, Volume 66, Issue 2, pp 381–385 | Cite as

Testosterone levels after treatment with urofollitropin in infertile patients with idiopathic mild reduction of testicular volume

  • Sandro La VigneraEmail author
  • Rosita A. Condorelli
  • Rossella Cannarella
  • Laura Cimino
  • Laura Mongioi’
  • Ylenia Duca
  • Filippo Giacone
  • Aldo E. Calogero
Original Article



A reduction of testicular volume (TV) represents an important clinical sign, which may hide sperm abnormalities and predispose to hypogonadism.


The primary purpose of this study was to evaluate the serum levels of total testosterone after treatment with urofollitropin in selected patients with male infertility and idiopathic mild reduction of testicular volume.


In this 1-year-long prospective design, patients with abnormal sperm parameters, mild reduction in TV (8–12 mL) and normal gonadotropin, and total testosterone (TT) serum levels were recruited in this study. Patients treated for 4 months with urofollitropin were included in group A, those treated with intracytoplasmatic sperm injection due to a female-factor infertility were included in group B. Hormone values, sperm parameters, and TV were detected at baseline (T0), after 4 (T1) and 12 months (T2) in group A and at T0 and T2 in group B.


Group A (n = 80) showed increased follicle-stimulating hormone (FSH) at T1 and sperm morphology at T1 and T2 compared to T0 (all p < 0.05). Group B (n = 50) had lower TT and higher FSH levels at T2 compared to T0 (all p < 0.05). At T2, TT, VT, total sperm count, progressive motility, total motility, and sperm morphology were higher in group A compared to group B (all p < 0.05).


Reduced TV may predispose to infertility and hypogonadism. FSH treatment may improve Sertoli and Leydig cell function and prevent the development of hypogonadism.


Testiculopathy Total testosterone Infertility Hypogonadism 



follicle-stimulating hormone;


human chorionic gonadotropin;


Leydig cell;


luteinizing hormone;








Sertoli cell;


total testosterone;


testicular volume.


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and consent to participate

All procedures involving human participants were in accordance with the ethical standard of institutional research committee and with Helsinki declaration.


  1. 1.
    R. Condorelli, A.E. Calogero, S. La Vignera, Relationship between testicular volume and conventional or nonconventional sperm parameters. Int J. Endocrinol. 2013, 145792 (2013)CrossRefGoogle Scholar
  2. 2.
    R.A. Condorelli, R. Cannarella, A.E. Calogero, S. La Vignera, Evaluation of testicular function in prepubertal children. Endocrine 62(2), 274–280 (2018)CrossRefGoogle Scholar
  3. 3.
    G. Rastrelli, G. Corona, F. Lotti, V. Boddi, E. Mannucci, M. Maggi, Relationship of testis size and LH levels with incidence of major adverse cardiovascular events in older men with sexual dysfunction. J. Sex. Med 10(11), 2761–2773 (2013)CrossRefGoogle Scholar
  4. 4.
    H. Levine, N. Jørgensen, A. Martino-Andrade, J. Mendiola, D. Weksler-Derri, I. Mindlis, R. Pinotti, S.H. Swan, Temporal trends in sperm count: a systematic review and meta-regression analysis. Hum. Reprod. Update 23(6), 646–659 (2017)CrossRefGoogle Scholar
  5. 5.
    H. Levine, H. Mohri, A. Ekbom, L. Ramos, G. Parker, E. Roldan, L. Jovine, S. Koelle, A. Lindstrand, S. Immler, S. Mortimer, D. Mortimer, G. van der Horst, S. Ishijima, N. Aneck-Hahn, E. Baldi, R. Menkveld, S.A. Rothmann, A. Giwercman, Y. Giwercman, M. Holmberg, U. Kvist, L. Björndahl, R. Holmberg, S. Arver, J. Flanagan, J.R. Drevet, Male reproductive health statement (XIIIth international symposium on Spermatology, may 9th–12th 2018, Stockholm, Sweden). Basic Clin. Androl. 28, 13 (2018)CrossRefGoogle Scholar
  6. 6.
    H. Sakamoto, T. Yajima, M. Nagata, T. Okumura, K. Suzuki, Y. Ogawa, Relationship between testicular size by ultrasonography and testicular function: measurement of testicular length, width, and depth in patients with infertility. Int J. Urol. 15, 529–533 (2008)CrossRefGoogle Scholar
  7. 7.
    A. Pilatz, A. Rusz, F. Wagenlehner, W. Weidner, B. Altinkilic, Reference values for testicular volume, epididymal head size and peak systolic velocity of the testicular artery in adult males measured by ultrasonography. Ultraschall Med 34, 349–354 (2013)PubMedGoogle Scholar
  8. 8.
    M. Parvinen, Regulation of the seminiferous epithelium. Endocr. Rev. 3(4), 404–417 (1982)CrossRefGoogle Scholar
  9. 9.
    J.M. Saez, P. Sanchez, M.C. Berthelon, O. Avallet, Regulation of pig Leydig cell aromatase activity by gonadotropins and Sertoli cells. Biol. Reprod. 41(5), 813–820 (1989)CrossRefGoogle Scholar
  10. 10.
    J.M. Saez, M.H. Perrard-Sapori, P.G. Chatelain, E. Tabone, M.A. Rivarola, Paracrine regulation of testicular function. J. Steroid Biochem 27(1-3), 317–329 (1987)CrossRefGoogle Scholar
  11. 11.
    R.M. Sharpe, Paracrine control of the testis. Clin. Endocrinol. Metab. 15(1), 185–207 (1986)CrossRefGoogle Scholar
  12. 12.
    M.K. Skinner, Cell-cell interactions in the testis. Endocr. Rev. 12(1), 45–77 (1991)CrossRefGoogle Scholar
  13. 13.
    G. Verhoeven, J. Cailleau, Influence of coculture with Sertoli cells on steroidogenesis in immature rat Leydig cells. Mol. Cell Endocrinol. 71(3), 239–251 (1990)CrossRefGoogle Scholar
  14. 14.
    H. Lejeune, M. Skalli, P.G. Chatelain, O. Avallet, J.M. Saez, The paracrine role of Sertoli cells on Leydig cell function. Cell Biol. Toxicol. 8(3), 73–83 (1992)CrossRefGoogle Scholar
  15. 15.
    J.W. Funder, At the cutting edge paracrine, cryptocrine, acrocrine. Mol. Cell Endocrinol. 70(1), 21–24 (1990)CrossRefGoogle Scholar
  16. 16.
    J. Massagué, Transforming growth factor-alpha. A model for membrane-anchored growth factors. J. Biol. Chem. 265(35), 21393–21396 (1990)PubMedGoogle Scholar
  17. 17.
    A. Yayon, M. Klagsbrun, Autocrine regulation of cell growth and transformation by basic fibroblast growth factor. Cancer Metastas Rev. 9(3), 191–202 (1990)CrossRefGoogle Scholar
  18. 18.
    M. Huleihel, E. Lunenfeld, Regulation of spermatogenesis by paracrine/autocrine testicular factors. Asian J. Androl. 6(3), 259–268 (2004)PubMedGoogle Scholar
  19. 19.
    P.K. Iliadou, C. Tsametis, A. Kaprara, I. Papadimas, D.G. Goulis, The Sertoli cell: novel clinical potentiality. Horm (Athens) 14(4), 504–514 (2015)CrossRefGoogle Scholar
  20. 20.
    J.M. Saez, E. Tabone, M.H. Perrard-Sapori, M.A. Rivarola, Paracrine role of Sertoli cells. Med Biol. 63(5-6), 225–236 (1986)PubMedGoogle Scholar
  21. 21.
    R. Hazra, M. Jimenez, R. Desai, D.J. Handelsman, C.M. Allan, Sertoli cell androgen receptor expression regulates temporal fetal and adult Leydig cell differentiation, function, and population size. Endocrinology 154(9), 3410–3422 (2013)CrossRefGoogle Scholar
  22. 22.
    S. La Vignera, R.A. Condorelli, Y. Duca, L.M. Mongioi, R. Cannarella, F. Giacone, A.E. Calogero,, FSH therapy for idiopathic male infertility: four schemes are better than one. Aging Male. 2019, 1–6 (2019). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Clinical and Experimental MedicineUniversity of CataniaCataniaItaly

Personalised recommendations