Advertisement

Endocrine

pp 1–14 | Cite as

Dual-energy X-ray absorptiometry pitfalls in Thalassemia Major

  • Fabio Pellegrino
  • Maria Chiara Zatelli
  • Marta Bondanelli
  • Aldo Carnevale
  • Corrado Cittanti
  • Monica Fortini
  • Maria Rita Gamberini
  • Melchiore Giganti
  • Maria Rosaria AmbrosioEmail author
Review

Abstract

Background

Low mineral mass and reduced bone strength with increased fracture risk are the main causes of morbidity in Thalassemia Major (TM). The pathogenesis is multifactorial and includes ineffective erythropoiesis with medullary expansion, multiple endocrine dysfunctions, direct iron bone deposition, deferoxamine-induced bone dysplasia, and reduced physical activity associated with disease complications. Dual-energy X-ray absorptiometry (DXA) is the “gold standard” for bone mineral density (BMD) assessment and for bone strength and quality evaluation. This method identifies patients at greater risk of fragility fractures, guiding treatment and monitoring response to therapy. In TM, DXA shows limitations concerning BMD calculation accuracy and fracture risk prediction. One of the main challenges in the assessment of bone health in patients with TM is the accurate interpretation of densitometric results.

Purpose

This review investigates the major pitfalls in DXA implementation and interpretation in TM.

Methods

Available literature has been assessed.

Conclusions

DXA shows limitations in assessing bone mineral “status” in TM, especially in the paediatric population, due to the peculiar characteristics of bone architecture and deformities associated with the disease. A radiological technique adjustment in this population is mandatory.

Keywords

DXA Thalassemia Osteoporosis BMD Fractures Limits 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants whose radiological images were included in the study.

References

  1. 1.
    E. Voskaridou et al. A national registry of haemoglobinopathies in Greece: deducted demographics, trends in mortality and affected births. Ann. Hematol. 91, 1451–1458 (2012)CrossRefGoogle Scholar
  2. 2.
    M. Baldini et al. Endocrine and bone disease in appropriately treated adult patients with beta-thalassemia major. Ann. Hematol. 89, 1207–1213 (2010)CrossRefGoogle Scholar
  3. 3.
    M. Di Stefano et al. Bone mass and metabolism in thalassemic children and adolescents treated with different iron-chelating drugs. J. Bone Miner. Metab. 22, 53–57 (2004)CrossRefGoogle Scholar
  4. 4.
    M.G. Vogiatzi et al. Bone disease in Thalassemia: a frequent and still unresolved problem. J. Bone Miner. Res. 24, 543–557 (2009)CrossRefGoogle Scholar
  5. 5.
    E.B. Fung et al. Characterization of low bone mass in young patients with thalassemia by DXA, pQCT and markers of bone turnover. Bone 48, 1305–1312 (2011)CrossRefGoogle Scholar
  6. 6.
    Y.G. Chen et al. Risk of fracture in transfusion-naïve thalassemia population: a nationwide population-based retrospective cohort study. Bone 106, 121–125 (2018)CrossRefGoogle Scholar
  7. 7.
    A.A. Shamshirsaz et al. Bone mineral density in Iranian adolescents and young adults with β-thalassemia major. Pediatr. Hematol. Oncol. 24, 469–479 (2007)CrossRefGoogle Scholar
  8. 8.
    W. Sutipornpalangkul et al. Prevalence of fractures among Thais with Thalassaemia syndromes. Singap. Med. J. 51(10), 817–821 (2010)Google Scholar
  9. 9.
    D.J. Weatherall, Fortnightly review: the thalassaemias. BMJ (1997).  https://doi.org/10.1136/bmj.314.7095.1675
  10. 10.
    R. Haidar et al. Bone disease and skeletal complications in patients with β thalassemia major. Bone 48, 425–432 (2011)CrossRefGoogle Scholar
  11. 11.
    M. Angastiniotis, A. Eleftheriou, Thalassaemic bone disease: an overview. Pediatr. Endocrinol. Rev. 6, 73–80 (2008)Google Scholar
  12. 12.
    J.A. Kanis et al. FRAXTM and the assessment of fracture probability in men and women from the UK. Osteoporos. Int. 19, 385–397 (2008)CrossRefGoogle Scholar
  13. 13.
    P. Wong et al. Thalassemia bone disease: the association between nephrolithiasis, bone mineral density and fractures. Osteoporos. Int. 24, 1965–1971 (2013)CrossRefGoogle Scholar
  14. 14.
    P. Mahachoklertwattana et al. Association between bone mineral density and erythropoiesis in Thai children and adolescents with thalassemia syndromes. J. Bone Miner. Metab. (2006).  https://doi.org/10.1007/s00774-005-0661-0
  15. 15.
    P. Pootrakul, Relation between erythropoiesis and bone metabolism in thalassemia. J. Pediatr. Orthop. (1981).  https://doi.org/10.1097/01241398-198112000-00054
  16. 16.
    T. Diamond et al. Osteoporosis in hemochromatosis: iron excess, gonadal deficiency, or others factors? Ann. Intern. Med. (1989).  https://doi.org/10.7326/0003-4819-110-6-430
  17. 17.
    A. Filosa et al. Longitudinal monitoring of bone mineral density in thalassemic patients. Genetic structure and osteoporosis. Acta Paediatr. Int. J. Paediatr. (1997).  https://doi.org/10.1111/j.1651-2227.1997.tb09019.x
  18. 18.
    R. Lala et al. Bone density and metabolism in thalassaemia. J. Pediatr. Endocrinol. Metab. 11(Suppl 3), 785–790 (1998)Google Scholar
  19. 19.
    B.K. Bielinski et al. Impact of disordered puberty on bone density in β-thalassaemia major. Br. J. Haematol. 120, 353–358 (2003)CrossRefGoogle Scholar
  20. 20.
    M. L. G. Anapllotou et al. The contribution of hypogonadism to the development of osteoporosis in thalassaemia major: new therapeutic approaches. Clin. Endocrinol. (Oxf.) (2008).  https://doi.org/10.1111/j.1365-2265.1995.tb01876.x
  21. 21.
    M. D. Cappellini et al. (eds), Guidelines for the Management of Transfusion Dependent Thalassemia (TDT) (Thalassemia International Federation, Nicosia, 2014)Google Scholar
  22. 22.
    Y.L. Chan et al. Patterns of bone diseases in transfusion-dependent homozygous thalassaemia major: predominance of osteoporosis and desferrioxamine-induced bone dysplasia. Pediatr. Radiol. 32, 492–497 (2002)CrossRefGoogle Scholar
  23. 23.
    E.M. Lewiecki, Update on bone density testing. Curr. Osteoporos. Rep. (2005).  https://doi.org/10.1007/s11914-996-0016-3
  24. 24.
    H.E. Meema, H. Meindok, Advantages of peripheral radiogrametry over dual-photon absorptiometry of the spine in the assessment of prevalence of osteoporotic vertebral fractures in women. J. Bone Miner. Res. 7(8), 897–903 (1992)CrossRefGoogle Scholar
  25. 25.
    C.M. Gordon et al. 2013 pediatric position development conference: executive summary and reflections. J. Clin. Densitom. 17, 219–224 (2014)CrossRefGoogle Scholar
  26. 26.
    J.A. Shepherd et al. Executive Summary of the 2015 ISCD Position Development Conference on Advanced Measures From DXA and QCT: fracture prediction beyond BMD. J. Clin. Densitom. (2015).  https://doi.org/10.1016/j.jocd.2015.06.013
  27. 27.
    E. Voskaridou, E. Terpos, New insights into the pathophysiology and management of osteoporosis in patients with beta thalassaemia. Br. J. Haematol. (2004).  https://doi.org/10.1111/j.1365-2141.2004.05143.x
  28. 28.
    R.I. Gafni, J. Baron, Overdiagnosis of osteoporosis in children due to misinterpretation of dual-energy X-ray absorptiometry (DEXA). J. Pediatr. (2004).  https://doi.org/10.1016/j.jpeds.2003.08.054
  29. 29.
    E.B. Fung et al. Fracture prevalence and relationship to endocrinopathy in iron overloaded patients with sickle cell disease and thalassemia. Bone 43, 162–168 (2008)CrossRefGoogle Scholar
  30. 30.
    J. A. Kanis, Osteoporosis III: diagnosis of osteoporosis and assessment of fracture risk. Lancet (2002).  https://doi.org/10.1016/S0140-6736(02)08761-5
  31. 31.
    M.G. Vogiatzi et al. Prevalence of fractures among the Thalassemia syndromes in North America. Bone 38, 571–575 (2006)CrossRefGoogle Scholar
  32. 32.
    N. Bishop et al. Fracture prediction and the definition of osteoporosis in children and adolescents: The ISCD 2013 Pediatric Official Positions. J. Clin. Densitom. 17, 275–280 (2014)CrossRefGoogle Scholar
  33. 33.
    P. Wong et al. Thalassemia bone disease: a 19-year longitudinal analysis. J. Bone Miner. Res. 29, 2468–2473 (2014)CrossRefGoogle Scholar
  34. 34.
    F. Najafipour et al. A cross-sectional study of metabolic and endocrine complications in beta-thalassemia major. Ann. Saudi Med. 28(5), 361–366 (2008)CrossRefGoogle Scholar
  35. 35.
    I. Aslan et al. Bone mineral density in thalassemia major patients from Antalya, Turkey. Int. J. Endocrinol. 2012, 573298 (2012)Google Scholar
  36. 36.
    A. Prentice et al. Uncritical use of bone mineral density in absorptiometry may lead to size- related artifacts in the identification of bone mineral determinants. Am. J. Clin. Nutr. (1994).  https://doi.org/10.1093/ajcn/60.6.837
  37. 37.
    C.M. Gordon et al. Dual energy X-ray absorptiometry interpretation and reporting in children and adolescents: The 2007 ISCD Pediatric Official Positions. J. Clin. Densitom. 11, 43–58 (2008)CrossRefGoogle Scholar
  38. 38.
    K.A. Ward et al. UK reference data for the Hologic QDR Discovery dual-energy x ray absorptiometry scanner in healthy children and young adults aged 6-17 years. Arch. Dis. Child. (2007).  https://doi.org/10.1136/adc.2006.097642
  39. 39.
    N. Shaw, N. Crabtree, Bone density in children: what are we measuring? Arch. Dis. Child. (2019).  https://doi.org/10.1136/archdischild-2019-316940
  40. 40.
    R.P. Heaney, Bone mineral content, not bone mineral density, is the correct bone measure for growth studies. Am. J. Clin. Nutr. 78, 350–351 (2003)Google Scholar
  41. 41.
    M.B. Leonard et al. Interpretation of whole body dual energy X-ray absorptiometry measures in children: comparison with peripheral quantitative computed tomography. Bone 34, 1044–1052 (2004)CrossRefGoogle Scholar
  42. 42.
    L.A. Binkovitz, M.J. Henwood, Pediatric DXA: technique and interpretation. Pediatr. Radiol. 37, 21–31 (2007)CrossRefGoogle Scholar
  43. 43.
    M.S. Fewtrell et al. Dual X-ray absorptiometry (DXA) of the lumbar spine in a clinical paediatric setting: does the method of size-adjustment matter? Bone 37, 413–419 (2005)CrossRefGoogle Scholar
  44. 44.
    B.S. Zemel et al. Height adjustment in assessing dual energy x-ray absorptiometry measurements of bone mass and density in children. J. Clin. Endocrinol. Metab. 95, 1265–1273 (2010)CrossRefGoogle Scholar
  45. 45.
    L.K. Bachrach et al. Clinical report—bone densitometry in children and adolescents. Pediatrics 127, 189–194 (2011)CrossRefGoogle Scholar
  46. 46.
    L.K. Bachrach, Osteoporosis in children: still a diagnostic challenge. J. Clin. Endocrinol. Metab. 92, 2030–2032 (2007)CrossRefGoogle Scholar
  47. 47.
    P.W. Brill et al. Deferoxamine-induced bone dysplasia in patients with thalassemia major. Am. J. Roentgenol. 156, 561–565 (1991)CrossRefGoogle Scholar
  48. 48.
    T. Rand et al. Impact of spinal degenerative changes on the evaluation of bone mineral density with dual energy x-ray absorptiometry (DXA). Calcif. Tissue Int. 60, 430–433 (1997)CrossRefGoogle Scholar
  49. 49.
    S. Desigan et al. Degenerative disc disease as a cause of back pain in the thalassaemic population: a case-control study using MRI and plain radiographs. Skelet. Radiol. 35, 95–102 (2006)CrossRefGoogle Scholar
  50. 50.
    S. De Virgillis et al. Deferoxamine-induced growth retardation in patients with thalassemia major. J. Pediatr. 113, 661–669 (1988)CrossRefGoogle Scholar
  51. 51.
    Y.L. Chan et al. Desferrioxamine-induced long bone changes in thalassaemic patients — radiographic features, prevalence and relations with growth. Clin. Radiol. 55, 610–614 (2000)CrossRefGoogle Scholar
  52. 52.
    M.J. Hartkamp et al. Spinal deformities in deferoxamine-treated homozygous beta-thalassemia major patients. Pediatr. Radiol. 23, 525–528 (1993)CrossRefGoogle Scholar
  53. 53.
    A. Naselli et al. Long-term follow-up of skeletal dysplasia in thalassaemia major. J. Pediatr. Endocrinol. Metab. 11(Suppl 3), 817–825 (1998)Google Scholar
  54. 54.
    T.L. Levin et al. Deferoxamine-induced platyspondyly in hypertransfused thalassemic patients. Pediatr. Radiol. 25(Suppl 1), S122–S124 (1995)Google Scholar
  55. 55.
    L.N. Grinberg et al. Hydroxyl radical generation in β-thalassemic red blood cells. Free Radic. Biol. Med. 18, 611–615 (1995)CrossRefGoogle Scholar
  56. 56.
    T. Yamaza et al. Oxidative stress-induced DNA damage in the synovial cells of the temporomandibular joint in the rat. J. Dent. Res. (2004).  https://doi.org/10.1177/154405910408300807
  57. 57.
    D.J. Peacock et al. Lateral bone density measurements in osteoarthritis of the lumbar spine. Ann. Rheum. Dis. (1996).  https://doi.org/10.1136/ard.55.3.196
  58. 58.
    G. Jones et al. A longitudinal study of the effect of spinal degenerative disease on bone density in the elderly. J. Rheumatol. 22(5), 932–936 (1995)Google Scholar
  59. 59.
    P. Korovessis et al. Incidence of scoliosis in β-thalassemia and follow-up evaluation. Spine (Phila. Pa. 1976). 21, 1798–1801 (1996)CrossRefGoogle Scholar
  60. 60.
    P.G. Korovessis et al. Prevalence of scoliosis in beta-thalassemia. J. Spinal Disord. 9, 170–173 (1996)Google Scholar
  61. 61.
    D.A. Papanastasiou et al. Correlative analysis of the sagittal profile of the spine in patients with β-thalassemia and in healthy persons. J. Spinal Disord. (2000).  https://doi.org/10.1097/00002517-200004000-00004
  62. 62.
    J.C. Cheng et al. The effect of vertebral rotation of the lumbar spine on dual energy X-ray absorptiometry measurements: observational study. Hong Kong Med. J. 7(3), 241–245 (2001)Google Scholar
  63. 63.
    P.A. Tyler et al. The radiological appearances of thalassaemia. Clin. Radiol. 61, 40–52 (2006)CrossRefGoogle Scholar
  64. 64.
    M. Yildiz, D. Canatan, Soft tissue density variations in thalassemia major: a possible pitfall in lumbar bone mineral density measurements by dual-energy X-ray absorptiometry. Pediatr. Hematol. Oncol. 22, 723–726 (2005)CrossRefGoogle Scholar
  65. 65.
    E.E. Drakonaki et al. Bone marrow changes in beta-thalassemia major: quantitative MR imaging findings and correlation with iron stores. Eur. Radiol. 17, 2079–2087 (2007)CrossRefGoogle Scholar
  66. 66.
    L.K. Bachrach et al. Bone mineral acquisition in healthy Asian, Hispanic, black, and Caucasian youth: a longitudinal study. J. Clin. Endocrinol. Metab. (1999).  https://doi.org/10.1210/jc.84.12.4702
  67. 67.
    N.J. Crabtree et al. Amalgamated reference data for size-adjusted bone densitometry measurements in 3598 children and young adults—the ALPHABET Study. J. Bone Miner. Res. 32, 172–180 (2017)CrossRefGoogle Scholar
  68. 68.
    N.J. Crabtree et al. Diagnostic evaluation of bone densitometric size adjustment techniques in children with and without low trauma fractures. Osteoporos. Int. 24, 2015–2024 (2013)CrossRefGoogle Scholar
  69. 69.
    N.J. Crabtree et al. Dual-energy x-ray absorptiometry interpretation and reporting in children and adolescents: The Revised 2013 ISCD Pediatric Official Positions. J. Clin. Densitom. 17, 225–242 (2014)CrossRefGoogle Scholar
  70. 70.
    R.J. Kuczmarski et al. CDC growth charts: United States. Adv. Data 1–27 (2000)Google Scholar
  71. 71.
    D.F. Short et al. Anthropometric models of bone mineral content and areal bone mineral density based on the bone mineral density in childhood study. Osteoporos. Int. (2015).  https://doi.org/10.1007/s00198-014-2916-x
  72. 72.
    J.M. Kindler et al. Lumbar spine bone mineral apparent density in children: results from the bone mineral density in childhood study. J. Clin. Endocrinol. Metab. (2019).  https://doi.org/10.1210/jc.2018-01693
  73. 73.
    C. Mølgaard et al. Whole body bone mineral content in healthy children and adolescents. Arch. Dis. Child. (1997).  https://doi.org/10.1136/adc.76.1.9
  74. 74.
    J.P. Bonjour et al. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J. Clin. Endocrinol. Metab. 73, 555–563 (1991)CrossRefGoogle Scholar
  75. 75.
    A. Arabi et al. Bone mineral density by age, gender, pubertal stages, and socioeconomic status in healthy Lebanese children and adolescents. Bone (2004).  https://doi.org/10.1016/j.bone.2004.06.015
  76. 76.
    N. Di Iorgi et al. Update on bone density measurements and their interpretation in children and adolescents. Best. Pract. Res. Clin. Endocrinol. Metab. 32, 477–498 (2018)CrossRefGoogle Scholar
  77. 77.
    N.J. Crabtree et al. The relationship between lean body mass and bone mineral content in paediatric health and disease. Bone 35, 965–972 (2004)CrossRefGoogle Scholar
  78. 78.
    W. Högler et al. Importance of lean mass in the interpretation of total body densitometry in children and adolescents. J. Pediatr. (2003).  https://doi.org/10.1016/S0022-3476(03)00187-2
  79. 79.
    M.A. Petit et al. Examining the developing bone: what do we measure and how do we do it? J. Musculoskelet. Neuronal Interact. 5, 213–224 (2005)Google Scholar
  80. 80.
    N.J. Crabtree, K. Kent, in Bone Health Assessment in Pediatrics, ed. by E. Fung, L. Bachrach, A. Sawyer (Springer, Cham, 2016), pp. 89–114Google Scholar
  81. 81.
    G.M. Blake et al. Comparison of effective dose to children and adults from dual X-ray absorptiometry examinations. Bone 38, 935–942 (2006)CrossRefGoogle Scholar
  82. 82.
    J. Damilakis et al. Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur. Radiol. 20, 2707–2714 (2010)CrossRefGoogle Scholar
  83. 83.
    H.M. Allard et al. Vertebral bone density measurements by DXA are influenced by hepatic iron overload in patients with hemoglobinopathies. J. Clin. Densitom. (2018).  https://doi.org/10.1016/j.jocd.2018.07.001
  84. 84.
    C. Rodd et al. Incident vertebral fractures 12 months following glucocorticoid initiation in children with rheumatic disorders. Pediatr. Rheumatol. (2012)Google Scholar
  85. 85.
    L. Ruggiero, V. De Sanctis, Multicentre study on prevalence of fractures in transfusion-dependent thalassaemic patients. J. Pediatr. Endocrinol. Metab. 11(Suppl 3), 773–778 (1998)Google Scholar
  86. 86.
    P.D. Delmas et al. Underdiagnosis of vertebral fractures is a worldwide problem: the IMPACT study. J. Bone Miner. Res. (2005).  https://doi.org/10.1359/JBMR.041214
  87. 87.
    N. Kim et al. Underreporting of vertebral fractures on routine chest. Radiogr. Am. J. Roentgenol. 182, 297–300 (2004)CrossRefGoogle Scholar
  88. 88.
    H.K. Genant et al. Vertebral fracture assessment using a semiquantitative technique. J. Bone Miner. Res. 8, 1137–1148 (2009)CrossRefGoogle Scholar
  89. 89.
    D.M. Black et al. A new approach to defining normal vertebral dimensions. J. Bone Miner. Res. 6, 883–892 (2009)CrossRefGoogle Scholar
  90. 90.
    M. Grigoryan et al. Recognizing and reporting osteoporotic vertebral fractures. Eur. Spine J. 12, S104–S112 (2003)CrossRefGoogle Scholar
  91. 91.
    W. Yu et al. Spinal bone mineral assessment in postmenopausal women: a comparison between dual X-ray absorptiometry and quantitative computed tomography. Osteoporos. Int. 5, 433–439 (1995)CrossRefGoogle Scholar
  92. 92.
    P. Engkakul et al. Unrecognized vertebral fractures in adolescents and young adults with thalassemia syndromes. J. Pediatr. Hematol. Oncol. 35, 212–217 (2013)CrossRefGoogle Scholar
  93. 93.
    A. Guermazi et al. Identification of vertebral fractures in osteoporosis. Semin. Musculoskelet. Radiol. 06, 241–252 (2002)CrossRefGoogle Scholar
  94. 94.
    F.M. Ulivieri et al. Utility of the trabecular bone score (TBS) in secondary osteoporosis. Endocrine 47, 435–448 (2014)CrossRefGoogle Scholar
  95. 95.
    O. Johnell et al. Predictive value of BMD for hip and other fractures. J. Bone Miner. Res. 20, 1185–1194 (2005)CrossRefGoogle Scholar
  96. 96.
    M. Mylona et al. Comparison of DXA, QCT and trabecular structure in beta-thalassaemia. Eur. J. Haematol. 74, 430–437 (2005)CrossRefGoogle Scholar
  97. 97.
    B.C. Silva et al. Trabecular bone score: a noninvasive analytical method based upon the DXA image. J. Bone Miner. Res. 29, 518–530 (2014)CrossRefGoogle Scholar
  98. 98.
    B.C. Silva et al. Fracture risk prediction by non-BMD DXA measures: The 2015 ISCD Official Positions. Part 2: Trabecular bone score. J. Clin. Densitom. (2015).  https://doi.org/10.1016/j.jocd.2015.06.008
  99. 99.
    M. Baldini et al. Spine bone texture assessed by trabecular bone score (TBS) to evaluate bone health in thalassemia major. Calcif. Tissue Int. 95, 540–546 (2014)CrossRefGoogle Scholar
  100. 100.
    L. Pothuaud et al. Evaluation of the potential use of trabecular bone score to complement bone mineral density in the diagnosis of osteoporosis: a preliminary spine BMD–matched, case-control study. J. Clin. Densitom. 12, 170–176 (2009)CrossRefGoogle Scholar
  101. 101.
    L. Pothuaud et al. Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: applications in the study of human trabecular bone microarchitecture. Bone 42, 775–787 (2008)CrossRefGoogle Scholar
  102. 102.
    J.M. Burnham et al. Bone density, structure, and strength in juvenile idiopathic arthritis: Importance of disease severity and muscle deficits. Arthritis Rheum. 58, 2518–2527 (2008)CrossRefGoogle Scholar
  103. 103.
    J. Kalef-Ezra et al. Body composition in homozygous β-thalassemia. Ann. NY Acad. Sci. 904, 621–624 (2006)CrossRefGoogle Scholar
  104. 104.
    S. Akpek et al. Evaluation of osteoporosis in thalassemia by quantitative computed tomography: is it reliable? Pediatr. Hematol. Oncol. 18, 111–116 (2001)CrossRefGoogle Scholar
  105. 105.
    L. Danesi et al. Evaluation of spine and hip bone density by DXA and QCT in thalassemic patients. J. Pediatr. Endocrinol. Metab. 11(Suppl 3), 961–962 (1998)Google Scholar
  106. 106.
    T.L. Levin et al. MRI marrow observations in thalassemia: the effects of the primary disease, transfusional therapy, and chelation. Pediatr. Radiol. (1995).  https://doi.org/10.1007/BF02011827
  107. 107.
    M. Tunacı et al. Imaging features of thalassemia. Eur. Radiol. 9, 1804–1809 (1999)CrossRefGoogle Scholar
  108. 108.
    Jensen et al. High prevalence of low bone mass in thalassaemia major. Br. J. Haematol. 103, 911–915 (1998)CrossRefGoogle Scholar
  109. 109.
    E.P. Vichinsky, The morbidity of bone disease in thalassemia. Ann. NY Acad. Sci. 850, 344–348 (1998)CrossRefGoogle Scholar
  110. 110.
    B. Wonke, et al. Genetic and acquired predisposing factors and treatment of osteoporosis in thalassaemia major. J. Pediatr. Endocrinol. Metab. 11, 795–801 (1998)Google Scholar
  111. 111.
    U. Dundar, et al. Bone metabolism and mineral density in patients with beta-thalassemia major. Saudi Med. J. 28, 1425–1429 (2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Fabio Pellegrino
    • 1
  • Maria Chiara Zatelli
    • 2
  • Marta Bondanelli
    • 2
  • Aldo Carnevale
    • 1
  • Corrado Cittanti
    • 3
  • Monica Fortini
    • 4
  • Maria Rita Gamberini
    • 4
  • Melchiore Giganti
    • 1
  • Maria Rosaria Ambrosio
    • 2
    Email author
  1. 1.Department of Morphology, Surgery and Experimental Medicine, Section of RadiologyUniversity of FerraraFerraraItaly
  2. 2.Department of Medical Sciences, Section of Endocrinology and Internal MedicineUniversity of FerraraFerraraItaly
  3. 3.Department of Morphology, Surgery and Experimental MedicineUniversity of FerraraFerraraItaly
  4. 4.Unit of Thalassaemia and Haemoglobinopathies Day Hospital, Regional HUB Centre, Department of MedicineAzienda Ospedaliero Universitaria S. AnnaCona – FerraraItaly

Personalised recommendations