Advertisement

Endocrine

, Volume 65, Issue 3, pp 515–519 | Cite as

Medullary thyroid carcinoma treated with percutaneous ultrasound-guided radiofrequency ablation

  • Emilia Biamonte
  • Luigi Solbiati
  • Tiziana Ierace
  • Paolo Colombo
  • Elisabetta Lavezzi
  • Gherardo MazziottiEmail author
  • Andrea Lania
Clinical Management of Endocrine Diseases
  • 102 Downloads

Abstract

Purpose

Minimally invasive image-guided thermal ablation has been proposed as alternative to surgery for treatment of benign thyroid nodules and recurrent differentiated thyroid carcinoma. Here, we report for the first time the use of radiofrequency ablation (RFA) in a patient with non-metastatic medullary thyroid carcinoma (MTC) who did not undergo surgery due to high anesthesiological risk.

Methods and results

A 64-year-old woman was referred to our institution for a routine endocrinological visit. No thyroid-related symptoms were present. She had a history of metabolic, cardiovascular and neurological diseases. On clinical examination, a nodular lesion of about 10 mm was palpable in the right thyroid lobe; ultrasonography (US) confirmed the presence of a 13 mm thyroid nodule in the lower pole of the right lobe, that was hypoechoic and with regular margins. Serum calcitonin (Ctn) level was significantly high (647 pg/mL). Fine-needle aspiration (FNA) of the thyroid nodule was negative for malignant cells, but the marked increase of Ctn level in the FNA wash-out fluid confirmed the diagnostic suspicion of MTC. Since patient refused surgery due to high anesthesiological risk, percutaneous US-guided RFA in single session was performed. At 6-months follow-up the serum Ctn level decreased from the initial value of 647 pg/mL, reaching near-normal range (15 pg/mL), and neck ultrasound showed a complete necrosis of the tumour. Afterward, serum Ctn slowly increased to 49 pg/mL at 15-month follow-up. The US performed at 6 and 12 months of follow-up revealed fibrotic tissue in place of the thyroid nodule, without evidence of cervical lymph-node metastases.

Conclusions

This clinical case suggests that RFA may be effective and safe for treatment of MTC when surgery cannot be performed.

Keywords

Medullary thyroid carcinoma Radiofrequency ablation Calcitonin Ultrasound 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study involving a human participant were in accordance with the ethical standards of the Humanitas Ethical Committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

References

  1. 1.
    S.A. Wells Jr., S.L. Asa, H. Dralle, R. Elisei, D.B. Evans, R.F. Gagel, N. Lee, A. Machens, J.F. Moley, F. Pacini, F. Raue, K. Frank-Raue, B. Robinson, M.S. Rosenthal, M. Santoro, M. Schlumberger, M. Shah, S.G. Waguespack, Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid.: Off. J. Am. Thyroid. Assoc 25(6), 567–610 (2015).  https://doi.org/10.1089/thy.2014.0335 CrossRefGoogle Scholar
  2. 2.
    R. Elisei, A. Pinchera, Advances in the follow-up of differentiated or medullary thyroid cancer. Nat. Rev. Endocrinol. 8(8), 466–475 (2012).  https://doi.org/10.1038/nrendo.2012.38 CrossRefGoogle Scholar
  3. 3.
    C. Durante, A. Paciaroni, K. Plasmati, F. Trulli, S. Filetti, Vandetanib: opening a new treatment practice in advanced medullary thyroid carcinoma. Endocrine 44(2), 334–342 (2013).  https://doi.org/10.1007/s12020-013-9943-9 CrossRefGoogle Scholar
  4. 4.
    L. Solbiati, M. Ahmed, L. Cova, T. Ierace, M. Brioschi, S.N. Goldberg, Small liver colorectal metastases treated with percutaneous radiofrequency ablation: local response rate and long-term survival with up to 10-year follow-up. Radiology 265(3), 958–968 (2012).  https://doi.org/10.1148/radiol.12111851 CrossRefGoogle Scholar
  5. 5.
    M. Ahmed, L. Solbiati, C.L. Brace, D.J. Breen, M.R. Callstrom, J.W. Charboneau, M.H. Chen, B.I. Choi, T. de Baere, G.D. Dodd III, D.E. Dupuy, D.A. Gervais, D. Gianfelice, A.R. Gillams, F.T. Lee Jr., E. Leen, R. Lencioni, P.J. Littrup, T. Livraghi, D.S. Lu, J.P. McGahan, M.F. Meloni, B. Nikolic, P.L. Pereira, P. Liang, H. Rhim, S.C. Rose, R. Salem, C.T. Sofocleous, S.B. Solomon, M.C. Soulen, M. Tanaka, T.J. Vogl, B.J. Wood, S.N. Goldberg, Image-guided tumor ablation: standardization of terminology and reporting criteria–a 10-year update. J. Vasc. Interv. Radiol. 25(11), 1691–1705.e1694 (2014).  https://doi.org/10.1016/j.jvir.2014.08.027 CrossRefGoogle Scholar
  6. 6.
    M.A. Chinnaratha, M.Y. Chuang, R.J. Fraser, R.J. Woodman, A.J. Wigg, Percutaneous thermal ablation for primary hepatocellular carcinoma: a systematic review and meta-analysis. J. Gastroenterol. Hepatol. 31(2), 294–301 (2016).  https://doi.org/10.1111/jgh.13028 CrossRefGoogle Scholar
  7. 7.
    J.H. Kim, J.H. Baek, H.K. Lim, H.S. Ahn, S.M. Baek, Y.J. Choi, Y.J. Choi, S.R. Chung, E.J. Ha, S.Y. Hahn, S.L. Jung, D.S. Kim, S.J. Kim, Y.K. Kim, C.Y. Lee, J.H. Lee, K.H. Lee, Y.H. Lee, J.S. Park, H. Park, J.H. Shin, C.H. Suh, J.Y. Sung, J.S. Sim, I. Youn, M. Choi, D.G. Na, 2017 thyroid radiofrequency ablation guideline: Korean Society of Thyroid Radiology. Korean J. Radiol. 19(4), 632–655 (2018).  https://doi.org/10.3348/kjr.2018.19.4.632 CrossRefGoogle Scholar
  8. 8.
    G.M. Lee, J.Y. You, H.Y. Kim, Y.J. Chai, H.K. Kim, G. Dionigi, R.P. Tufano, Successful radiofrequency ablation strategies for benign thyroid nodules. Endocrine (2018).  https://doi.org/10.1007/s12020-018-1829-4
  9. 9.
    S. Bernardi, F. Stacul, A. Michelli, F. Giudici, G. Zuolo, N. de Manzini, C. Dobrinja, F. Zanconati, B. Fabris, 12-month efficacy of a single radiofrequency ablation on autonomously functioning thyroid nodules. Endocrine 57(3), 402–408 (2017).  https://doi.org/10.1007/s12020-016-1174-4 CrossRefGoogle Scholar
  10. 10.
    W.K. Jeong, J.H. Baek, H. Rhim, Y.S. Kim, M.S. Kwak, H.J. Jeong, D. Lee, Radiofrequency ablation of benign thyroid nodules: safety and imaging follow-up in 236 patients. Eur. Radiol. 18(6), 1244–1250 (2008).  https://doi.org/10.1007/s00330-008-0880-6 CrossRefGoogle Scholar
  11. 11.
    G. Mauri, L. Cova, C.G. Monaco, L.M. Sconfienza, S. Corbetta, S. Benedini, F. Ambrogi, V. Milani, A. Baroli, T. Ierace, L. Solbiati, Benign thyroid nodules treatment using percutaneous laser ablation (PLA) and radiofrequency ablation (RFA). Int. J. Hyperth.: Off. J. Eur. Soc. Hyperthermic Oncol. North Am. Hyperth. Group 33(3), 295–299 (2017).  https://doi.org/10.1080/02656736.2016.1244707 CrossRefGoogle Scholar
  12. 12.
    S. Spiezia, R. Garberoglio, F. Milone, V. Ramundo, C. Caiazzo, A.P. Assanti, M. Deandrea, P.P. Limone, P.E. Macchia, G. Lombardi, A. Colao, A. Faggiano, Thyroid nodules and related symptoms are stably controlled two years after radiofrequency thermal ablation. Thyroid.: Off. J. Am. Thyroid. Assoc. 19(3), 219–225 (2009).  https://doi.org/10.1089/thy.2008.0202 CrossRefGoogle Scholar
  13. 13.
    G. Mauri, L. Cova, T. Ierace, A. Baroli, E. Di Mauro, C.M. Pacella, S.N. Goldberg, L. Solbiati, Treatment of metastatic lymph nodes in the neck from papillary thyroid carcinoma with percutaneous laser ablation. Cardiovasc. Interv. Radiol. 39(7), 1023–1030 (2016).  https://doi.org/10.1007/s00270-016-1313-6 CrossRefGoogle Scholar
  14. 14.
    E. Papini, R. Guglielmi, H. Gharib, I. Misischi, F. Graziano, M. Chianelli, A. Crescenzi, A. Bianchini, D. Valle, G. Bizzarri, Ultrasound-guided laser ablation of incidental papillary thyroid microcarcinoma: a potential therapeutic approach in patients at surgical risk. Thyroid.: Off. J. Am. Thyroid. Assoc. 21(8), 917–920 (2011).  https://doi.org/10.1089/thy.2010.0447 CrossRefGoogle Scholar
  15. 15.
    E.S. Cibas, S.Z. Ali, The 2017 bethesda system for reporting thyroid cytopathology. Thyroid.: Off. J. Am. Thyroid. Assoc. 27(11), 1341–1346 (2017).  https://doi.org/10.1089/thy.2017.0500 CrossRefGoogle Scholar
  16. 16.
    R. Garberoglio, C. Aliberti, M. Appetecchia, M. Attard, G. Boccuzzi, F. Boraso, G. Borretta, G. Caruso, M. Deandrea, M. Freddi, G. Gallone, G. Gandini, G. Gasparri, C. Gazzera, E. Ghigo, M. Grosso, P. Limone, M. Maccario, L. Mansi, A. Mormile, P.G. Nasi, F. Orlandi, D. Pacchioni, C.M. Pacella, N. Palestini, E. Papini, M.R. Pelizzo, A. Piotto, T. Rago, F. Riganti, L. Rosato, R. Rossetto, A. Scarmozzino, S. Spiezia, O. Testori, R. Valcavi, A. Veltri, P. Vitti, M. Zingrillo, Radiofrequency ablation for thyroid nodules: which indications? The first Italian opinion statement. J. Ultrasound 18(4), 423–430 (2015).  https://doi.org/10.1007/s40477-015-0169-y CrossRefGoogle Scholar
  17. 17.
    C.M. Pacella, G. Bizzarri, S. Spiezia, A. Bianchini, R. Guglielmi, A. Crescenzi, S. Pacella, V. Toscano, E. Papini, Thyroid tissue: US-guided percutaneous laser thermal ablation. Radiology 232(1), 272–280 (2004).  https://doi.org/10.1148/radiol.2321021368 CrossRefGoogle Scholar
  18. 18.
    J.H. Baek, W.J. Moon, Y.S. Kim, J.H. Lee, D. Lee, Radiofrequency ablation for the treatment of autonomously functioning thyroid nodules. World J. Surg. 33(9), 1971–1977 (2009).  https://doi.org/10.1007/s00268-009-0130-3 CrossRefGoogle Scholar
  19. 19.
    M. Deandrea, P. Limone, E. Basso, A. Mormile, F. Ragazzoni, E. Gamarra, S. Spiezia, A. Faggiano, A. Colao, F. Molinari, R. Garberoglio, US-guided percutaneous radiofrequency thermal ablation for the treatment of solid benign hyperfunctioning or compressive thyroid nodules. Ultrasound Med. Biol. 34(5), 784–791 (2008).  https://doi.org/10.1016/j.ultrasmedbio.2007.10.018 CrossRefGoogle Scholar
  20. 20.
    J.H. Baek, Y.S. Kim, D. Lee, J.Y. Huh, J.H. Lee, Benign predominantly solid thyroid nodules: prospective study of efficacy of sonographically guided radiofrequency ablation versus control condition. Am. J. Roentgenol. 194(4), 1137–1142 (2010).  https://doi.org/10.2214/ajr.09.3372 CrossRefGoogle Scholar
  21. 21.
    J.H. Baek, J.H. Lee, J.Y. Sung, J.I. Bae, K.T. Kim, J. Sim, S.M. Baek, Y.S. Kim, J.H. Shin, J.S. Park, D.W. Kim, J.H. Kim, E.K. Kim, S.L. Jung, D.G. Na, Complications encountered in the treatment of benign thyroid nodules with US-guided radiofrequency ablation: a multicenter study. Radiology 262(1), 335–342 (2012).  https://doi.org/10.1148/radiol.11110416 CrossRefGoogle Scholar
  22. 22.
    J.H. Baek, Y.S. Kim, J.Y. Sung, H. Choi, J.H. Lee, Locoregional control of metastatic well-differentiated thyroid cancer by ultrasound-guided radiofrequency ablation. Am. J. Roentgenol. 197(2), W331–336 (2011).  https://doi.org/10.2214/ajr.10.5345 CrossRefGoogle Scholar
  23. 23.
    D.K. Teng, H.Q. Li, G.Q. Sui, Y.Q. Lin, Q. Luo, P. Fu, J.R. Du, C.X. Jin, H. Wang, Preliminary report of microwave ablation for the primary papillary thyroid microcarcinoma: a large-cohort of 185 patients feasibility study. Endocrine 64(1), 109–117 (2019).  https://doi.org/10.1007/s12020-019-01868-2 CrossRefGoogle Scholar
  24. 24.
    L. Zhang, W. Zhou, W. Zhan, Y. Peng, S. Jiang, S. Xu, Percutaneous laser ablation of unifocal papillary thyroid microcarcinoma: utility of conventional ultrasound and contrast-enhanced ultrasound in assessing local therapeutic response. World J. Surg. 42(8), 2476–2484 (2018).  https://doi.org/10.1007/s00268-018-4500-6 CrossRefGoogle Scholar
  25. 25.
    R. Elisei, V. Bottici, F. Luchetti, G. Di Coscio, C. Romei, L. Grasso, P. Miccoli, P. Iacconi, F. Basolo, A. Pinchera, F. Pacini, Impact of routine measurement of serum calcitonin on the diagnosis and outcome of medullary thyroid cancer: experience in 10,864 patients with nodular thyroid disorders. J. Clin. Endocrinol. Metab. 89(1), 163–168 (2004).  https://doi.org/10.1210/jc.2003-030550 CrossRefGoogle Scholar
  26. 26.
    R. Elisei, C. Romei, Calcitonin estimation in patients with nodular goiter and its significance for early detection of MTC: european comments to the guidelines of the American Thyroid Association. Thyroid Res. 6, S2 (2013).  https://doi.org/10.1186/1756-6614-6-s1-s2. Suppl 1CrossRefGoogle Scholar
  27. 27.
    P. Trimboli, L. Guidobaldi, A. Crescenzi, M. Bongiovanni, L. Giovanella, The essential use of FNA-calcitonin for detecting medullary thyroid cancer. Endocrine 47(1), 342–344 (2014).  https://doi.org/10.1007/s12020-014-0226-x CrossRefGoogle Scholar
  28. 28.
    P. Trimboli, G. Treglia, L. Guidobaldi, F. Romanelli, G. Nigri, S. Valabrega, R. Sadeghi, A. Crescenzi, W.C. Faquin, M. Bongiovanni, L. Giovanella, Detection rate of FNA cytology in medullary thyroid carcinoma: a meta-analysis. Clin. Endocrinol. 82(2), 280–285 (2015).  https://doi.org/10.1111/cen.12563 CrossRefGoogle Scholar
  29. 29.
    B.R. Haugen, A.M. Sawka, E.K. Alexander, K.C. Bible, P. Caturegli, G.M. Doherty, S.J. Mandel, J.C. Morris, A. Nassar, F. Pacini, M. Schlumberger, K. Schuff, S.I. Sherman, H. Somerset, J.A. Sosa, D.L. Steward, L. Wartofsky, M.D. Williams, American Thyroid Association guidelines on the management of thyroid nodules and differentiated thyroid cancer task force review and recommendation on the proposed renaming of encapsulated follicular variant papillary thyroid carcinoma without invasion to noninvasive follicular thyroid neoplasm with papillary-like nuclear features. Thyroid.: Off. J. Am. Thyroid. Assoc. 27(4), 481–483 (2017).  https://doi.org/10.1089/thy.2016.0628 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Emilia Biamonte
    • 1
    • 2
  • Luigi Solbiati
    • 1
    • 3
  • Tiziana Ierace
    • 3
  • Paolo Colombo
    • 2
  • Elisabetta Lavezzi
    • 2
  • Gherardo Mazziotti
    • 1
    • 2
    Email author
  • Andrea Lania
    • 1
    • 2
  1. 1.Department of Biomedical SciencesHumanitas Clinical and Research Center, Humanitas UniversityRozzanoItaly
  2. 2.Endocrine, Diabetes and Andrology UnitHumanitas Clinical and Research CenterRozzanoItaly
  3. 3.Department of RadiologyHumanitas Clinical and Research CenterRozzanoItaly

Personalised recommendations