) Available at: http://scikit-learn.org/stable/ (Accessed: 25 August 2015).
  25. Wan, Y., Long, F., Qu, L., Xiao, H., Hawrylycz, M., Myers, E.W., & Peng, H. (2015). BlastNeuron for automated comparison, retrieval and clustering of 3D neuron morphologies. Neuroinformatics, 13(4), 487–499.CrossRefPubMedGoogle Scholar
  26. Wang, J., Liu, W., Kumar, S., & Chang, S.F. (2016). Learning to hash for indexing big Data–A survey. Proceedings of the IEEE, 104(1), 34–57.CrossRefGoogle Scholar
  27. Weiss, Y., Fergus, R., & Torralba, A. (2012). Multidimensional spectral hashing. In Computer Vision–ECCV 2012 (pp. 340–353): Springer Berlin Heidelberg.Google Scholar
  28. Yu, G., & Yuan, J. (2014). Scalable forest hashing for fast similarity search. In 2014 IEEE International Conference on (pp. 1-6) Multimedia and Expo (ICME): IEEE.Google Scholar
  29. Zhang, D., Wang, J., Cai, D., & Lu, J. (2010). Self-taught hashing for fast similarity search. In proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval (pp. 18-25): ACM.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Sailesh Conjeti
    • 1
    Email author
  • Sepideh Mesbah
    • 1
  • Mohammadreza Negahdar
    • 4
  • Philipp L. Rautenberg
    • 2
  • Shaoting Zhang
    • 3
  • Nassir Navab
    • 1
  • Amin Katouzian
    • 4
  1. 1.Chair for Computer Aided Medical ProceduresTechnische Universität MünchenMünchenGermany
  2. 2.Max Plank Digital LibraryMünchenGermany
  3. 3.Department of Computer ScienceUniversity of North Carolina at CharlotteCharlotteUSA
  4. 4.IBM Almaden Research CenterCAUSA

Personalised recommendations