Advertisement

Endocrine

, Volume 64, Issue 3, pp 469–485 | Cite as

Hypertriglyceridemic waist phenotype and abnormal glucose metabolism: a system review and meta-analysis

  • Chun-Ming Ma
  • Xiao-Li Liu
  • Na Lu
  • Rui Wang
  • Qiang Lu
  • Fu-Zai YinEmail author
Meta-Analysis
  • 69 Downloads

Abstract

Objective

This study was to perform a meta-analysis to assess the relationship between hypertriglyceridemic-waist (HTW) phenotype and abnormal glucose metabolism.

Methods

The data sources were PubMed and EMBASE up to June 2018. Studies providing the relationship between HTW phenotype and abnormal glucose metabolism were included.

Results

In total, 48 eligible studies that evaluated 2,42,879 subjects were included in the meta-analysis. In the general population, the pooled odds ratios (ORs) for elevated blood glucose and diabetes related to HTW phenotype was 2.32 (95% confidence interval (CI): 1.98–2.71) and 2.69 (95% CI: 2.40–3.01), respectively. In cohort studies, the pooled OR for diabetes related to HTW phenotype was 2.89 (95% CI: 1.97–4.25) in subjects without diabetes. The levels of homeostasis model assessment of insulin resistance (HOMA-IR) in the HTW population were increased with values of mean differences (MD) 1.12 (95% CI: 0.81–1.43. P < 0.00001, I2 = 99%) in the general population and 0.89 (95% CI: 0.75–1.04, P < 0.00001, I2 = 67%) in subjects without diabetes.

Conclusion

HTW phenotype was closely associated with increased risk of abnormal glucose metabolism. There was also a significant correlation between HTW phenotype and insulin resistance.

Keywords

Hypertriglyceridemic-waist phenotype Insulin resistance Islet cell dysfunction Diabetes Diabetic complication 

Notes

Funding

The funding of this study was self-financing.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This paper is a system review and meta-analysis. No informed consent was obtained.

Supplementary material

12020_2019_1945_MOESM1_ESM.doc (438 kb)
Supplementary Material.

References

  1. 1.
    L. Guariguata, D.R. Whiting, I. Hambleton, J. Beagley, U. Linnenkamp, J.E. Shaw, Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract. 103(2), 137–149 (2014)Google Scholar
  2. 2.
    N.H. Cho, J.E. Shaw, S. Karuranga, Y. Huang, J.D. da Rocha Fernandes, A.W. Ohlrogge et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 138, 271–281 (2018)Google Scholar
  3. 3.
    I. Lemieux, A. Pascot, C. Couillard, B. Lamarche, A. Tchernof, N. Almeras et al. Hypertriglyceridemic waist: a marker of the atherogenic metabolic triad (hyperinsulinemia; hyperapolipoprotein B; small, dense LDL) in men? Circulation 102(2), 179–184 (2000)Google Scholar
  4. 4.
    Y. Ren, X. Luo, C. Wang, L. Yin, C. Pang, T. Feng et al. Prevalence of hypertriglyceridemic waist and association with risk of type 2 diabetes mellitus: a meta-analysis. Diabetes Metab. Res. Rev. 32(4), 405–412 (2016)Google Scholar
  5. 5.
    S. He, Y. Zheng, Y. Shu, J. He, Y. Wang, X. Chen, Hypertriglyceridemic waist might be an alternative to metabolic syndrome for predicting future diabetes mellitus. PLoS ONE 8(9), e73292 (2013)Google Scholar
  6. 6.
    F. Abbasi, A. Mathur, G.M. Reaven, C.R. Molina, Cardiometabolic risk in South Asian inhabitants of California: hypertriglyceridemic waist vs hypertriglyceridemic body mass index. Ethn. Dis. 26(2), 191–196 (2016)Google Scholar
  7. 7.
    P. Blackburn, I. Lemieux, B. Lamarche, J. Bergeron, P. Perron, G. Tremblay et al. Hypertriglyceridemic waist: a simple clinical phenotype associated with coronary artery disease in women. Metabolism 61(1), 56–64 (2012)Google Scholar
  8. 8.
    G. Bardini, I. Dicembrini, L. Pala, B. Cresci, C.M. Rotella, Hypertriglyceridaemic waist phenotype and beta-cell function in subjects with normal and impaired glucose tolerance. Diabet. Med. 28(10), 1229–1233 (2011)Google Scholar
  9. 9.
    S.P. Radenkovic, R.D. Kocic, M.M. Pesic, D.N. Dimic, M.D. Golubovic, D.B. Radojkovic et al. The hypertriglyceridemic waist phenotype and metabolic syndrome by differing criteria in type 2 diabetic patients and their relation to lipids and blood glucose control. Endokrynol. Pol. 62(4), 316–323 (2011)Google Scholar
  10. 10.
    C.M. Ma, R. Wang, X.L. Liu, N. Lu, Q. Lu, F.Z. Yin, The relationship between hypertriglyceridemic waist phenotype and early diabetic nephropathy in type 2 diabetes. Cardiorenal Med. 7(4), 295–300 (2017)Google Scholar
  11. 11.
    D.P. Bailey, L.A. Savory, S.J. Denton, B.R. Davies, C.J. Kerr, The hypertriglyceridemic waist, waist-to-height ratio, and cardiometabolic risk. J. Pediatr. 162(4), 746–752 (2013)Google Scholar
  12. 12.
    P. Blackburn, B. Lamarche, C. Couillard, A. Pascot, N. Bergeron, D. Prud’homme et al. Postprandial hyperlipidemia: another correlate of the “hypertriglyceridemic waist” phenotype in men. Atherosclerosis 171(2), 327–336 (2003)Google Scholar
  13. 13.
    D. Brisson, P. Perron, S.P. Guay, D. Gaudet, L. Bouchard, The “hypertriglyceridemic waist” phenotype and glucose intolerance in pregnancy. CMAJ: Can. Med. Assoc. journal = journal de. l’Assoc. Med. Can. 182(15), E722–E725 (2010)Google Scholar
  14. 14.
    D.S. Buchan, L.M. Boddy, J.P. Despres, F.M. Grace, N. Sculthorpe, C. Mahoney et al. Utility of the hypertriglyceridemic waist phenotype in the cardiometabolic risk assessment of youth stratified by body mass index. Pedia. Obes. 11(4), 292–298 (2016)Google Scholar
  15. 15.
    N.A. Cabral, V.S. Ribeiro, A.K. Franca, J.V. Salgado, A.M. Santos, N. Salgado Filho et al. Hypertriglyceridemic waist and cardiometabolic risk in hypertensive women. Rev. da Assoc. Med. Bras. (1992) 58(5), 568–573 (2012)Google Scholar
  16. 16.
    A.L. Cabral Rocha, P. Feliciano Pereira, M. Cristine Pessoa, C. Goncalves Alfenas Rde, W. Segheto, D.C. da Silva et al. Hypertriglyceridemic waist phenotype and cardiometabolic alterations in Brazilian adults. Nutr. Hosp. 32(3), 1099–1106 (2015)Google Scholar
  17. 17.
    A.C. Carlsson, U. Riserus, J. Arnlov, Hypertriglyceridemic waist phenotype is associated with decreased insulin sensitivity and incident diabetes in elderly men. Obes. (Silver Spring, Md) 22(2), 526–529 (2014)Google Scholar
  18. 18.
    S. Chen, X. Guo, S. Yu, G. Sun, Z. Li, Y. Sun, Association between the hypertriglyceridemic waist phenotype, prediabetes, and diabetes mellitus in rural Chinese population: a cross-sectional study. Int. J. Environ. Res. Public. Health 13(4), 368 (2016)Google Scholar
  19. 19.
    M.E. Conceicao-Machado, L.R. Silva, M.L. Santana, E.J. Pinto, C. Silva Rde, L.T. Moraes et al. Hypertriglyceridemic waist phenotype: association with metabolic abnormalities in adolescents. J. Pediatr. (Rio J.) 89(1), 56–63 (2013)Google Scholar
  20. 20.
    P.R.F. Costa, A.M.O. Assis, C.M. Cunha, E.M. Pereira, G.S. De Jesus, L.E.M. Da Silva et al. Hypertriglyceridemic waist phenotype and changes in the fasting glycemia and blood pressure in children and adolescents over one-year follow-up period. Arquivos Brasileiros de. Cardiologia 109(1), 47–53 (2017)Google Scholar
  21. 21.
    F.R. de Graaf, J.D. Schuijf, A.J. Scholte, R. Djaberi, J.E. van Velzen, C.J. Roos et al. Usefulness of hypertriglyceridemic waist phenotype in type 2 diabetes mellitus to predict the presence of coronary artery disease as assessed by computed tomographic coronary angiography. Am. J. Cardiol. 106(12), 1747–1753 (2010)Google Scholar
  22. 22.
    M.V. Diaz-Santana, E.L. Suarez Perez, A.P. Ortiz Martinez, M. Guzman Serrano, C.M. Perez Cardona, Association between the hypertriglyceridemic waist phenotype, prediabetes, and diabetes mellitus among adults in Puerto Rico. J. Immigr. Minor. Health 18(1), 102–109 (2016)Google Scholar
  23. 23.
    T. Du, X. Sun, R. Huo, X. Yu, Visceral adiposity index, hypertriglyceridemic waist and risk of diabetes: the China Health and Nutrition Survey 2009. Int. J. Obes. (Lond.). 38(6), 840–847 (2014)Google Scholar
  24. 24.
    G.M. Egeland, Z. Cao, T.K. Young, Hypertriglyceridemic-waist phenotype and glucose intolerance among Canadian Inuit: the International Polar Year Inuit Health Survey for Adults 2007-2008. CMAJ: Can. Med. Assoc. journal = journal de. l’Assoc. Med. Can. 183(9), E553–E558 (2011)Google Scholar
  25. 25.
    I.F. Gazi, H.J. Milionis, T.D. Filippatos, V. Tsimihodimos, M.S. Kostapanos, M. Doumas et al. Hypertriglyceridaemic waist phenotype criteria and prevalent metabolic triad in women. Diabetes Metab. Res. Rev. 24(3), 223–230 (2008)Google Scholar
  26. 26.
    R. Gomez-Huelgas, M.R. Bernal-Lopez, A. Villalobos, J. Mancera-Romero, A.J. Baca-Osorio, S. Jansen et al. Hypertriglyceridemic waist: an alternative to the metabolic syndrome? Results of the IMAP study (multidisciplinary intervention in primary care). Int. J. Obes. (Lond.). 35(2), 292–299 (2011)Google Scholar
  27. 27.
    V.L. Guattini, C.H. Piovesan, E. Wittke, A. Marcadenti, Hypertriglyceridemic waist (Ewet), glycidic and lipid profile in patients with newly diagnosed heart attack. Nutr. Hosp. 32(3), 1004–1008 (2015).Google Scholar
  28. 28.
    K.J. Han, S.Y. Lee, N.H. Kim, H.B. Chae, T.H. Lee, C.M. Jang et al. Increased risk of diabetes development in subjects with the hypertriglyceridemic waist phenotype: a 4-year longitudinal study. Endocrinol. Metab. (Seoul., Korea) 29(4), 514–521 (2014)Google Scholar
  29. 29.
    J. Huang, C. Zhou, Y. Li, S. Zhu, A. Liu, X. Shao et al. Visceral adiposity index, hypertriglyceridemic waist phenotype and chronic kidney disease in a southern Chinese population: a cross-sectional study. Int. Urol. Nephrol. 47(8), 1387–1396 (2015)Google Scholar
  30. 30.
    M. Janghorbani, M. Amini, Utility of hypertriglyceridemic waist phenotype for predicting incident type 2 diabetes: The Isfahan Diabetes Prevention Study. J. Diabetes Investig. 7(6), 860–866 (2016)Google Scholar
  31. 31.
    A. Karagoz, A. Onat, M. Aydin, G. Can, B. Simsek, M. Yuksel, Distinction of hypertriglyceridemic waist phenotype from simple abdominal obesity: interaction with sex hormone-binding globulin levels to confer high coronary risk. Postgrad. Med. 129(2), 288–295 (2017)Google Scholar
  32. 32.
    R. Kelishadi, F. Jamshidi, M. Qorbani, M.E. Motlagh, R. Heshmat, G. Ardalan et al. Association of hypertriglyceridemic-waist phenotype with liver enzymes and cardiometabolic risk factors in adolescents: the CASPIAN-III study. J. Pediatr. (Rio J.) 92(5), 512–520 (2016)Google Scholar
  33. 33.
    S. LeBlanc, F. Coulombe, O.F. Bertrand, K. Bibeau, P. Pibarot, A. Marette, et al. Hypertriglyceridemic waist: a simple marker of high-risk atherosclerosis features associated with excess visceral adiposity/ectopic fat. J. Am. Heart Assoc 7(8), e008139 (2018).  https://doi.org/10.1161/JAHA.117.008139 Google Scholar
  34. 34.
    B.J. Lee, J.Y. Kim, Identification of type 2 diabetes risk factors using phenotypes consisting of anthropometry and triglycerides based on machine learning. IEEE J. Biomed. Health Inf. 20(1), 39–46 (2016)Google Scholar
  35. 35.
    I. Lemieux, N. Almeras, P. Mauriege, C. Blanchet, E. Dewailly, J. Bergeron et al. Prevalence of ‘hypertriglyceridemic waist’ in men who participated in the Quebec Health Survey: association with atherogenic and diabetogenic metabolic risk factors. Can. J. Cardiol. 18(7), 725–732 (2002)Google Scholar
  36. 36.
    Y. Li, C. Zhou, X. Shao, X. Liu, J. Guo, Y. Zhang et al. Hypertriglyceridemic waist phenotype and chronic kidney disease in a Chinese population aged 40 years and older. PLoS ONE 9(3), e92322 (2014)Google Scholar
  37. 37.
    O. Mayer, J. Seidlerova, J. Bruthans, K. Timoracka, P. Vagovicova, J. Vanek et al. Hypertriglyceridemic waist increased risk of inappropriate glucose control in patients with coronary heart disease. Clin. Lipidol. 9(5), 515–522 (2014)Google Scholar
  38. 38.
    B.S. Moon, H.J. Park, M.K. Lee, W.S. Jeon, S.E. Park, C.Y. Park et al. Increased association of coronary artery calcification in apparently healthy Korean adults with hypertriglyceridemic waist phenotype: The Kangbuk Samsung Health Study. Int. J. Cardiol. 194, 78–82 (2015)Google Scholar
  39. 39.
    R.L. Pollex, A.J. Hanley, B. Zinman, S.B. Harris, R.A. Hegele, Clinical and genetic associations with hypertriglyceridemic waist in a Canadian aboriginal population. Int. J. Obes. (Lond.). 30(3), 484–491 (2006)Google Scholar
  40. 40.
    A. Ramezankhani, F. Azizi, A. Ghanbarian, D. Parizadeh, F. Hadaegh, The hypertriglyceridemic waist and waist-to-height ratio phenotypes and chronic kidney disease: cross-sectional and prospective investigations. Obes. Res Clin. Pr. 11(5), 585–596 (2017)Google Scholar
  41. 41.
    Y. Ren, Y. Liu, X. Sun, K. Deng, C. Wang, L. Li et al. Hypertriglyceridemia-waist and risk of developing type 2 diabetes: The Rural Chinese Cohort Study. Sci. Rep. 7(1), 9072 (2017)Google Scholar
  42. 42.
    Y. Ren, M. Zhang, J. Zhao, C. Wang, X. Luo, J. Zhang et al. Association of the hypertriglyceridemic waist phenotype and type 2 diabetes mellitus among adults in China. J. Diabetes Investig. 7(5), 689–694 (2016)Google Scholar
  43. 43.
    S. Sam, S. Haffner, M.H. Davidson, R.B. D’Agostino Sr., S. Feinstein, G. Kondos et al. Hypertriglyceridemic waist phenotype predicts increased visceral fat in subjects with type 2 diabetes. Diabetes care 32(10), 1916–1920 (2009)Google Scholar
  44. 44.
    J. St-Pierre, I. Lemieux, P. Perron, D. Brisson, M. Santure, M.C. Vohl et al. Relation of the “hypertriglyceridemic waist” phenotype to earlier manifestations of coronary artery disease in patients with glucose intolerance and type 2 diabetes mellitus. Am. J. Cardiol. 99(3), 369–373 (2007)Google Scholar
  45. 45.
    H. Vaverkova, D. Karasek, D. Novotny, M. Halenka, J. Orsag, L. Slavik, Hypertriglyceridemic waist - a simple clinical tool to detect cardiometabolic risk: comparison with harmonized definition of metabolic syndrome. Physiol. Res. 64(Suppl 3), S385–S394 (2015)Google Scholar
  46. 46.
    H. von Bibra, S. Saha, A. Hapfelmeier, G. Muller, P.E.H. Schwarz, Impact of the triglyceride/high-density lipoprotein cholesterol ratio and the hypertriglyceremic-waist phenotype to predict the metabolic syndrome and insulin resistance. Horm. Metab. research = Hormon- und Stoffwechselforschung = Hormones et. Metab. 49(7), 542–549 (2017)Google Scholar
  47. 47.
    A. Wang, Z. Li, Y. Zhou, C. Wang, Y. Luo, X. Liu et al. Hypertriglyceridemic waist phenotype and risk of cardiovascular diseases in China: results from the Kailuan Study. Int. J. Cardiol. 174(1), 106–109 (2014)Google Scholar
  48. 48.
    W. Wang, C. Shen, H. Zhao, W. Tang, S. Yang, J. Li et al. A prospective study of the hypertriglyceridemic waist phenotype and risk of incident ischemic stroke in a Chinese rural population. Acta Neurol. Scand. 138(2), 156–162 (2018)Google Scholar
  49. 49.
    Z. Yu, L. Sun, Q. Qi, H. Wu, L. Lu, C. Liu et al. Hypertriglyceridemic waist, cytokines and hyperglycaemia in Chinese. Eur. J. Clin. Invest. 42(10), 1100–1111 (2012)Google Scholar
  50. 50.
    J. Zeng, M. Liu, L. Wu, J. Wang, S. Yang, Y. Wang et al. The Association of hypertriglyceridemic waist phenotype with chronic kidney disease and its sex difference: a cross-sectional study in an urban Chinese elderly population. Int. J. Environ. Res. Public Health 13(12), E1233 (2016)Google Scholar
  51. 51.
    M. Zhang, Y. Gao, H. Chang, X. Wang, D. Liu, Z. Zhu et al. Hypertriglyceridemic-waist phenotype predicts diabetes: a cohort study in Chinese urban adults. Bmc. Public. Health 12, 1081 (2012)Google Scholar
  52. 52.
    C. Zhou, Y. Li, X. Shao, H. Zou, Identification of chronic kidney disease risk in relatively lean Southern Chinese: the hypertriglyceridemic waist phenotype vs. anthropometric indexes. Eat Weight Disord.: EWD 23(6), 885–892 (2018).  https://doi.org/10.1007/s40519-017-0476-8
  53. 53.
    H. Xue, C. Wang, Y. Li, J. Chen, L. Yu, X. Liu et al. Incidence of type 2 diabetes and number of events attributable to abdominal obesity in China: A cohort study. J. Diabetes 8(2), 190–198 (2016)Google Scholar
  54. 54.
    S.H. Ryu, S.H. Beck, Y.S. Chang, D.I. Kim, B.S. Suh, W.S. Kim et al. Abdominal obesity in relation to the incidence of type 2 diabetes mellitus and impaired fasting glucose among some Korean adults: A Retrospective Cohort Study. J. Prev. Med. Public Health 37(4), 359–365 (2004)Google Scholar
  55. 55.
    J.P. Reis, A.L. Hankinson, C.M. Loria, C.E. Lewis, T. Powell-Wiley, G.S. Wei et al. Duration of abdominal obesity beginning in young adulthood and incident diabetes through middle age: the CARDIA study. Diabetes Care 36(5), 1241–1247 (2013)Google Scholar
  56. 56.
    F. Guerrero-Romero, M. Rodriguez-Moran, Hypertriglyceridemia is associated with development of metabolic glucose disorders, irrespective of glucose and insulin levels: a 15-year follow-up study. Eur. J. Intern. Med. 25(3), 265–269 (2014)Google Scholar
  57. 57.
    S.E. Kahn, M.E. Cooper, S. Del Prato, Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet 383(9922), 1068–1083 (2014)Google Scholar
  58. 58.
    Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33), UK Prospective Diabetes Study (UKPDS) Group. Lancet 352(9131), 837–853 (1998).Google Scholar
  59. 59.
    N.D. Wong, Y. Zhao, R. Patel, C. Patao, S. Malik, A.G. Bertoni et al. Cardiovascular risk factor targets and cardiovascular disease event risk in diabetes: A Pooling Project of the Atherosclerosis Risk in Communities Study, Multi-Ethnic Study of Atherosclerosis, and Jackson Heart Study. Diabetes Care 39(5), 668–676 (2016)Google Scholar
  60. 60.
    E.Y.F. Wan, C.S.C. Fung, E.Y.T. Yu, W.Y. Chin, D.Y.T. Fong, A.K.C. Chan, et al. Effect of multifactorial treatment targets and relative importance of hemoglobin A1c, blood pressure, and low-density lipoprotein-cholesterol on cardiovascular diseases in chinese primary care patients with type 2 diabetes mellitus: A Population-Based Retrospective Cohort Study. J. Am. Heart Assoc 6(8), e006400 (2017).  https://doi.org/10.1161/JAHA.117.006400 Google Scholar
  61. 61.
    S. Hamada, M.C. Gulliford, Multiple risk factor control, mortality and cardiovascular events in type 2 diabetes and chronic kidney disease: a population-based cohort study. BMJ Open 8(5), e019950 (2018)Google Scholar
  62. 62.
    B.J. Arsenault, I. Lemieux, J.P. Despres, N.J. Wareham, J.J. Kastelein, K.T. Khaw et al. The hypertriglyceridemic-waist phenotype and the risk of coronary artery disease: results from the EPIC-Norfolk prospective population study. CMAJ: Can. Med. Assoc. journal = journal de. l’Assoc. Med. Can. 182(13), 1427–1432 (2010)Google Scholar
  63. 63.
    K.G. Alberti, R.H. Eckel, S.M. Grundy, P.Z. Zimmet, J.I. Cleeman, K.A. Donato et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120(16), 1640–1645 (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Chun-Ming Ma
    • 1
  • Xiao-Li Liu
    • 1
  • Na Lu
    • 1
  • Rui Wang
    • 1
  • Qiang Lu
    • 1
  • Fu-Zai Yin
    • 1
    Email author
  1. 1.Department of Endocrinology, The First Hospital of QinhuangdaoQinhuangdaoChina

Personalised recommendations