Advertisement

Endocrine

, Volume 66, Issue 2, pp 137–148 | Cite as

A transgenic mouse that spontaneously develops pathogenic TSH receptor antibodies will facilitate study of antigen-specific immunotherapy for human Graves’ disease

  • Sandra M. McLachlan
  • Basil RapoportEmail author
Review

Abstract

Graves’ hyperthyroidism can be treated but not cured. Antigen-specific immunotherapy would accomplish this goal, for which purpose an animal model is an invaluable tool. Two types of animal models are available. First, pathogenic TSHR antibodies (TSHRAb) can be induced by injecting mice with fibroblasts co-expressing the human TSHR (hTSHR) and MHC class II, or in mammals using plasmid or adenovirus vectors encoding the hTSHR or its A-subunit. Second, a mouse model that spontaneously develops pathogenic TSHRAb resembling those in human disease was recently described. This outcome was accomplished by transgenic intrathyroidal expression of the hTSHR A-subunit in NOD.H2h4 mice that are genetically predisposed to develop thyroiditis but, without the transgene, do not generate TSHRAb. Recently, novel approaches to antigen-specific immunotherapy have been tested, primarily in the induced model, by injecting TSHR A-subunit protein or cyclic TSHR peptides. T-cell tolerance has also been induced in “humanized” HLA-DR3 mice by injecting synthetic peptides predicted in silico to mimic naturally processed TSHR T-cell epitopes. Indeed, a phase 1 study based on the latter approach has been conducted in humans. In the spontaneous model (hTSHR/NOD.H2h mice), injection of soluble or nanoparticle-bearing hTSHR A-subunits had the unwanted effect of exacerbating pathogenic TSHRAb levels. A promising avenue for tolerance induction, successful in other conditions and yet to be tested with the TSHR, involves encapsulating the antigen. In conclusion, these studies provide insight into the potential outcome of immunotherapeutic approaches and emphasize the importance of a spontaneous model to test future novel, antigen-specific immunotherapies for Graves’ disease.

Keywords

Animal models TSHR TSHR A-subunit TBI Tg TPO 

Abbreviations

hTSHR

human thyrotropin receptor

hTSHR/NOD.H2h4

NOD.H2h4 mice expressing the human TSHR A-subunit in the thyroid

ITE

ligand for the endogenous aryl-hydrocarbon receptor (C14H10N2O3S)

TBI

inhibition of TSH binding to the TSHR

Tg

thyroglobulin

TPO

thyroid peroxidase

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    W.M. Wiersinga, Graves’ disease: can it be cured? Endocrinol. Metab. (Seoul) 34(1), 29–38 (2019).  https://doi.org/10.3803/EnM.2019.34.1.29 CrossRefGoogle Scholar
  2. 2.
    S.J. Peterson, A.R. Cappola, M.R. Castro, C.M. Dayan, A.P. Farwell, J.V. Hennessey, P.A. Kopp, D.S. Ross, M.H. Samuels, A.M. Sawka, P.N. Taylor, J. Jonklaas, A.C. Bianco, An online survey of hypothyroid patients demonstrates prominent dissatisfaction. Thyroid 28(6), 707–721 (2018).  https://doi.org/10.1089/thy.2017.0681 CrossRefPubMedGoogle Scholar
  3. 3.
    O. Torring, T. Watt, G. Sjolin, K. Bystrom, M. Abraham-Nordling, J. Calissendorff, P.K. Cramon, H. Filipsson Nystrom, B. Hallengren, M. Holmberg, S. Khamisi, M. Lantz, G. Wallin, Impaired quality of life after radioiodine therapy compared to antithyroid drugs or surgical treatment for Graves’ hyperthyroidism: a long-term follow-up with the thyroid-related patient-reported outcome questionnaire and 36-item short form health status survey. Thyroid 29(3), 322–331 (2019).  https://doi.org/10.1089/thy.2018.0315 CrossRefPubMedGoogle Scholar
  4. 4.
    B. Rapoport, S.M. McLachlan, The thyrotropin receptor in Graves’ disease. Thyroid 17(10), 911–922 (2007)PubMedGoogle Scholar
  5. 5.
    J.A. Pearson, F.S. Wong, L. Wen, The importance of the Non Obese Diabetic (NOD) mouse model in autoimmune diabetes. J. Autoimmun. 66, 76–88 (2016).  https://doi.org/10.1016/j.jaut.2015.08.019 CrossRefPubMedGoogle Scholar
  6. 6.
    C.S. Constantinescu, N. Farooqi, K. O’Brien, B. Gran, Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br. J. Pharm. 164(4), 1079–1106 (2011).  https://doi.org/10.1111/j.1476-5381.2011.01302.x CrossRefGoogle Scholar
  7. 7.
    H. Aliesky, C.L. Courtney, B. Rapoport, S.M. McLachlan, Thyroid autoantibodies are rare in nonhuman great apes and hypothyroidism cannot be attributed to thyroid autoimmunity. Endocrinology 154(12), 4896–4907 (2013)PubMedPubMedCentralGoogle Scholar
  8. 8.
    M. Parmentier, F. Libert, C. Maenhaut, A. Lefort, C. Gerard, J. Perret, J. Van Sande, J.E. Dumont, G. Vassart, Molecular cloning of the thyrotropin receptor. Science 246, 1620–1622 (1989)PubMedGoogle Scholar
  9. 9.
    Y. Nagayama, K.D. Kaufman, P. Seto, B. Rapoport, Molecular cloning, sequence and functional expression of the cDNA for the human thyrotropin receptor. Biochem. Biophys. Res. Commun. 165, 1184–1190 (1989)PubMedGoogle Scholar
  10. 10.
    F. Libert, A. Lefort, C. Gerard, M. Parmentier, J. Perret, M. Ludgate, J.E. Dumont, G. Vassart, Cloning, sequencing and expression of the human thyrotropin (TSH) receptor: Evidence for binding of autoantibodies. Biochem. Biophys. Res. Commun. 165, 1250–1255 (1989)PubMedGoogle Scholar
  11. 11.
    P.R. Buckland, C.R. Rickards, R.D. Howells, E. Davies Jones, B. Rees Smith, Photo-affinity labelling of the thyrotropin receptor. FEBS Lett. 145(2), 245–249 (1982)Google Scholar
  12. 12.
    J. Furmaniak, F.A. Hashim, P.R. Buckland, V.B. Petersen, K. Beever, R.D. Howells, B. Rees Smith, Photoaffinity labelling of the TSH receptor on FRTL5 cells. FEBS Lett. 215, 316–322 (1987)PubMedGoogle Scholar
  13. 13.
    B. Rapoport, S.M. McLachlan, TSH receptor cleavage into subunits and shedding of the A-subunit; a molecular and clinical perspective. Endocr. Rev. 37, 114–134 (2016)PubMedPubMedCentralGoogle Scholar
  14. 14.
    A.V. Misharin, Y. Nagayama, H. Aliesky, Y. Mizutori, B. Rapoport, S.M. McLachlan, Attenuation of induced hyperthyroidism in mice by pretreatment with thyrotropin receptor protein: deviation of thyroid-stimulating antibody to non-functional antibodies. Endocrinology 150(8), 3944–3952 (2009)PubMedPubMedCentralGoogle Scholar
  15. 15.
    C.U. Frank, S. Braeth, J.W. Dietrich, D. Wanjura, U. Loos, Bridge technology with TSH receptor chimera for sensitive direct detection of TSH receptor antibodies causing Graves’ disease: analytical and clinical evaluation. Horm. Metab. Res 47(12), 880–888 (2015).  https://doi.org/10.1055/s-0035-1554662 CrossRefPubMedGoogle Scholar
  16. 16.
    S.M. McLachlan, Y. Nagayama, B. Rapoport, Insight into Graves’ hyperthyroidism from animal models. Endocr. Rev. 26(6), 800–832 (2005)PubMedGoogle Scholar
  17. 17.
    T. Hanafusa, R. Pujol-Borrell, L. Chiovato, R.C.G. Russell, D. Doniach, G.F. Bottazzo, M. Feldmann, Aberrant expression of HLA-DR antigen on thyrocytes in Graves’ disease: relevance for autoimmunity. Lancet ii, 1111–1115 (1983)Google Scholar
  18. 18.
    G.F. Bottazzo, R. Pujol-Borrell, T. Hanafusa, M. Feldmann, Role of aberrant HLA-DR expression and antigen presentation in induction of endocrine autoimmunity. Lancet 2, 1115–1119 (1983)PubMedGoogle Scholar
  19. 19.
    N. Shimojo, Y. Kohno, K.-I. Yamaguchi, S.-I. Kikuoka, A. Hoshioka, H. Niimi, A. Hirai, Y. Tamura, Y. Saito, L.D. Kohn, K. Tahara, Induction of Graves-like disease in mice by immunization with fibroblasts transfected with the thyrotropin repector and a class II molecule. Proc. Natl Acad. Sci. USA 93, 11074–11079 (1996)PubMedGoogle Scholar
  20. 20.
    T. Ando, M. Imaizumi, P. Graves, P. Unger, T.F. Davies, Induction of thyroid-stimulating hormone receptor autoimmunity in hamsters. Endocrinol 144(2), 671–680 (2003)Google Scholar
  21. 21.
    S. Kaithamana, J. Fan, Y. Osuga, S.G. Liang, B.S. Prabhakar, Induction of experimental autoimmune Graves’ disease in BALB/c mice. J. Immunol. 163(9), 5157–5164 (1999)PubMedGoogle Scholar
  22. 22.
    S. Costagliola, P. Rodien, M.-C. Many, M. Ludgate, G. Vassart, Genetic immunization against the human thyrotropin receptor causes thyroiditis and allows production of monoclonal antibodies recognizing the native receptor. J. Immunol. 160, 1458–1465 (1998)PubMedGoogle Scholar
  23. 23.
    S.X. Zhao, S. Tsui, A. Cheung, R.S. Douglas, T.J. Smith, J.P. Banga, Orbital fibrosis in a mouse model of Graves’ disease induced by genetic immunization of thyrotropin receptor cDNA. J. Endocrinol. 210(3), 369–377 (2011)PubMedPubMedCentralGoogle Scholar
  24. 24.
    T. Kaneda, A. Honda, A. Hakozaki, T. Fuse, A. Muto, T. Yoshida, An improved Graves’ disease model established by using in vivo electroporation exhibited long-term immunity to hyperthyroidism in BALB/c mice. Endocrinology 148(5), 2335–2344 (2007)PubMedGoogle Scholar
  25. 25.
    Y. Nagayama, M. Kita-Furuyama, T. Ando, K. Nakao, H. Mizuguchi, T. Hayakawa, K. Eguchi, M. Niwa, A novel murine model of Graves’ hyperthyroidism with intramuscular injection of adenovirus expressing the thyrotropin receptor. J. Immunol. 168(6), 2789–2794 (2002)PubMedGoogle Scholar
  26. 26.
    C.-R. Chen, P. Pichurin, Y. Nagayama, F. Latrofa, B. Rapoport, S.M. McLachlan, The thyrotropin receptor autoantigen in Graves’ disease is the culprit as well as the victim. J. Clin. Investig. 111(12), 1897–1904 (2003)PubMedGoogle Scholar
  27. 27.
    S.M. McLachlan, B. Rapoport, Breaking tolerance to thyroid antigens: changing concepts in thyroid autoimmunity. Endocr. Rev. 35(1), 59–105 (2014)PubMedGoogle Scholar
  28. 28.
    Y. Wang, L.P. Wu, J. Fu, H.J. Lv, X.Y. Guan, L. Xu, P. Chen, C.Q. Gao, P. Hou, M.J. Ji, B.Y. Shi, Hyperthyroid monkeys: a nonhuman primate model of experimental Graves’ disease. J. Endocrinol. 219(3), 183–193 (2013)PubMedGoogle Scholar
  29. 29.
    G.D. Chazenbalk, P. Pichurin, C.R. Chen, F. Latrofa, A.P. Johnstone, S.M. McLachlan, B. Rapoport, Thyroid-stimulating autoantibodies in Graves disease preferentially recognize the free A subunit, not the thyrotropin holoreceptor. J. Clin. Invest. 110(2), 209–217 (2002)PubMedPubMedCentralGoogle Scholar
  30. 30.
    Y. Mizutori, C.R. Chen, F. Latrofa, S.M. McLachlan, B. Rapoport, Evidence that shed TSH receptor A-subunits drive affinity maturation of autoantibodies causing Graves’ disease. J. Clin. Endocrinol. Metab. 94(3), 927–935 (2009)PubMedGoogle Scholar
  31. 31.
    S.M. McLachlan, K. Alpi, B. Rapoport, Hypothesis and review: does Graves’ disease develop in non-human great apes? Thyroid 21(12), 1359–1366 (2011)PubMedPubMedCentralGoogle Scholar
  32. 32.
    M.A. Wolfert, G.J. Boons, Adaptive immune activation: glycosylation does matter. Nat. Chem. Biol. 9(12), 776–784 (2013).  https://doi.org/10.1038/nchembio.1403 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    B. Rapoport, H.A. Aliesky, B. Banuelos, C.R. Chen, S.M. McLachlan, A unique mouse strain that develops spontaneous, iodine-accelerated, pathogenic antibodies to the human thyrotrophin receptor. J. Immunol. 194(9), 4154–4161 (2015)PubMedPubMedCentralGoogle Scholar
  34. 34.
    S.M. McLachlan, Y. Nagayama, P.N. Pichurin, Y. Mizutori, C.R. Chen, A. Misharin, H.A. Aliesky, B. Rapoport, The link between Graves’ disease and Hashimoto’s thyroiditis: a role for regulatory T cells. Endocrinology 148(12), 5724–5733 (2007)PubMedGoogle Scholar
  35. 35.
    L. Rasooly, C.L. Burek, N.R. Rose, Iodine-induced autoimmune thyroiditis in NOD-H2h4 mice. Clin. Immunol. Immunopathol. 81, 287–292 (1996)PubMedGoogle Scholar
  36. 36.
    H. Braley-Mullen, G.C. Sharp, B. Medling, H. Tang, Spontaneous autoimmune thyroiditis in NOD.H-2h4 mice. J. Autoimmun. 12(3), 157–165 (1999)PubMedGoogle Scholar
  37. 37.
    P.R. Hutchings, S. Verma, J.M. Phillips, S.Z. Harach, S. Howlett, A. Cooke, Both CD4(+) T cells and CD8(+) T cells are required for iodine accelerated thyroiditis in NOD mice. Cell Immunol. 192(2), 113–121 (1999)PubMedGoogle Scholar
  38. 38.
    C.R. Chen, S. Hamidi, H. Braley-Mullen, Y. Nagayama, C. Bresee, H.A. Aliesky, B. Rapoport, S.M. McLachlan, Antibodies to thyroid peroxidase arise spontaneously with age in NOD.H-2h4 mice and appear after thyroglobulin antibodies. Endocrinology 151(9), 4583–4593 (2010)PubMedPubMedCentralGoogle Scholar
  39. 39.
    G.D. Chazenbalk, J.C. Jaume, S.M. McLachlan, B. Rapoport, Engineering the human thyrotropin receptor ectodomain from a non-secreted form to a secreted, highly immunoreactive glycoprotein that neutralizes autoantibodies in Graves’ patients’ sera. J. Biol. Chem. 272, 18959–18965 (1997)PubMedGoogle Scholar
  40. 40.
    S.M. McLachlan, H. Aliesky, B. Rapoport, A mouse TSH receptor A-subunit transgene expressed in thyroiditis-prone mice may provide insight into why Graves’ disease only occurs in humans. Thyroid (2019).  https://doi.org/10.1089/thy.2019.0260 PubMedGoogle Scholar
  41. 41.
    C.R. Chen, H. Aliesky, P.N. Pichurin, Y. Nagayama, S.M. McLachlan, B. Rapoport, Susceptibility rather than resistance to hyperthyroidism is dominant in a thyrotropin receptor adenovirus-induced animal model of Graves’ disease as revealed by BALB/c-C57BL/6 hybrid mice. Endocrinology 145, 4927–4933 (2004)PubMedGoogle Scholar
  42. 42.
    B. Rapoport, R.W. Williams, C.R. Chen, S.M. McLachlan, Immunoglobulin heavy chain variable region genes contribute to the induction of thyroid stimulating antibodies in recombinant inbred mice. Genes Immun. 11(3), 254–263 (2010)PubMedPubMedCentralGoogle Scholar
  43. 43.
    S.M. McLachlan, H. Braley-Mullen, C.R. Chen, H. Aliesky, P.N. Pichurin, B. Rapoport, Dissociation between iodide-induced thyroiditis and antibody-mediated hyperthyroidism in NOD.H-2h4 mice. Endocrinology 146, 294–300 (2005)PubMedGoogle Scholar
  44. 44.
    M. Dedecjus, M. Stasiolek, J. Brzezinski, K. Selmaj, A. Lewinski, Thyroid hormones influence human dendritic cells’ phenotype, function, and subsets distribution. Thyroid 21(5), 533–540 (2011)PubMedGoogle Scholar
  45. 45.
    C. Mao, S. Wang, Y. Xiao, J. Xu, Q. Jiang, M. Jin, X. Jiang, H. Guo, G. Ning, Y. Zhang, Impairment of regulatory capacity of CD4+CD25+ regulatory T cells mediated by dendritic cell polarization and hyperthyroidism in Graves’ disease. J. Immunol. 186(8), 4734–4743 (2011)PubMedGoogle Scholar
  46. 46.
    M.D.M. Montesinos, C. Pellizas, Thyroid hormone action on innate immunity. Front. Endocrinol. (Lausanne) 10, 350 (2019).  https://doi.org/10.3389/fendo.2019.00350 CrossRefGoogle Scholar
  47. 47.
    H.J. Lee, C.W. Li, S.S. Hammerstad, M. Stefan, Y. Tomer, Immunogenetics of autoimmune thyroid diseases: a comprehensive review. J. Autoimmun. 64, 82–90 (2015)PubMedPubMedCentralGoogle Scholar
  48. 48.
    S.M. McLachlan, H. Aliesky, B. Banuelos, J. Magana, R.W. Williams, B. Rapoport, Immunoglobulin heavy chain variable region and major histocompatibility region genes are linked to induced graves’ disease in females from two very large families of recombinant inbred mice. Endocrinology 155(10), 4094–4103 (2014)PubMedPubMedCentralGoogle Scholar
  49. 49.
    F. Latrofa, G.D. Chazenbalk, P. Pichurin, C.-R. Chen, S.M. McLachlan, B. Rapoport, Characterization of TSH receptor autoantibodies affinity-enriched to near purity from the serum of Graves’ patients. Thyroid 13(7), 734–734 (2003)Google Scholar
  50. 50.
    A.P. Weetman, M.E. Yateman, P.A. Ealey, C.M. Black, C.B. Reimer, R.C. Williams Jr. B. Shine, N.J. Marshall, Thyroid-stimulating antibody activity between different immunoglobulin G subclasses. J. Clin. Invest. 86, 723–727 (1990)PubMedPubMedCentralGoogle Scholar
  51. 51.
    B. Rapoport, S.M. McLachlan, Graves’ hyperthyroidism is antibody-mediated but is predominantly a Th1-type cytokine disease. J. Clin. Endocrinol. Metab. 99(11), 4060–4061 (2014).  https://doi.org/10.1210/jc.2014-3011 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Y. Nagayama, O. Saitoh, S.M. McLachlan, B. Rapoport, H. Kano, Y. Kumazawa, TSHR receptor-adenovirus-induced Graves’ hyperthyroidism is attenuated in both interferon-g and interleukin-4 knockout mice: Implications for the Th1/Th2 paradigm. Clin. Exp. Immunol. 138, 417–422 (2004)PubMedPubMedCentralGoogle Scholar
  53. 53.
    O. Saitoh, Y. Mizutori, N. Takamura, H. Yamasaki, A. Kita, H. Kuwahara, Y. Nagayama, Adenovirus-mediated gene delivery of interleukin-10, but not transforming growth factor beta, ameliorates the induction of Graves’ hyperthyroidism in BALB/c mice. Clin. Exp. Immunol. 141(3), 405–411 (2005)PubMedPubMedCentralGoogle Scholar
  54. 54.
    J.W. Kappler, N. Roehm, P. Marrack, T cell tolerance by clonal elimination in the thymus. Cell 49(2), 273–280 (1987)PubMedGoogle Scholar
  55. 55.
    M. Stefan, C. Wei, A. Lombardi, C.W. Li, E.S. Concepcion, W.B. Inabnet III, R. Owen, W. Zhang, Y. Tomer, Genetic-epigenetic dysregulation of thymic TSH receptor gene expression triggers thyroid autoimmunity. Proc. Natl Acad. Sci. USA 111(34), 12562–12567 (2014)PubMedGoogle Scholar
  56. 56.
    R. Colobran, M.P. Armengol, R. Faner, M. Gartner, L.O. Tykocinski, A. Lucas, M. Ruiz, M. Juan, B. Kyewski, R. Pujol-Borrell, Association of an SNP with intrathymic transcription of TSHR and Graves’ disease: a role for defective thymic tolerance. Hum. Mol. Genet. 20(17), 3415–3423 (2011)PubMedGoogle Scholar
  57. 57.
    M. Nakahara, N. Mitsutake, H. Sakamoto, C.R. Chen, B. Rapoport, S.M. McLachlan, Y. Nagayama, Enhanced response to mouse thyroid-stimulating hormone (TSH) receptor immunization in TSH receptor-knockout mice. Endocrinology 151(8), 4047–4054 (2010)PubMedGoogle Scholar
  58. 58.
    A. Schluter, M. Horstmann, S. Diaz-Cano, S. Plohn, K. Stahr, S. Mattheis, M. Oeverhaus, S. Lang, U. Flogel, U. Berchner-Pfannschmidt, A. Eckstein, J.P. Banga, Genetic immunization with mouse thyrotrophin hormone receptor plasmid breaks self-tolerance for a murine model of autoimmune thyroid disease and Graves’ orbitopathy. Clin. Exp. Immunol. 191(3), 255–267 (2018).  https://doi.org/10.1111/cei.13075 CrossRefPubMedGoogle Scholar
  59. 59.
    A.V. Misharin, Y. Nagayama, H.A. Aliesky, B. Rapoport, S.M. McLachlan, Studies in mice deficient for the autoimmune regulator (Aire) and transgenic for the thyrotropin receptor reveal a role for Aire in tolerance for thyroid autoantigens. Endocrinology 150(6), 2948–2956 (2009)PubMedPubMedCentralGoogle Scholar
  60. 60.
    S.M. McLachlan, H.A. Aliesky, B. Banuelos, S. Lesage, R. Collin, B. Rapoport, High-level intrathymic thyrotrophin receptor expression in thyroiditis-prone mice protects against the spontaneous generation of pathogenic thyrotrophin receptor autoantibodies. Clin. Exp. Immunol. 188(2), 243–253 (2017)PubMedPubMedCentralGoogle Scholar
  61. 61.
    C.-R. Chen, P. Pichurin, G.D. Chazenbalk, H. Aliesky, Y. Nagayama, S.M. McLachlan, B. Rapoport, Low-dose immunization with adenovirus expressing the thyroid-stimulating hormone receptor A-subunit deviates the antibody response toward that of autoantibodies in human Graves’ disease. Endocrinology 145(1), 228–233 (2004)PubMedGoogle Scholar
  62. 62.
    H.L. Kohling, S.F. Plummer, J.R. Marchesi, K.S. Davidge, M. Ludgate, The microbiota and autoimmunity: their role in thyroid autoimmune diseases. Clin. Immunol. 183, 63–74 (2017).  https://doi.org/10.1016/j.clim.2017.07.001 CrossRefPubMedGoogle Scholar
  63. 63.
    S. Moshkelgosha, G. Masetti, U. Berchner-Pfannschmidt, H.L. Verhasselt, M. Horstmann, S. Diaz-Cano, A. Noble, B. Edelman, D. Covelli, S. Plummer, J.R. Marchesi, M. Ludgate, F. Biscarini, A. Eckstein, J.P. Banga, Gut microbiome in BALB/c and C57BL/6J mice undergoing experimental thyroid autoimmunity associate with differences in immunological responses and thyroid function. Horm. Metab. Res. 50(12), 932–941 (2018).  https://doi.org/10.1055/a-0653-3766 CrossRefPubMedGoogle Scholar
  64. 64.
    K. Rubtsova, P. Marrack, A.V. Rubtsov, Sexual dimorphism in autoimmunity. J. Clin. Invest. 125(6), 2187–2193 (2015)PubMedPubMedCentralGoogle Scholar
  65. 65.
    N. Manji, J.D. Carr-Smith, K. Boelaert, A. Allahabadia, M. Armitage, V.K. Chatterjee, J.H. Lazarus, S.H. Pearce, B. Vaidya, S.C. Gough, J.A. Franklyn, Influences of age, gender, smoking, and family history on autoimmune thyroid disease phenotype. J. Clin. Endocrinol. Metab. 91(12), 4873–4880 (2006).  https://doi.org/10.1210/jc.2006-1402 CrossRefPubMedGoogle Scholar
  66. 66.
    J.C. Jaume, B. Rapoport, S.M. McLachlan, Lack of female bias in a mouse model of autoimmune hyperthyroidism (Graves’ disease). Autoimmunity 29(4), 269–272 (1999)PubMedGoogle Scholar
  67. 67.
    B. Rapoport, H.A. Aliesky, C.R. Chen, S.M. McLachlan, Evidence that TSH receptor A-subunit multimers, not monomers, drive antibody affinity maturation in Graves’ disease. J. Clin. Endocrinol. Metab. 100(6), E871–E875 (2015)PubMedPubMedCentralGoogle Scholar
  68. 68.
    C.R. Chen, P.A. Hubbard, L.M. Salazar, S.M. McLachlan, R. Murali, B. Rapoport, Crystal structure of a TSH receptor monoclonal antibody: insight into Graves’ disease pathogenesis. Mol. Endocrinol. 29(1), 99–107 (2015)PubMedGoogle Scholar
  69. 69.
    J. Sanders, D.Y. Chirgadze, P. Sanders, S. Baker, A. Sullivan, A. Bhardwaja, J. Bolton, M. Reeve, N. Nakatake, M. Evans, T. Richards, M. Powell, R.N. Miguel, T.L. Blundell, J. Furmaniak, B.R. Smith, Crystal structure of the TSH receptor in complex with a thyroid-stimulating autoantibody. Thyroid 17(5), 395–410 (2007)PubMedGoogle Scholar
  70. 70.
    J.A. Gilbert, S.L. Kalled, J. Moorhead, D.M. Hess, P. Rennert, Z. Li, M.Z. Khan, J.P. Banga, Treatment of autoimmune hyperthyroidism in a murine model of Graves’ disease with tumor necrosis factor-family ligand inhibitors suggests a key role for B cell activating factor in disease pathology. Endocrinology 147(10), 4561–4568 (2006)PubMedGoogle Scholar
  71. 71.
    A.K. Shakya, K.S. Nandakumar, Antigen-specific tolerization and targeted delivery as therapeutic Strategies for Autoimmune Diseases. Trends Biotechnol. 36(7), 686–699 (2018).  https://doi.org/10.1016/j.tibtech.2018.02.008 CrossRefPubMedGoogle Scholar
  72. 72.
    L. Wu, L. Xun, J. Yang, L. Xu, Z. Tian, S. Gao, Y. Zhang, P. Hou, B. Shi, Induction of murine neonatal tolerance against Graves’ disease using recombinant adenovirus expressing the TSH receptor A-subunit. Endocrinology 152(3), 1165–1171 (2011)PubMedGoogle Scholar
  73. 73.
    H.P. Holthoff, Z. Li, J. Fassbender, A. Reimann, K. Adler, G. Munch, M. Ungerer, Cyclic peptides for effective treatment in a long-term model of Graves disease and orbitopathy in female mice. Endocrinology 158(7), 2376–2390 (2017).  https://doi.org/10.1210/en.2016-1845 CrossRefPubMedGoogle Scholar
  74. 74.
    J. Fassbender, H. P. Holthoff, Z. Li, M. Ungerer, Therapeutic effects of short cyclic and combined epitope peptides in a long-term model of Graves disease and orbitopathy. Thyroid (2019).  https://doi.org/10.1089/thy.2018.0326 PubMedGoogle Scholar
  75. 75.
    L. Jansson, K. Vrolix, A. Jahraus, K.F. Martin, D.C. Wraith, Immunotherapy with apitopes blocks the immune response to TSH receptor in HLA-DR transgenic mice. Endocrinology 159(9), 3446–3457 (2018).  https://doi.org/10.1210/en.2018-00306 CrossRefPubMedGoogle Scholar
  76. 76.
    B. Rapoport, B. Banuelos, H.A. Aliesky, N. Hartwig Trier, S.M. McLachlan, Critical differences between induced and spontaneous mouse models of Graves’ disease with implications for antigen-specific immunotherapy in humans. J. Immunol. 197, 4560–4568 (2016)PubMedPubMedCentralGoogle Scholar
  77. 77.
    A.M. McGregor, M.M. Petersen, R. Capiferri, D.C. Evered, B.R. Smith, R. Hall, Effects of radioiodine on thyrotrophin binding inhibiting immunoglobulins in Graves’ disease. Clin. Endocrinol. 11(4), 437–444 (1979)Google Scholar
  78. 78.
    N. Nakazato, K. Yoshida, K. Mori, Y. Kiso, N. Sayama, J.I. Tani, Y. Nakagawa, S. Ito, Antithyroid drugs inhibit radioiodine-induced increases in thyroid autoantibodies in hyperthyroid Graves’ disease. Thyroid 9(8), 775–779 (1999).  https://doi.org/10.1089/thy.1999.9.775 CrossRefPubMedGoogle Scholar
  79. 79.
    A. Yeste, M.C. Takenaka, I.D. Mascanfroni, M. Nadeau, J.E. Kenison, B. Patel, A.M. Tukpah, J.A. Babon, M. DeNicola, S.C. Kent, D. Pozo, F.J. Quintana, Tolerogenic nanoparticles inhibit T cell-mediated autoimmunity through SOCS2. Sci. Signal. 9(433), ra61 (2016)PubMedGoogle Scholar
  80. 80.
    A. Yeste, M. Nadeau, E.J. Burns, H.L. Weiner, F.J. Quintana, Nanoparticle-mediated codelivery of myelin antigen and a tolerogenic small molecule suppresses experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 109(28), 11270–11275 (2012).  https://doi.org/10.1073/pnas.1120611109 CrossRefPubMedGoogle Scholar
  81. 81.
    S.M. McLachlan, H.A. Aliesky, B. Rapoport, T.S.H. Nanoparticles Bearing, Receptor protein and a tolerogenic molecule do not induce immune tolerance but exacerbate thyroid autoimmunity in hTSHR/NOD.H2(h4) mice. J. Immunol. 202(9), 2570–2577 (2019).  https://doi.org/10.4049/jimmunol.1900038 CrossRefPubMedGoogle Scholar
  82. 82.
    S.H.S. Pearce, C. Dayan, D.C. Wraith, K. Barrell, N. Olive, L. Jansson, T. Walker-Smith, C. Carnegie, K.F. Martin, K. Boelaert, J. Gilbert, C.E. Higham, I. Muller, R.D. Murray, P. Perros, S. Razvi, B. Vaidya, F. Wernig, G.J. Kahaly, Antigen-specific immunotherapy with thyrotropin receptor peptides in Graves’ hyperthyroidism: a phase I study. Thyroid (2019).  https://doi.org/10.1089/thy.2019.0036 PubMedPubMedCentralGoogle Scholar
  83. 83.
    A.J. Coles, M. Wing, S. Smith, F. Coraddu, S. Greer, C. Taylor, A. Weetman, G. Hale, V.K. Chatterjee, H. Waldmann, A. Compston, Pulsed monoclonal antibody treatment and autoimmune thyroid disease in multiple sclerosis. Lancet 354(9191), 1691–1695 (1999)PubMedGoogle Scholar
  84. 84.
    C.B. Smarr, W.T. Yap, T.P. Neef, R.M. Pearson, Z.N. Hunter, I. Ifergan, D.R. Getts, P.J. Bryce, L.D. Shea, S.D. Miller, Biodegradable antigen-associated PLG nanoparticles tolerize Th2-mediated allergic airway inflammation pre- and postsensitization. Proc. Natl Acad. Sci. USA 113(18), 5059–5064 (2016).  https://doi.org/10.1073/pnas.1505782113 CrossRefPubMedGoogle Scholar
  85. 85.
    D.P. McCarthy, J.W. Yap, C.T. Harp, W.K. Song, J. Chen, R.M. Pearson, S.D. Miller, L.D. Shea, An antigen-encapsulating nanoparticle platform for TH1/17 immune tolerance therapy. Nanomedicine 13(1), 191–200 (2017).  https://doi.org/10.1016/j.nano.2016.09.007 CrossRefPubMedGoogle Scholar
  86. 86.
    S.M. McLachlan, B. Rapoport, Thyroid autoantibodies display both “original antigenic sin” and epitope spreading. Front. Immunol. 8, 1845 (2017).  https://doi.org/10.3389/fimmu.2017.01845.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MedicineUniversity of California Los AngelesLos AngelesUSA

Personalised recommendations