Advertisement

Neuroinformatics

, Volume 11, Issue 2, pp 249–257 | Cite as

Computer Aided Alignment and Quantitative 4D Structural Plasticity Analysis of Neurons

  • Ping-Chang Lee
  • Hai-yan He
  • Chih-Yang Lin
  • Yu-Tai ChingEmail author
  • Hollis T. ClineEmail author
Original Article

Abstract

The rapid development of microscopic imaging techniques has greatly facilitated time-lapse imaging of neuronal morphology. However, analysis of structural dynamics in the vast amount of 4-Dimensional data generated by in vivo or ex vivo time-lapse imaging still relies heavily on manual comparison, which is not only laborious, but also introduces errors and discrepancies between individual researchers and greatly limits the research pace. Here we present a supervised 4D Structural Plasticity Analysis (4D SPA) computer method to align and match 3-Dimensional neuronal structures across different time points on a semi-automated basis. We demonstrate 2 applications of the method to analyze time-lapse data showing gross morphological changes in dendritic arbor morphology and to identify the distribution and types of branch dynamics seen in a series of time-lapse images. Analysis of the dynamic changes of neuronal structure can be done much faster and with greatly improved consistency and reliability with the 4D SPA supervised computer program. Users can format the neuronal reconstruction data to be used for this analysis. We provide file converters for Neurolucida and Imaris users. The program and user manual are publically accessible and operate through a graphical user interface on Windows and Mac OSX.

Keywords

Weighted match Semi-automatic method Dynamic analysis Structural plasticity Neuron morphology In vivo time-lapse imaging Dendrite dynamics 

Notes

Acknowledgments

This work was funded by support from the National Institutes of Health (EY011261), the Hahn Family Foundation and the Nancy Lurie Marks Family Foundation to HTC, and the National Science Council, Taiwan, Grants 98-2221-E-009-118-MY3 and 101-2221-E-009-143-MY3 to Y-TC. We thank Dr. Shu-Ling Chiu for fostering this productive collaboration. P-CL would like to thank Dr. M. Giugliano for his help implementing the file converter.

Conflicts of Interest

The authors declare that they have no conflict of interest.

Supplementary material

ESM 1

(AVI 46835 kb)

ESM 2

(MPG 3628 kb)

ESM 3

(MPG 20586 kb)

ESM 4

(MPG 12874 kb)

References

  1. Al-Kofahi, O., Radke, R. J., et al. (2006). Automated semantic analysis of changes in image sequences of neurons in culture. IEEE Transactions on Biomedical Engineering, 53(6), 1109–1123.PubMedCrossRefGoogle Scholar
  2. Antonini, A., & Stryker, M. P. (1993). Rapid remodeling of axonal arbors in the visual cortex. Science, 260(5115), 1819–1821.PubMedCrossRefGoogle Scholar
  3. Besl, P. J., & MaKay, N. D. (1992). A Method for Registration of 3-D Shapes. IEEE Transactions PAMI, 14(2), 239–256.CrossRefGoogle Scholar
  4. Bestman, J. E., & Cline, H. T. (2008). The RNA binding protein CPEB regulates dendrite morphogenesis and neuronal circuit assembly in vivo. Proceedings of the National Academy of Sciences of the United States of America, 105(51), 20494–20499.PubMedCrossRefGoogle Scholar
  5. Bestman, J. E., & Cline, H. T. (2009). The relationship between dendritic branch dynamics and CPEB-labeled RNP granules captured in vivo. Front Neural Circuits, 3, 10.PubMedCrossRefGoogle Scholar
  6. Bestman, J. E., Lee-Osbourne, J., et al. (2012). In vivo time-lapse imaging of cell proliferation and differentiation in the optic tectum of Xenopus laevis tadpoles. The Journal of Comparative Neurology, 520(2), 401–433.PubMedCrossRefGoogle Scholar
  7. Cantallops, I., Haas, K., et al. (2000). Postsynaptic CPG15 promotes synaptic maturation and presynaptic axon arbor elaboration in vivo. Nature Neuroscience, 3(10), 1004–1011.PubMedCrossRefGoogle Scholar
  8. Carmeliet, P. (2003). Angiogenesis in health and disease. Nature Medicine, 9(6), 653–660.PubMedCrossRefGoogle Scholar
  9. Chen, J. L., Lin, W. C., et al. (2011). Structural basis for the role of inhibition in facilitating adult brain plasticity. Nature Neuroscience, 14(5), 587–594.PubMedCrossRefGoogle Scholar
  10. Chiu, S. L., Chen, C. M., et al. (2008). Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo. Neuron, 58(5), 708–719.PubMedCrossRefGoogle Scholar
  11. Cline, H. T. (1999). Dendrite development in dendrites. London: Oxford Univ. Press.Google Scholar
  12. Cohen-Cory, S. (2002). The developing synapse: construction and modulation of synaptic structures and circuits. Science, 298(5594), 770–776.PubMedCrossRefGoogle Scholar
  13. De Paola, V., Holtmaat, A., et al. (2006). Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex. Neuron, 49(6), 861–875.PubMedCrossRefGoogle Scholar
  14. Donte, D., Foggia, P., et al. (2004). Thirty years of graph matching in pattern recognition. IJPRAI, 18, 265–298.Google Scholar
  15. Dumay, A. C. M., R. J. Geest, et al. (1992). “Consistent inexact graph matching applied to labeling coronary segments in arteriograms.” Proc.Int. Conf. Pattern Recognition Conf.: 439–442.Google Scholar
  16. Haas, K., Li, J., et al. (2006). AMPA receptors regulate experience-dependent dendritic arbor growth in vivo. Proceedings of the National Academy of Sciences of the United States of America, 103(32), 12127–12131.PubMedCrossRefGoogle Scholar
  17. Halavi, M., Hamilton, K. A., et al. (2012). Digital reconstructions of neuronal morphology: three decades of research trends. Frontiers in Neuroscience, 6, 49.PubMedCrossRefGoogle Scholar
  18. Haris, K., Efstratiadis, S. N., et al. (1999). Model-based morphological segmentation and labeling of coronary angiograms. IEEE Transactions on Medical Imaging, 18(10), 1003–1015.PubMedCrossRefGoogle Scholar
  19. He, H. Y., & Cline, H. T. (2011). Diadem X: automated 4 dimensional analysis of morphological data. Neuroinformatics, 9(2–3), 107–112.PubMedCrossRefGoogle Scholar
  20. Helmchen, F., & Denk, W. (2005). Deep tissue two-photon microscopy. Nature Methods, 2(12), 932–940.PubMedCrossRefGoogle Scholar
  21. Hochman, D. W. (2012). The extracellular space and epileptic activity in the adult brain: explaining the antiepileptic effects of furosemide and bumetanide. Epilepsia, 53(Suppl 1), 18–25.PubMedCrossRefGoogle Scholar
  22. Lu, S. M., Tremblay, M. E., et al. (2011). HIV-1 Tat-induced microgliosis and synaptic damage via interactions between peripheral and central myeloid cells. PloS One, 6(9), e23915.PubMedCrossRefGoogle Scholar
  23. Reh, T. A., & Constantine-Paton, M. (1985). Eye-specific segregation requires neural activity in three-eyed Rana pipiens. Journal of Neuroscience, 5(5), 1132–1143.PubMedGoogle Scholar
  24. Ruthazer, E. S., Akerman, C. J., et al. (2003). Control of axon branch dynamics by correlated activity in vivo. Science, 301(5629), 66–70.PubMedCrossRefGoogle Scholar
  25. Thal, D. R., L. T. Grinberg, et al. (2012). “Vascular dementia: Different forms of vessel disorders contribute to the development of dementia in the elderly brain.” Experimental Gerontology.Google Scholar
  26. Tremblay, M., Fugere, V., et al. (2009). Regulation of radial glial motility by visual experience. Journal of Neuroscience, 29(45), 14066–14076.PubMedCrossRefGoogle Scholar
  27. Tremblay, M. E., Lowery, R. L., et al. (2010). Microglial interactions with synapses are modulated by visual experience. PLoS Biology, 8(11), e1000527.PubMedCrossRefGoogle Scholar
  28. Turney, S. G., & Lichtman, J. W. (2008). Chapter 11: imaging fluorescent mice in vivo using confocal microscopy. Methods in Cell Biology, 89, 309–327.PubMedCrossRefGoogle Scholar
  29. Wilt, B. A., Burns, L. D., et al. (2009). Advances in light microscopy for neuroscience. Annual Review of Neuroscience, 32, 435–506.PubMedCrossRefGoogle Scholar
  30. Zhang, S., Boyd, J., et al. (2005). Rapid reversible changes in dendritic spine structure in vivo gated by the degree of ischemia. Journal of Neuroscience, 25(22), 5333–5338.PubMedCrossRefGoogle Scholar
  31. Zudaire, E., Gambardella, L., et al. (2011). A computational tool for quantitative analysis of vascular networks. PloS One, 6(11), e27385.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Computer Science, Institute of Biomedical EngineeringNational Chiao Tung UniversityHsin ChuTaiwan
  2. 2.The Scripps Research InstituteThe Dorris Neuroscience CenterLa JollaUSA
  3. 3.Department of BioinformaticsChung Hua UniversityHsin ChuTaiwan
  4. 4.Industrial Technology Research InstituteHsin ChuTaiwan

Personalised recommendations