Advertisement

Endocrine

pp 1–10 | Cite as

Activation profiles of monocyte-macrophages and HDL function in healthy women in relation to menstrual cycle and in polycystic ovary syndrome patients

  • Serena Tedesco
  • Maria Pia Adorni
  • Nicoletta Ronda
  • Roberta Cappellari
  • Roberto Mioni
  • Mattia Barbot
  • Silvia Pinelli
  • Mario Plebani
  • Chiara Bolego
  • Carla Scaroni
  • Franco Bernini
  • Gian Paolo Fadini
  • Andrea CignarellaEmail author
Original Article
  • 33 Downloads

Abstract

Purpose

Hormonal status and menopause affect human macrophage function and cardiometabolic risk. In polycystic ovary syndrome (PCOS) patients the cardiometabolic risk increases through mechanisms that are largely unknown. We tested the hypotheses that macrophage activation is influenced by menstrual cycle and that ovarian dysfunction in PCOS patients is associated with altered macrophage inflammatory responses and cholesterol efflux capacity of serum HDL.

Methods

Blood samples were obtained in the follicular and luteal phases from cycling women (n = 10) and on a single visit from PCOS patients with ovarian dysfunction (n = 11). Monocyte-derived macrophage activation and monocyte subsets were characterized ex vivo using flow cytometry. The capacity of HDL to promote cell cholesterol efflux through the main efflux pathways, namely aqueous diffusion, ATP-binding cassette A1 and G1, was also evaluated.

Results

Hormone and metabolic profiles differed as expected in relation to menstrual cycle and ovulatory dysfunction. Overall, macrophage responses to activating stimuli in PCOS patients were blunted compared with cycling women. Macrophages in the follicular phase were endowed with enhanced responsiveness to LPS/interferon-γ compared with the luteal phase and PCOS. These changes were not related to baseline differences in monocytes. HDL cholesterol efflux capacity through multiple pathways was significantly impaired in PCOS patients compared to healthy women, at least in part independent from lower HDL-cholesterol levels.

Conclusions

Regular menstrual cycles entailed fluctuations in macrophage activation. Such dynamic pattern was attenuated in PCOS. Along with impaired HDL function, this may contribute to the increased cardiometabolic risk associated with PCOS.

Keywords

Macrophages Macrophage activation Cholesterol efflux Polycystic ovary syndrome Menstrual cycle Monocytes 

Notes

Acknowledgements

We wish to thank Dr. Fabrizio Veglia for his valuable help in statistical analyses of HDL CEC data.

Author Contributions

G.P.F., C.B., and A.C. conceived the idea and planned the experiments. R.M., M.B., S.P., C.S., and G.P.F. conducted the clinical part of the study, S.T. and R.C performed cell culture and flow cytometry analyses, S.T. and G.P.F. carried out statistical analysis, M.P.A., N.R., and F.B performed CEC and intracellular cholesterol assays and refined statistical analyses, M.P. was responsible for laboratory medicine data. A.C. wrote the draft and all authors made substantial contributions to the final manuscript.

Funding

This study was funded by institutional funding to M.P., C.B., C.S., F.B., G.P.F., and A.C.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of Padova University Hospital Ethics Committee and with the 1964 Helsinki declaration and its later amendments.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

12020_2019_1911_MOESM1_ESM.pdf (368 kb)
Supplementary Figures
12020_2019_1911_MOESM2_ESM.pdf (7 kb)
Supplementary Tables

References

  1. 1.
    E.J. Benjamin, S.S. Virani, C.W. Callaway, et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation 137, e67–e492 (2018)CrossRefGoogle Scholar
  2. 2.
    C.R. McCartney, J.C. Marshall Clinical practice—polycystic ovary syndrome. N. Engl. J. Med. 375(1), 54–64 (2016)CrossRefGoogle Scholar
  3. 3.
    A. Roe, J. Hillman, S. Butts, M. Smith, D. Rader, M. Playford, N.N. Mehta, A. Dokras Decreased cholesterol efflux capacity and atherogenic lipid profile in young women with PCOS. J. Clin. Endocrinol. Metab. 99(5), E841–847 (2014)CrossRefGoogle Scholar
  4. 4.
    R.A. Wild, E. Carmina, E. Diamanti-Kandarakis, A. Dokras, H.F. Escobar-Morreale, W. Futterweit, R. Lobo, R.J. Norman, E. Talbott, D.A. Dumesic Assessment of cardiovascular risk and prevention of cardiovascular disease in women with the polycystic ovary syndrome: a consensus statement by the Androgen Excess and Polycystic Ovary Syndrome (AE-PCOS) Society. J. Clin. Endocrinol. Metab. 95(5), 2038–2049 (2010)CrossRefGoogle Scholar
  5. 5.
    R.S. Legro, S.A. Arslanian, D.A. Ehrmann, K.M. Hoeger, M.H. Murad, R. Pasquali, C.K. Welt; Endocrine Society Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 98(12), 4565–4592 (2013)CrossRefGoogle Scholar
  6. 6.
    T. Shirai, M. Hilhorst, D.G. Harrison, J.J. Goronzy, C.M. Weyand Macrophages in vascular inflammation—from atherosclerosis to vasculitis. Autoimmunity 48(3), 139–151 (2015)CrossRefGoogle Scholar
  7. 7.
    L. Honold, M. Nahrendorf Resident and monocyte-derived macrophages in cardiovascular disease. Circ. Res. 122, 113–127 (2018)CrossRefGoogle Scholar
  8. 8.
    I. Tabas, K.E. Bornfeldt Macrophage phenotype and function in different stages of atherosclerosis. Circ. Res. 118(4), 653–667 (2016)CrossRefGoogle Scholar
  9. 9.
    A. Toniolo, G.P. Fadini, S. Tedesco, R. Cappellari, E. Vegeto, A. Maggi, A. Avogaro, C. Bolego, A. Cignarella Alternative activation of human macrophages is rescued by estrogen treatment in vitro and impaired by menopausal status. J. Clin. Endocrinol. Metab. 100(1), E50–58 (2015)CrossRefGoogle Scholar
  10. 10.
    C. Bolego, A. Cignarella, B. Staels, G. Chinetti-Gbaguidi, Macrophage function and polarization in cardiovascular disease: a role of estrogen signaling? Arterioscler. Thromb. Vasc. Biol. 33(6), 1127–1134 (2013)CrossRefGoogle Scholar
  11. 11.
    M. Baum Letter: variations in leucocyte count during menstrual cycle. Br. Med. J. 3(5975), 102 (1975)CrossRefGoogle Scholar
  12. 12.
    N. Daikoku, K. Kitaya, T. Nakayama, S. Fushiki, H. Honjo Expression of macrophage inflammatory protein-3beta in human endometrium throughout the menstrual cycle. Fertil. Steril. 81(Suppl 1), 876–881 (2004)CrossRefGoogle Scholar
  13. 13.
    D.L. Patton, S.S. Thwin, A. Meier, T.M. Hooton, A.E. Stapleton, D.A. Eschenbach Epithelial cell layer thickness and immune cell populations in the normal human vagina at different stages of the menstrual cycle. Am. J. Obstet. Gynecol. 183(4), 967–973 (2000)CrossRefGoogle Scholar
  14. 14.
    P.M. Starkey, L.M. Clover, M.C. Rees Variation during the menstrual cycle of immune cell populations in human endometrium. Eur. J. Obstet. Gynecol. Reprod. Biol. 39(3), 203–207 (1991)CrossRefGoogle Scholar
  15. 15.
    I. Zanotti, E. Favari, F. Bernini Cellular cholesterol efflux pathways: impact on intracellular lipid trafficking and methodological considerations. Curr. Pharm. Biotechnol. 13(2), 292–302 (2012)CrossRefGoogle Scholar
  16. 16.
    N. Ronda, E. Favari, M.O. Borghi, F. Ingegnoli, M. Gerosa, C. Chighizola, F. Zimetti, M.P. Adorni, F. Bernini, P.L. Meroni Impaired serum cholesterol efflux capacity in rheumatoid arthritis and systemic lupus erythematosus. Ann. Rheum. Dis. 73(3), 609–615 (2014)CrossRefGoogle Scholar
  17. 17.
    A.V. Khera, M. Cuchel, M. de la Llera-Moya, A. Rodrigues, M.F. Burke, K. Jafri, B.C. French, J.A. Phillips, M.L. Mucksavage, R.L. Wilensky, E.R. Mohler, G.H. Rothblat, D.J. Rader Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N. Engl. J. Med. 364(2), 127–135 (2011)CrossRefGoogle Scholar
  18. 18.
    A.V. Khera, O.V. Demler, S.J. Adelman, H.L. Collins, R.J. Glynn, P.M. Ridker, D.J. Rader, S. Mora Cholesterol efflux capacity, high-density lipoprotein particle number, and incident cardiovascular events: an analysis from the JUPITER trial (justification for the use of statins in prevention: an intervention trial evaluating rosuvastatin). Circulation 135(25), 2494–2504 (2017)CrossRefGoogle Scholar
  19. 19.
    K. Yakimchuk, M. Jondal, S. Okret Estrogen receptor α and β in the normal immune system and in lymphoid malignancies. Mol. Cell. Endocrinol. 375(1–2), 121–129 (2013)CrossRefGoogle Scholar
  20. 20.
    S. Nadkarni, S. McArthur Oestrogen and immunomodulation: new mechanisms that impact on peripheral and central immunity. Curr. Opin. Pharmacol. 13(4), 576–581 (2013)CrossRefGoogle Scholar
  21. 21.
    J.A. McCrohon, S. Nakhla, W. Jessup, K.K. Stanley, D.S. Celermajer Estrogen and progesterone reduce lipid accumulation in human monocyte-derived macrophages: a sex-specific effect. Circulation 100(23), 2319–2325 (1999)CrossRefGoogle Scholar
  22. 22.
    X. Liang, M. He, T. Chen, Y. Wu, Y. Tian, Y. Zhao, Y. Shen, Y. Liu, Z. Yuan 17β-estradiol suppresses the macrophage foam cell formation associated with SOCS3. Horm. Metab. Res. 45(6), 423–429 (2013)CrossRefGoogle Scholar
  23. 23.
    A. Dokras, M. Playford, P.M. Kris-Etherton, A.R. Kunselman, C.M. Stetter, N.I. Williams, C.L. Gnatuk, S.J. Estes, D.B. Sarwer, K.C. Allison, C. Coutifaris, N. Mehta, R.S. Legro Impact of hormonal contraception and weight loss on high-density lipoprotein cholesterol efflux and lipoprotein particles in women with polycystic ovary syndrome. Clin Endocrinol. 86, 739–746 (2017)CrossRefGoogle Scholar
  24. 24.
    W. Rosner, R.J. Auchus, R. Azziz, P.M. Sluss, H. Raff Position statement: utility, limitations, and pitfalls in measuring testosterone: an Endocrine Society position statement. J. Clin. Endocrinol. Metab. 92(2), 405–413 (2007)CrossRefGoogle Scholar
  25. 25.
    S. Tedesco, M. Zusso, L. Facci, A. Trenti, C. Boscaro, F. Belluti, G.P. Fadini, S.D. Skaper, P. Giusti, C. Bolego, A. Cignarella Bisdemethoxycurcumin and its cyclized pyrazole analogue differentially disrupt lipopolysaccharide signalling in human monocyte-derived macrophages. Mediators. Inflamm. 2018, 2868702 (2018)CrossRefGoogle Scholar
  26. 26.
    S. Tedesco, F. De Majo, J. Kim, A. Trenti, L. Trevisi, G.P. Fadini, C. Bolego, P.W. Zandstra, A. Cignarella, L. Vitiello Convenience versus biological significance: are PMA-differentiated THP-1 cells a reliable substitute for blood-derived macrophages when studying in vitro polarization? Front. Pharmacol. 9, 71 (2018)CrossRefGoogle Scholar
  27. 27.
    G.P. Fadini, S.V. de Kreutzenberg, E. Boscaro, M. Albiero, R. Cappellari, N. Kränkel, U. Landmesser, A. Toniolo, C. Bolego, A. Cignarella, F. Seeger, S. Dimmeler, A. Zeiher, C. Agostini, A. Avogaro An unbalanced monocyte polarisation in peripheral blood and bone marrow of patients with type 2 diabetes has an impact on microangiopathy. Diabetologia 56(8), 1856–1866 (2013)CrossRefGoogle Scholar
  28. 28.
    M.P. Adorni, N. Ferri, S. Marchianò, V. Trimarco, F. Rozza, R. Izzo, F. Bernini, F. Zimetti Effect of a novel nutraceutical combination on serum lipoprotein functional profile and circulating PCSK9. Ther. Clin. Risk. Manag. 13, 1555–1562 (2017)CrossRefGoogle Scholar
  29. 29.
    P. Mody, P.H. Joshi, A. Khera, C.R. Ayers, A. Rohatgi Beyond coronary calcification, family history, and C-reactive protein: cholesterol efflux capacity and cardiovascular risk prediction. J. Am. Coll. Cardiol. 67(21), 2480–2487 (2016)CrossRefGoogle Scholar
  30. 30.
    N. Ronda, D. Greco, M.P. Adorni, F. Zimetti, E. Favari, G. Hjeltnes, K. Mikkelsen, M.O. Borghi, E.G. Favalli, R. Gatti, I. Hollan, P.L. Meroni, F. Bernini Newly identified antiatherosclerotic activity of methotrexate and adalimumab: complementary effects on lipoprotein function and macrophage cholesterol metabolism. Arthritis Rheumatol. 67(5), 1155–1164 (2015)CrossRefGoogle Scholar
  31. 31.
    L. Pisciotta, E. Favari, L. Magnolo, S. Simonelli, M.P. Adorni, R. Sallo, T. Fancello, I. Zavaroni, D. Ardigò, F. Bernini, L. Calabresi, G. Franceschini, P. Tarugi, S. Calandra, S. Bertolini Characterization of three kindreds with familial combined hypolipidemia caused by loss-of-function mutations of ANGPTL3. Circ Cardiovasc Genet. 5(1), 42–50 (2012)CrossRefGoogle Scholar
  32. 32.
    R. Cappellari, M. D’Anna, B.M. Bonora, M. Rigato, A. Cignarella, A. Avogaro, G.P. Fadini Shift of monocyte subsets along their continuum predicts cardiovascular outcomes. Atherosclerosis. 266, 95–102 (2017)CrossRefGoogle Scholar
  33. 33.
    B.W. Whitcomb, S.L. Mumford, N.J. Perkins, J. Wactawski-Wende, E.R. Bertone-Johnson, K.E. Lynch, E.F. Schisterman Urinary cytokine and chemokine profiles across the menstrual cycle in healthy reproductive-aged women. Fertil. Steril. 101(5), 1383–1391 (2014)CrossRefGoogle Scholar
  34. 34.
    S. Gidwani, N. Phelan, J. McGill, A. McGowan, A. O’Connor, I.S. Young, J. Gibney, J. McEneny Polycystic ovary syndrome influences the level of serum amyloid A and activity of phospholipid transfer protein in HDL2 and HDL3. Hum. Reprod. 29, 1518–1525 (2014)CrossRefGoogle Scholar
  35. 35.
    M. Miilunpohja, A. Uphoff, P. Somerharju, A. Tiitinen, K. Wähälä, M.J. Tikkanen Fatty acid esterification of lipoprotein-associated estrone in human plasma and follicular fluid. J. Steroid. Biochem. Mol. Biol. 100(1–3), 59–66 (2006)CrossRefGoogle Scholar
  36. 36.
    A. Cignarella, S. Tedesco, R. Cappellari, G.P. Fadini The continuum of monocytes phenotypes: experimental evidence and prognostic utility in assessing cardiovascular risk. J. Leukoc. Biol. 103, 1021–1028 (2018)CrossRefGoogle Scholar
  37. 37.
    L. Ibáñez, S.E. Oberfield, S. Witchel, R.J. Auchus, R.J. Chang, E. Codner, P. Dabadghao, F. Darendeliler, N.S. Elbarbary, A. Gambineri, C. Garcia Rudaz, K.M. Hoeger, A. López-Bermejo, K. Ong, A.S. Peña, T. Reinehr, N. Santoro, M. Tena-Sempere, R. Tao, B.O. Yildiz, H. Alkhayyat, A. Deeb, D. Joel, R. Horikawa, F. de Zegher, P.A. Lee An International Consortium update: pathophysiology, diagnosis, and treatment of polycystic ovarian syndrome in adolescence. Horm. Res. Paediatr. 88(6), 371–395 (2017)CrossRefGoogle Scholar
  38. 38.
    P.D. Lima, A.L. Nivet, Q. Wang, Y.A. Chen, A. Leader, A. Cheung, C.R. Tzeng, B.K. Tsang Polycystic ovary syndrome: possible involvement of androgen-induced, chemerin-mediated ovarian recruitment of monocytes/macrophages. Biol. Reprod. 99(4), 838–852 (2018)CrossRefGoogle Scholar
  39. 39.
    M. Karadeniz, M. Erdoğan, Z. Ayhan, M. Yalcin, M. Olukman, S. Cetinkalp, G.E. Alper, Z. Eroglu, A. Tetik, V. Cetintas, A.G. Ozgen, F. Saygili, C. Yilmaz Effect of G2706A and G1051A polymorphisms of the ABCA1 gene on the lipid, oxidative stress and homocystein levels in Turkish patients with polycystic ovary syndrome. Lipids. Health Dis. 10, 193 (2011)CrossRefGoogle Scholar
  40. 40.
    R. Frikke-Schmidt, B.G. Nordestgaard, G.B. Jensen, A. Tybjaerg-Hansen Genetic variation in ABC transporter A1 contributes to HDL cholesterol in the general population. J. Clin. Invest. 114, 1343–1353 (2004)CrossRefGoogle Scholar
  41. 41.
    A.E. Stanhewicz, M.M. Wenner, N.S. Stachenfeld Sex differences in endothelial function important to vascular health and overall cardiovascular disease risk across the lifespan. Am. J. Physiol. Heart Circ. Physiol. 315(6), H1569–H1588 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Serena Tedesco
    • 1
  • Maria Pia Adorni
    • 2
  • Nicoletta Ronda
    • 2
  • Roberta Cappellari
    • 1
  • Roberto Mioni
    • 3
  • Mattia Barbot
    • 4
  • Silvia Pinelli
    • 4
  • Mario Plebani
    • 5
  • Chiara Bolego
    • 6
  • Carla Scaroni
    • 4
    • 5
  • Franco Bernini
    • 2
  • Gian Paolo Fadini
    • 1
    • 5
  • Andrea Cignarella
    • 5
    Email author
  1. 1.Venetian Institute of Molecular MedicinePadovaItaly
  2. 2.Department of Food and DrugUniversity of ParmaParmaItaly
  3. 3.Clinica Medica 3University HospitalPadovaItaly
  4. 4.Endocrinology UnitUniversity HospitalPadovaItaly
  5. 5.Department of MedicineUniversity of PadovaPadovaItaly
  6. 6.Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPadovaItaly

Personalised recommendations