Advertisement

Endocrine

, Volume 66, Issue 2, pp 370–380 | Cite as

In early pubertal boys, testosterone and LH are associated with improved anti-oxidation during an aerobic exercise bout

  • George Paltoglou
  • Alexandra Avloniti
  • Athanasios Chatzinikolaou
  • Charikleia Stefanaki
  • Maria Papagianni
  • Ioannis Papassotiriou
  • Ioannis G. Fatouros
  • George P. Chrousos
  • Christina Kanaka-Gantenbein
  • George MastorakosEmail author
Original Article
  • 60 Downloads

Abstract

Purpose

To investigate the association of the hypothalamic-pituitary-testicular (HPT) axis with pro- and anti- oxidation, in relation to puberty and obesity in boys, before and after an aerobic exercise bout.

Methods

This is a cross-sectional human observational study of 92 healthy normal-weight, obese pre- and early- pubertal boys that underwent a blood sampling, before, and after an aerobic exercise bout at 70% VO2max, until exhaustion. LH, FSH, total testosterone (tT) and markers of pro- (TBARS and PCs) and anti- (GSH, GSSG, GPX, catalase, TAC) oxidation were measured.

Results

Baseline LH, FSH, and tT concentrations were greater in early, than in pre- pubertal boys, independently of weight status. Post-exercise, LH concentrations decreased in early pubertal boys while FSH concentrations did not change in any of the studied groups. Baseline and post-exercise tT concentrations were lower in obese than in normal-weight early pubertal boys, while baseline and post-exercise LH and FSH concentrations did not differ between these groups. Post-exercise tT concentrations increased in early pubertal obese boys. Baseline LH, FSH and tT concentrations correlated positively with baseline anti-oxidation markers concentrations in pre-pubertal boys. Baseline tT concentrations correlated positively with the increase of TAC concentrations in early pubertal normal-weight boys. In all boys, baseline LH concentrations were the best positive predictors for the exercise-associated increase of TAC concentrations.

Conclusions

It appears that the HPT axis maturation during puberty (in particular its LH and testosterone components) is positively associated with the increase of anti-oxidation during a bout of aerobic exercise.

Keywords

HPT axis obesity puberty LH, FSH, testosterone 

Notes

Acknowledgements

This research did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors. All procedures performed in the study involving human participants had the approval of the National and Kapodistrian University of Athens Medical School designated ethics committee and were in accordance with the 1964 Helsinki declaration and its later amendments.

Informed consent

The aims and the procedure of the study were fully disclosed to the parents or legal guardians of the participants, and informed, written consent was obtained from them while boys gave verbal consent before the participation in the study.

References

  1. 1.
    C.M. Burt Solorzano, C.R. McCartney, Obesity and the pubertal transition in girls and boys. Reproduction 140(3), 399–410 (2010). 140/3/399 [pii]  https://doi.org/10.1530/REP-10-0119 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    J.D. Veldhuis, J.N. Roemmich, E.J. Richmond, C.Y. Bowers, Somatotropic and gonadotropic axes linkages in infancy, childhood, and the puberty-adult transition. Endocr. Rev. 27(2), 101–140 (2006). er.2005–0006 [pii]  https://doi.org/10.1210/er.2005-0006 CrossRefPubMedGoogle Scholar
  3. 3.
    C. Ankarberg-Lindgren, E. Norjavaara, Changes of diurnal rhythm and levels of total and free testosterone secretion from pre to late puberty in boys: testis size of 3 ml is a transition stage to puberty. Eur. J. Endocrinol. 151(6), 747–757 (2004)CrossRefGoogle Scholar
  4. 4.
    S. Vandewalle, Y. Taes, T. Fiers, M. Van Helvoirt, P. Debode, N. Herregods, C. Ernst, E. Van Caenegem, I. Roggen, F. Verhelle, J. De Schepper, J.M. Kaufman, Sex steroids in relation to sexual and skeletal maturation in obese male adolescents. J. Clin. Endocrinol. Metab. 99(8), 2977–2985 (2014).  https://doi.org/10.1210/jc.2014-1452 CrossRefPubMedGoogle Scholar
  5. 5.
    C. Mammi, M. Calanchini, A. Antelmi, F. Cinti, G.M. Rosano, A. Lenzi, M. Caprio, A. Fabbri, Androgens and adipose tissue in males: a complex and reciprocal interplay. Int. J. Endocrinol. 2012, 789653 (2012).  https://doi.org/10.1155/2012/789653 CrossRefPubMedGoogle Scholar
  6. 6.
    T. Finkel, N.J. Holbrook, Oxidants, oxidative stress and the biology of ageing. Nature 408(6809), 239–247 (2000).  https://doi.org/10.1038/35041687 CrossRefPubMedGoogle Scholar
  7. 7.
    R.J. Alleman, L.A. Katunga, M.A. Nelson, D.A. Brown, E.J. Anderson, The “Goldilocks Zone” from a redox perspective-Adaptive vs. deleterious responses to oxidative stress in striated muscle. Front. Physiol. 5, 358 (2014).  https://doi.org/10.3389/fphys.2014.00358 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    G. Paltoglou, I.G. Fatouros, G. Valsamakis, M. Schoina, A. Avloniti, A. Chatzinikolaou, A. Kambas, D. Draganidis, A. Mantzou, M. Papagianni, C. Kanaka-Gantenbein, G.P. Chrousos, G. Mastorakos, Anti-oxidation improves in puberty in normal weight and obese boys, in positive association with exercise-stimulated growth hormone secretion. Pediatr. Res. (2015). pr201585 [pii]  https://doi.org/10.1038/pr.2015.85 CrossRefGoogle Scholar
  9. 9.
    A. Avloniti, A. Chatzinikolaou, C.K. Deli, D. Vlachopoulos, L. Gracia-Marco, D. Leontsini, D. Draganidis, A.Z. Jamurtas, G. Mastorakos, I.G. Fatouros, Exercise-Induced Oxidative Stress Responses in the Pediatric Population. Antioxidants (Basel) 6(1) (2017). E6 [pii]  https://doi.org/10.3390/antiox6010006 antiox6010006 [pii]CrossRefGoogle Scholar
  10. 10.
    R.B. Myers, T.O. Abney, The effects of reduced O2 and antioxidants on steroidogenic capacity of cultured rat Leydig cells. J. Steroid. Biochem. 31(3), 305–309 (1988)CrossRefGoogle Scholar
  11. 11.
    R. Demirbag, R. Yilmaz, O. Erel, The association of total antioxidant capacity with sex hormones. Scand. Cardiovasc. J. 39(3), 172–176 (2005). U52785G321717601 [pii]  https://doi.org/10.1080/14017430510035862 CrossRefPubMedGoogle Scholar
  12. 12.
    A. Mancini, E. Leone, R. Festa, G. Grande, A. Silvestrini, L. de Marinis, A. Pontecorvi, G. Maira, G.P. Littarru, E. Meucci, Effects of testosterone on antioxidant systems in male secondary hypogonadism. J. Androl. 29(6), 622–629 (2008). jandrol.107.004838 [pii]  https://doi.org/10.2164/jandrol.107.004838 CrossRefPubMedGoogle Scholar
  13. 13.
    C. Skogastierna, M. Hotzen, A. Rane, L. Ekstrom, A supraphysiological dose of testosterone induces nitric oxide production and oxidative stress. Eur. J. Prev. Cardiol. 21(8), 1049–1054 (2014). 2047487313481755 [pii]  https://doi.org/10.1177/2047487313481755 CrossRefPubMedGoogle Scholar
  14. 14.
    G. Mastorakos, M. Pavlatou, E. Diamanti-Kandarakis, G.P. Chrousos, Exercise and the stress system. Hormone 4(2), 73–89 (2005)Google Scholar
  15. 15.
    G. Gerra, R. Caccavari, N. Reali, P. Bonvicini, A. Marcato, G. Fertonani, R. Delsignore, M. Passeri, F. Brambilla, Noradrenergic and hormonal responses to physical exercise in adolescents. Relationship to anxiety and tolerance to frustration. Neuropsychobiology 27(2), 65–71 (1993). 118955 [pii] 118955CrossRefGoogle Scholar
  16. 16.
    A.N. Elias, A.F. Wilson, Exercise and gonadal function. Hum. Reprod. 8(10), 1747–1761 (1993)CrossRefGoogle Scholar
  17. 17.
    L. Di Luigi, C. Baldari, M.C. Gallotta, F. Perroni, F. Romanelli, A. Lenzi, L. Guidetti, Salivary steroids at rest and after a training load in young male athletes: relationship with chronological age and pubertal development. Int. J. Sports. Med. 27(9), 709–717 (2006).  https://doi.org/10.1055/s-2005-872931 CrossRefPubMedGoogle Scholar
  18. 18.
    J.P. Ahtiainen, A. Pakarinen, W.J. Kraemer, K. Hakkinen, Acute hormonal and neuromuscular responses and recovery to forced vs maximum repetitions multiple resistance exercises. Int. J. Sports. Med. 24(6), 410–418 (2003).  https://doi.org/10.1055/s-2003-41171 CrossRefPubMedGoogle Scholar
  19. 19.
    W.J. Kraemer, K. Hakkinen, R.U. Newton, B.C. Nindl, J.S. Volek, M. McCormick, L.A. Gotshalk, S.E. Gordon, S.J. Fleck, W.W. Campbell, M. Putukian, W.J. Evans, Effects of heavy-resistance training on hormonal response patterns in younger vs. older men. J. Appl. Physiol. 87(3), 982–992 (1999).  https://doi.org/10.1152/jappl.1999.87.3.982 CrossRefPubMedGoogle Scholar
  20. 20.
    K. Fisher-Wellman, R.J. Bloomer, Acute exercise and oxidative stress: a 30 year history. Dyn. Med. 8, 1 (2009). 1476-5918-8-1 [pii]  https://doi.org/10.1186/1476-5918-8-1 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    D. Chiotis, X. Krikos, G. Tsiftis, M. Hatzisymeon, M. Maniati-Christidi, A. Dacou-Voutetaki, Body mass index and prevalence of obesity in subjects of Hellenic origin aged 0–18 years living in the Athens area. Ann. Clin. Pediatr. Unive. Atheniensis. (51), 139–154 (2004)Google Scholar
  22. 22.
    T.J. Cole, M.C. Bellizzi, K.M. Flegal, W.H. Dietz, Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320(7244), 1240–1243 (2000)CrossRefGoogle Scholar
  23. 23.
    J.D. Veldhuis, S.M. Pincus, R. Mitamura, K. Yano, N. Suzuki, Y. Ito, Y. Makita, A. Okuno, Developmentally delimited emergence of more orderly luteinizing hormone and testosterone secretion during late prepuberty in boys. J. Clin. Endocrinol. Metab. 86(1), 80–89 (2001)PubMedGoogle Scholar
  24. 24.
    K. Albertsson-Wikland, S. Rosberg, B. Lannering, L. Dunkel, G. Selstam, E. Norjavaara, Twenty-four-hour profiles of luteinizing hormone, follicle-stimulating hormone, testosterone, and estradiol levels: a semilongitudinal study throughout puberty in healthy boys. J. Clin. Endocrinol. Metab. 82(2), 541–549 (1997).  https://doi.org/10.1210/jcem.82.2.3778 CrossRefPubMedGoogle Scholar
  25. 25.
    A.S. Kelly, J. Steinberger, T.P. Olson, D.R. Dengel, In the absence of weight loss, exercise training does not improve adipokines or oxidative stress in overweight children. Metabolism 56(7), 1005–1009 (2007). S0026-0495(07)00108-4 [pii]  https://doi.org/10.1016/j.metabol.2007.03.009 CrossRefPubMedGoogle Scholar
  26. 26.
    E. von Elm, D.G. Altman, M. Egger, S.J. Pocock, P.C. Gotzsche, J.P. Vandenbroucke, The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies. Int. J. Surg. 12(12), 1495–1499 (2014).  https://doi.org/10.1016/j.ijsu.2014.07.013. S1743-9191(14)00212-X [pii]CrossRefGoogle Scholar
  27. 27.
    K.J. Teerds, D.G. de Rooij, J. Keijer, Functional relationship between obesity and male reproduction: from humans to animal models. Hum. Reprod. 17(5), 667–683 (2011).  https://doi.org/10.1093/humupd. /dmr017 dmr017 [pii]CrossRefGoogle Scholar
  28. 28.
    G. Paltoglou, M. Schoina, G. Valsamakis, N. Salakos, A. Avloniti, A. Chatzinikolaou, A. Margeli, C. Skevaki, M. Papagianni, C. Kanaka-Gantenbein, I. Papassotiriou, G.P. Chrousos, I.G. Fatouros, G. Mastorakos, Interrelations among the adipocytokines leptin and adiponectin, oxidative stress and aseptic inflammation markers in pre- and early-pubertal normal-weight and obese boys. Endocrine 55(3), 925–933 (2017). [pii]  https://doi.org/10.1007/s12020-017-1227-3 CrossRefGoogle Scholar
  29. 29.
    G. Mastorakos, M. Pavlatou, Exercise as a stress model and the interplay between the hypothalamus-pituitary-adrenal and the hypothalamus-pituitary-thyroid axes. Horm. Metab. Res. 37(9), 577–584 (2005).  https://doi.org/10.1055/s-2005-870426 CrossRefPubMedGoogle Scholar
  30. 30.
    T.B. Kelso, W.G. Herbert, F.C. Gwazdauskas, F.L. Goss, J.L. Hess, Exercise-thermoregulatory stress and increased plasma beta-endorphin/beta-lipotropin in humans. J. Appl. Physiol. 57(2), 444–449 (1984).  https://doi.org/10.1152/jappl.1984.57.2.444 CrossRefPubMedGoogle Scholar
  31. 31.
    I.R. Thompson, U.B. Kaiser, GnRH pulse frequency-dependent differential regulation of LH and FSH gene expression. Mol. Cell Endocrinol. 385(1–2), 28–35 (2014).  https://doi.org/10.1016/j.mce.2013.09.012. S0303-7207(13)00374-2 [pii]CrossRefPubMedGoogle Scholar
  32. 32.
    J.D. Veldhuis, A.D. Rogol, E. Samojlik, N.H. Ertel, Role of endogenous opiates in the expression of negative feedback actions of androgen and estrogen on pulsatile properties of luteinizing hormone secretion in man. J. Clin. Invest. 74(1), 47–55 (1984).  https://doi.org/10.1172/JCI111417 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    G. Valsamakis, G. Chrousos, G. Mastorakos, Stress, female reproduction and pregnancy. Psychoneuroendocrinology 100, 48–57 (2018). S0306-4530(18)30562-6 [pii]  https://doi.org/10.1016/j.psyneuen.2018.09.031 CrossRefPubMedGoogle Scholar
  34. 34.
    J.L. Crawford, J.R. McNeilly, L. Nicol, A.S. McNeilly, Promotion of intragranular co-aggregation with LH by enhancement of secretogranin II storage resulted in increased intracellular granule storage in gonadotrophs of GnRH-deprived male mice. Reproduction 124(2), 267–277 (2002)CrossRefGoogle Scholar
  35. 35.
    J.L. Crawford, A.S. McNeilly, Co-localisation of gonadotrophins and granins in gonadotrophs at different stages of the oestrous cycle in sheep. J. Endocrinol. 174(2), 179–194 (2002). JOE04737 [pii]CrossRefGoogle Scholar
  36. 36.
    T. Watanabe, Y. Uchiyama, D. Grube, Topology of chromogranin A and secretogranin II in the rat anterior pituitary: potential marker proteins for distinct secretory pathways in gonadotrophs. Histochemistry 96(4), 285–293 (1991)CrossRefGoogle Scholar
  37. 37.
    P.G. Farnworth, Gonadotrophin secretion revisited. How many ways can FSH leave a gonadotroph? J. Endocrinol. 145(3), 387–395 (1995)CrossRefGoogle Scholar
  38. 38.
    A.S. McNeilly, J.L. Crawford, C. Taragnat, L. Nicol, J.R. McNeilly, The differential secretion of FSH and LH: regulation through genes, feedback and packaging. Reprod. Suppl. 61, 463–476 (2003)PubMedGoogle Scholar
  39. 39.
    L. Nicol, J.R. McNeilly, M. Stridsberg, A.S. McNeilly, Differential secretion of gonadotrophins: investigation of the role of secretogranin II and chromogranin A in the release of LH and FSH in LbetaT2 cells. J. Mol. Endocrinol. 32(2), 467–480 (2004)CrossRefGoogle Scholar
  40. 40.
    D.C. Cumming, L.A. Brunsting 3rd, G. Strich, A.L. Ries, R.W. Rebar, Reproductive hormone increases in response to acute exercise in men. Med. Sci. Sports Exerc. 18(4), 369–373 (1986)CrossRefGoogle Scholar
  41. 41.
    C. Enea, N. Boisseau, M. Ottavy, J. Mulliez, C. Millet, I. Ingrand, V. Diaz, B. Dugue, Effects of menstrual cycle, oral contraception, and training on exercise-induced changes in circulating DHEA-sulphate and testosterone in young women. Eur. J. Appl. Physiol. 106(3), 365–373 (2009).  https://doi.org/10.1007/s00421-009-1017-6 CrossRefPubMedGoogle Scholar
  42. 42.
    K. Christiansen, Behavioural effects of androgen in men and women. J. Endocrinol. 170(1), 39–48 (2001). JOE04137 [pii]CrossRefGoogle Scholar
  43. 43.
    M.S. Choi, B.A. Cooke, Evidence for two independent pathways in the stimulation of steroidogenesis by luteinizing hormone involving chloride channels and cyclic AMP. FEBS Lett. 261(2), 402–404 (1990)CrossRefGoogle Scholar
  44. 44.
    S. Lee, R. Miselis, C. Rivier, Anatomical and functional evidence for a neural hypothalamic-testicular pathway that is independent of the pituitary. Endocrinology 143(11), 4447–4454 (2002).  https://doi.org/10.1210/en.2002-220392 CrossRefPubMedGoogle Scholar
  45. 45.
    C.L. Fahrner, A.C. Hackney, Effects of endurance exercise on free testosterone concentration and the binding affinity of sex hormone binding globulin (SHBG). Int. J. Sports. Med. 19(1), 12–15 (1998).  https://doi.org/10.1055/s-2007-971872 CrossRefPubMedGoogle Scholar
  46. 46.
    L.J. van Loon, P.L. Greenhaff, D. Constantin-Teodosiu, W.H. Saris, A.J. Wagenmakers, The effects of increasing exercise intensity on muscle fuel utilisation in humans. J. Physiol. 536(Pt 1), 295–304 (2001). PHY_12382 [pii]CrossRefGoogle Scholar
  47. 47.
    D. Benitez-Sillero Jde, J.L. Perez-Navero, I. Tasset, M. Guillen-Del Castillo, M. Gil-Campos, I. Tunez, Influence of intense exercise on saliva glutathione in prepubescent and pubescent boys. Eur. J. Appl. Physiol. 106(2), 181–186 (2009).  https://doi.org/10.1007/s00421-009-1004-y CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • George Paltoglou
    • 1
    • 2
  • Alexandra Avloniti
    • 3
  • Athanasios Chatzinikolaou
    • 3
  • Charikleia Stefanaki
    • 1
    • 4
  • Maria Papagianni
    • 5
  • Ioannis Papassotiriou
    • 6
  • Ioannis G. Fatouros
    • 7
  • George P. Chrousos
    • 8
  • Christina Kanaka-Gantenbein
    • 8
  • George Mastorakos
    • 1
    Email author
  1. 1.Endocrine Unit, “Aretaieion” HospitalNational and Kapodistrian University of Athens - Faculty of MedicineAthensGreece
  2. 2.Department of Paediatric and Adolescent EndocrinologyUniversity College London HospitalLondonUK
  3. 3.Department of Physical Education and Sports SciencesDemocritus University of ThraceKomotiniGreece
  4. 4.Department of PediatricsGeneral Hospital of Piraeus ‘Aghios Panteleimon’PiraeusGreece
  5. 5.Third Department of Pediatrics, Aristotle University of Thessaloniki, School of Medicine“Hippokrateion” General Hospital of ThessalonikiThessalonikiGreece
  6. 6.Department of Clinical Biochemistry“Aghia Sophia” Children’s HospitalAthensGreece
  7. 7.Department of Physical Education and Sports SciencesUniversity of ThessalyTrikalaGreece
  8. 8.First Department of Pediatrics, “Aghia Sophia” Children’s HospitalNational and Kapodistrian University of Athens - Faculty of MedicineAthensGreece

Personalised recommendations