Advertisement

Endocrine

pp 1–11 | Cite as

Age effect on thyroid hormone brain response in male mice

  • Helena Kerp
  • Kathrin Engels
  • Frederike Kramer
  • Denica Doycheva
  • Georg Sebastian Hönes
  • Denise Zwanziger
  • Lars Christian Moeller
  • Heike Heuer
  • Dagmar FührerEmail author
Original Article
  • 87 Downloads

Abstract

Purpose

Thyroid hormones (TH) are important for brain development and central nervous system (CNS) function. Disturbances of thyroid function occur with higher prevalence in the ageing population and may negatively impact brain function.

Methods

We investigated the age impact on behavior in young adult and old male mice (5 vs. 20 months) with chronic hypo- or hyper-thyroidism as well as in sham-treated controls. Expression of TH transporters and TH responsive genes was studied in CNS and pituitary by in situ hybridization and qRT-PCR, whereas TH serum concentrations were determined by immunoassay.

Results

Serum TH levels were lower in old compared with young hyperthyroid mice, suggesting a milder hyperthyroid phenotype in the aged group. Likewise, elevated plus maze activity was reduced in old hyperthyroid animals. Under hypothyroid conditions, thyroxine serum concentrations did not differ in young and old mice. Both groups showed a comparable decline in activity and elevated anxiety levels. However, an attenuated increase in hypothalamic thyrotropin releasing hormone and pituitary thyroid stimulating hormone transcript expression was found in old hypothyroid mice. Brain expression of monocarboxylate transporter 8 and organic anion transporting polypeptide 1c1 was not affected by age or TH status.

Conclusions

In summary, ageing attenuates neurological phenotypes in hyperthyroid but not hypothyroid mice, which fits with age effects on TH serum levels in the animals. In contrast no changes in TH transporter expression were found in aged mouse brains with hyper- or hypo-thyroid state.

Keywords

Ageing Male mice Thyroid hormones Hypothyroidism Hyperthyroidism 

Notes

Acknowledgements

The authors are grateful to A. Jaeger, S. Rehn, M. Schmidt for their dedicated technical support.

Funding

This work was supported by DFG FU356/7–1/2 to DF, MO1018/2–1/2 to LCM, and HE3418/8–1 to HH in the framework of SPP1629 and RTG1715 to HH/FK. Funding source was not involved in decisions about study design; collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All animal experiments were performed in accordance with the German regulations for Laboratory Animal Science (GVSOLAS) and the European Health Law of the Federation of Laboratory Animal Science Associations (FELASA). The protocols for animal studies were approved by the Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen (LANUV-NRW), Germany (AZ.84–02.04.2013.A188).

Supplementary material

12020_2019_2078_MOESM1_ESM.docx (159 kb)
Supplemental material

References

  1. 1.
    J. Bernal, A. Guadano-Ferraz, B. Morte, Perspectives in the study of thyroid hormone action on brain development and function. Thyroid 13(11), 1005–1012 (2003).  https://doi.org/10.1089/105072503770867174 CrossRefGoogle Scholar
  2. 2.
    M. Ritchie, B.B. Yeap, Thyroid hormone: influences on mood and cognition in adults. Maturitas 81(2), 266–275 (2015).  https://doi.org/10.1016/j.maturitas.2015.03.016 CrossRefGoogle Scholar
  3. 3.
    F.L. Yudiarto, L. Muliadi, D. Moeljanto, B. Hartono, Neuropsychological findings in hyperthyroid patients. Acta Med. Indones. 38(1), 6–10 (2006)Google Scholar
  4. 4.
    J.M. Guimaraes, deSouza Lopes, C. Baima, J. Sichieri, R. Depression, symptoms and hypothyroidism in a population-based study of middle-aged Brazilian women. J. Affect. Disord. 117(1-2), 120–123 (2009).  https://doi.org/10.1016/j.jad.2008.12.012 CrossRefGoogle Scholar
  5. 5.
    S. Gulseren, L. Gulseren, Z. Hekimsoy, P. Cetinay, C. Ozen, B. Tokatlioglu, Depression, anxiety, health-related quality of life, and disability in patients with overt and subclinical thyroid dysfunction. Arch. Med. Res. 37(1), 133–139 (2006).  https://doi.org/10.1016/j.arcmed.2005.05.008 CrossRefGoogle Scholar
  6. 6.
    J.D. Davis, R.A. Stern, L.A. Flashman, Cognitive and neuropsychiatric aspects of subclinical hypothyroidism: significance in the elderly. Curr. Psychiatry Rep. 5(5), 384–390 (2003)CrossRefGoogle Scholar
  7. 7.
    M.F. Schreckenberger, U.T. Egle, S. Drecker, H.G. Buchholz, M.M. Weber, P. Bartenstein, G.J. Kahaly, Positron emission tomography reveals correlations between brain metabolism and mood changes in hyperthyroidism. J. Clin. Endocrinol. Metab. 91(12), 4786–4791 (2006).  https://doi.org/10.1210/jc.2006-0573 CrossRefGoogle Scholar
  8. 8.
    W. Zhang, X. Liu, Y. Zhang, L. Song, J. Hou, B. Chen, M. He, P. Cai, H. Lii, Disrupted functional connectivity of the hippocampus in patients with hyperthyroidism: evidence from resting-state fMRI. Eur. J. Radiol. 83(10), 1907–1913 (2014).  https://doi.org/10.1016/j.ejrad.2014.07.003 CrossRefGoogle Scholar
  9. 9.
    A. Gobel, M. Heldmann, M. Gottlich, A.L. Dirk, G. Brabant, T.F. Munte, Effect of mild thyrotoxicosis on performance and brain activations in a working memory task. PLoS ONE 11(8), e0161552 (2016).  https://doi.org/10.1371/journal.pone.0161552 CrossRefGoogle Scholar
  10. 10.
    A. Gobel, M. Heldmann, A. Sartorius, M. Gottlich, A.L. Dirk, G. Brabant, T.F. Munte, Mild thyrotoxicosis leads to brain perfusion changes: an arterial spin labelling study. J. Neuroendocrinol. 29(1), (2017).  https://doi.org/10.1111/jne.12446
  11. 11.
    S. Mayerl, J. Muller, R. Bauer, S. Richert, C.M. Kassmann, V.M. Darras, K. Buder, A. Boelen, T.J. Visser, H. Heuer, Transporters MCT8 and OATP1C1 maintain murine brain thyroid hormone homeostasis. J. Clin. Investig. 124(5), 1987–1999 (2014).  https://doi.org/10.1172/JCI70324 CrossRefGoogle Scholar
  12. 12.
    S. Barez-Lopez, D. Bosch-Garcia, D. Gomez-Andres, I. Pulido-Valdeolivas, A. Montero-Pedrazuela, M.J. Obregon, A. Guadano-Ferraz, Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase. PLoS ONE 9(8), e103857 (2014).  https://doi.org/10.1371/journal.pone.0103857 CrossRefGoogle Scholar
  13. 13.
    S. Barez-Lopez, A. Montero-Pedrazuela, D. Bosch-Garcia, C. Venero, A. Guadano-Ferraz, Increased anxiety and fear memory in adult mice lacking type 2 deiodinase. Psychoneuroendocrinology 84, 51–60 (2017).  https://doi.org/10.1016/j.psyneuen.2017.06.013 CrossRefGoogle Scholar
  14. 14.
    J.P. Stohn, M.E. Martinez, A. Hernandez, Decreased anxiety- and depression-like behaviors and hyperactivity in a type 3 deiodinase-deficient mouse showing brain thyrotoxicosis and peripheral hypothyroidism. Psychoneuroendocrinology 74, 46–56 (2016).  https://doi.org/10.1016/j.psyneuen.2016.08.021 CrossRefGoogle Scholar
  15. 15.
    C. Venero, A. Guadano-Ferraz, A.I. Herrero, K. Nordstrom, J. Manzano, G.M. de Escobar, J. Bernal, B. Vennstrom, Anxiety, memory impairment, and locomotor dysfunction caused by a mutant thyroid hormone receptor alpha1 can be ameliorated by T3 treatment. Genes Dev. 19(18), 2152–2163 (2005).  https://doi.org/10.1101/gad.346105 CrossRefGoogle Scholar
  16. 16.
    S. Richard, N. Aguilera, M. Thevenet, O. Dkhissi-Benyahya, F. Flamant, Neuronal expression of a thyroid hormone receptor alpha mutation alters mouse behaviour. Behav. Brain Res. 321, 18–27 (2017).  https://doi.org/10.1016/j.bbr.2016.12.025 CrossRefGoogle Scholar
  17. 17.
    K. Engels, H. Rakov, D. Zwanziger, G.S. Hones, M. Rehders, K. Brix, J. Kohrle, L.C. Moller, D. Fuhrer, Efficacy of protocols for induction of chronic hyperthyroidism in male and female mice. Endocrine 54(1), 47–54 (2016).  https://doi.org/10.1007/s12020-016-1020-8 CrossRefGoogle Scholar
  18. 18.
    H. Heuer, M.K. Schafer, D. O’Donnell, P. Walker, K. Bauer, Expression of thyrotropin-releasing hormone receptor 2 (TRH-R2) in the central nervous system of rats. J. Comp. Neurol. 428(2), 319–336 (2000)CrossRefGoogle Scholar
  19. 19.
    H. Heuer, M.K. Maier, S. Iden, J. Mittag, E.C. Friesema, T.J. Visser, K. Bauer, The monocarboxylate transporter 8 linked to human psychomotor retardation is highly expressed in thyroid hormone-sensitive neuron populations. Endocrinology 146(4), 1701–1706 (2005).  https://doi.org/10.1210/en.2004-1179 CrossRefGoogle Scholar
  20. 20.
    J. Muller, H. Heuer, Expression pattern of thyroid hormone transporters in the postnatal mouse brain. Front Endocrinol. 5, 92 (2014).  https://doi.org/10.3389/fendo.2014.00092 Google Scholar
  21. 21.
    G.B. Potter, J.M. Zarach, J.M. Sisk, C.C. Thompson, The thyroid hormone-regulated corepressor hairless associates with histone deacetylases in neonatal rat brain. Mol. Endocrinol. 16(11), 2547–2560 (2002).  https://doi.org/10.1210/me.2002-0115 CrossRefGoogle Scholar
  22. 22.
    D. Spano, I. Branchi, A. Rosica, M.T. Pirro, A. Riccio, P. Mithbaokar, A. Affuso, C. Arra, P. Campolongo, D. Terracciano, V. Macchia, J. Bernal, E. Alleva, R. Di Lauro, Rhes is involved in striatal function. Mol. Cell Biol. 24(13), 5788–5796 (2004).  https://doi.org/10.1128/MCB.24.13.5788-5796.2004 CrossRefGoogle Scholar
  23. 23.
    P. Gil-Ibanez, J. Bernal, B. Morte, Thyroid hormone regulation of gene expression in primary cerebrocortical cells: role of thyroid hormone receptor subtypes and interactions with retinoic acid and glucocorticoids. PLoS ONE 9(3), e91692 (2014).  https://doi.org/10.1371/journal.pone.0091692 CrossRefGoogle Scholar
  24. 24.
    A. Buras, L. Battle, E. Landers, T. Nguyen, N. Vasudevan, Thyroid hormones regulate anxiety in the male mouse. Horm. Behav. 65(2), 88–96 (2014).  https://doi.org/10.1016/j.yhbeh.2013.11.008 CrossRefGoogle Scholar
  25. 25.
    C.G. Vasilopoulou, C. Constantinou, D. Giannakopoulou, P. Giompres, M. Margarity, Effect of adult onset hypothyroidism on behavioral parameters and acetylcholinesterase isoforms activity in specific brain regions of male mice. Physiol. Behav. 164(Pt A), 284–291 (2016).  https://doi.org/10.1016/j.physbeh.2016.06.016 CrossRefGoogle Scholar
  26. 26.
    K. Wallis, M. Sjogren, M. van Hogerlinden, G. Silberberg, A. Fisahn, K. Nordstrom, L. Larsson, H. Westerblad, G. de Escobar Morreale, O. Shupliakov, B. Vennstrom, Locomotor deficiencies and aberrant development of subtype-specific GABAergic interneurons caused by an unliganded thyroid hormone receptor alpha1. J. Neurosci. 28(8), 1904–1915 (2008).  https://doi.org/10.1523/JNEUROSCI.5163-07.2008 CrossRefGoogle Scholar
  27. 27.
    C. Johansson, P.K. Lunde, S. Gothe, J. Lannergren, H. Westerblad, Isometric force and endurance in skeletal muscle of mice devoid of all known thyroid hormone receptors. J. Physiol. 547(Pt 3), 789–796 (2003).  https://doi.org/10.1113/jphysiol.2002.032086 CrossRefGoogle Scholar
  28. 28.
    Z. Soffe, H.G. Radley-Crabb, C. McMahon, M.D. Grounds, T. Shavlakadze, Effects of loaded voluntary wheel exercise on performance and muscle hypertrophy in young and old male C57Bl/6J mice. Scand. J. Med Sci. Sports 26(2), 172–188 (2016).  https://doi.org/10.1111/sms.12416 CrossRefGoogle Scholar
  29. 29.
    S.R. Raymaekers, V.M. Darras, Thyroid hormones and learning-associated neuroplasticity. Gen. Comp. Endocrinol. 247, 26–33 (2017).  https://doi.org/10.1016/j.ygcen.2017.04.001 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Helena Kerp
    • 1
  • Kathrin Engels
    • 1
  • Frederike Kramer
    • 2
  • Denica Doycheva
    • 2
  • Georg Sebastian Hönes
    • 1
  • Denise Zwanziger
    • 1
  • Lars Christian Moeller
    • 1
  • Heike Heuer
    • 1
    • 2
  • Dagmar Führer
    • 1
    Email author
  1. 1.Department of Endocrinology, Diabetes and MetabolismUniversity of Duisburg-EssenEssenGermany
  2. 2.Leibniz Institute on Aging/Fritz Lipmann Institute (FLI)JenaGermany

Personalised recommendations