Advertisement

Endocrine

pp 1–8 | Cite as

Blockade of the programmed death ligand 1 (PD-L1) as potential therapy for anaplastic thyroid cancer

  • Silvia CantaraEmail author
  • Eugenio Bertelli
  • Rossella Occhini
  • Marì Regoli
  • Lucia Brilli
  • Furio Pacini
  • Maria Grazia Castagna
  • Paolo Toti
Original article

Abstract

Purpose

Anaplastic thyroid carcinoma (ATC) is a rare, highly aggressive form of thyroid cancer (TC) characterized by an aggressive behavior and poor prognosis, resulting in patients’ death within a year. Standard treatments, such as chemo and radiotherapy, as well as tyrosine kinase inhibitors, are ineffective for ATC treatment. Cancer immunotherapy is one of the most promising research area in oncology. The PD-1/PD-L1 axis is of particular interest, in light of promising data showing a restoration of host immunity against tumors, with the prospect of long-lasting remissions.

Methods

In this study, we evaluated PD-L1 expression in a large series of TCs (20 cases) showing a progressive dedifferentiation of the thyroid tumor from well differentiated TC to ATC, employing two different antibodies [R&D Systems and VENTANA PD-L1 (SP263) Rabbit Monoclonal Primary Antibody]. We also tested the anti PD-L1 mAb in an in vivo animal model.

Results

We found that approximately 70–90% of ATC cases were positive for PD-L1 whereas normal thyroid and differentiated TC were negative. Moreover, all analyzed cases presented immunopositive staining in the endothelium of vessels within or in close proximity to the tumor, while normal thyroid vessels were negative. PD-L1 mAb was also effective in inhibiting ATC growth in an in vivo model.

Conclusions

These data suggest that immunotherapy may be a promising treatment specific for ATC suggesting the need to start with clinical TRIALs.

Keywords

PD-L1 PD-1 Anaplastic thyroid cancer Immunotherapy 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtain from all individual participants included in the study.

Supplementary material

12020_2019_1865_MOESM1_ESM.jpg (7.6 mb)
Supplementary figure 1
12020_2019_1865_MOESM2_ESM.jpg (1.5 mb)
Supplementary figure 2

References

  1. 1.
    D.M. Pardoll, The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–64 (2012)CrossRefGoogle Scholar
  2. 2.
    H. Borghaei, L. Paz-Ares, L. Horn, D.R. Spigel, M. Steins, N.E. Ready, L.Q. Chow, E.E. Vokes, E. Felip, E. Holgado, F. Barlesi, M. Kohlhäufl, O. Arrieta, M.A. Burgio, J. Fayette, H. Lena, E. Poddubskaya, D.E. Gerber, S.N. Gettinger, C.M. Rudin, N. Rizvi, L. Crinò, G.R. Blumenschein Jr, S.J. Antonia, C. Dorange, C.T. Harbison, F. Graf Finckenstein, J.R. Brahmer, Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 373, 1627–39 (2015)CrossRefGoogle Scholar
  3. 3.
    T.K. Choueiri, M.N. Fishman, B. Escudier, D.F. McDermott, C.G. Drake, H. Kluger, W.M. Stadler, J.L. Perez-Gracia, D.G. McNeel, B. Curti, M.R. Harrison, E.R. Plimack, L. Appleman, L. Fong, L. Albiges, L. Cohen, T.C. Young, S.D. Chasalow, P. Ross-Macdonald, S. Srivastava, M. Jure-Kunkel, J.F. Kurland, J.S. Simon, M. Sznol, Immunomodulatory activity of nivolumab in metastatic renal cell carcinoma. Clin. Cancer Res. 22, 5461–5471 (2016)CrossRefGoogle Scholar
  4. 4.
    I. Márquez-Rodas, P. Cerezuela, A. Soria, A. Berrocal, A. Riso, M. González-Cao, S. Martín-Algarra, Immune checkpoint inhibitors: therapeutic advances in melanoma. Ann. Transl. Med. 3, 267 (2015)Google Scholar
  5. 5.
    H. Dong, S.E. Strome, D.R. Salomao, H. Tamura, F. Hirano, D.B. Flies, P.C. Roche, J. Lu, G. Zhu, K. Tamada, V.A. Lennon, E. Celis, L. Chen, Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med. 8, 793–800 (2002). Erratum Nat. Med. 8, 1039 (2002)CrossRefGoogle Scholar
  6. 6.
    J.M. Taube, R.A. Anders, G.D. Young, H. Xu, R. Sharma, T.L. McMiller, S. Chen, A.P. Klein, D.M. Pardoll, S.L. Topalian, L. Chen, Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci. Transl. Med. 4, 127ra37 (2012)CrossRefGoogle Scholar
  7. 7.
    B.R. Haugen, American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: what is new and what has changed? Cancer 2017 123, 372–381 (2015)Google Scholar
  8. 8.
    Z.W. Baloch, V.A. LiVolsi, Special types of thyroid carcinoma. Histopathology 72, 40–52 (2018)CrossRefGoogle Scholar
  9. 9.
    M.E. Cabanillas, M. Zafereo, G.B. Gunn, R. Ferrarotto, Anaplastic thyroid carcinoma: treatment in the age of molecular targeted therapy. J. Oncol. Pract. 12, 511–8 (2016)CrossRefGoogle Scholar
  10. 10.
    V. Tiedje, M. Stuschke, F. Weber, H. Dralle, L. Moss, D. Führer, Anaplastic thyroid carcinoma: review of treatment protocols. Endocr. Relat. Cancer 25, R153–R161 (2018)CrossRefGoogle Scholar
  11. 11.
    D. Viola, L. Valerio, E. Molinaro, L. Agate, V. Bottici, A. Biagini, L. Lorusso, V. Cappagli, L. Pieruzzi, C. Giani, E. Sabini, P. Passannati, L. Puleo, A. Matrone, B. Pontillo-Contillo, V. Battaglia, S. Mazzeo, P. Vitti, R. Elisei, Treatment of advanced thyroid cancer with targeted therapies: ten years of experience. Endocr. Relat. Cancer 23, R185–205 (2016)CrossRefGoogle Scholar
  12. 12.
    L.L. Cunha, M.A. Marcello, E.C. Morari, S. Nonogaki, F.F. Conte, R. Gerhard, F.A. Soares, J. Vassallo, L.S. Ward, Differentiated thyroid carcinomas may elude the immune system by B7H1 upregulation. Endocr. Relat. Cancer 20, 103–10 (2013)CrossRefGoogle Scholar
  13. 13.
    T.E. Angell, M.G. Lechner, J.K. Jang, A.J. Correa, J.S. LoPresti, A.L. Epstein, BRAF V600E in papillary thyroid carcinoma is associated with increased programmed death ligand 1 expression and suppressive immune cell infiltration. Thyroid 24, 1385–93 (2014)CrossRefGoogle Scholar
  14. 14.
    H. Wu, Y. Sun, H. Ye, S. Yang, S.L. Lee, A. de las Morenas, Anaplastic thyroid cancer: outcome and the mutation/expression profiles of potential targets. Pathol. Oncol. Res. 21, 695–701 (2015)CrossRefGoogle Scholar
  15. 15.
    J.J. Bastman, H.S. Serracino, Y. Zhu, M.R. Koenig, V. Mateescu, S.B. Sams, K.D. Davies, C.D. Raeburn, R.C. McIntyre Jr, B.R. Haugen, J.D. French, Tumor-infiltrating T cells and the PD-1 checkpoint pathway in advanced differentiated and anaplastic thyroid cancer. J. Clin. Endocrinol. Metab. 101, 2863–73 (2016)CrossRefGoogle Scholar
  16. 16.
    S. Chowdhury, J. Veyhl, F. Jessa, O. Polyakova, A. Alenzi, C. MacMillan, R. Ralhan, P.G. Walfish, Programmed death-ligand 1 overexpression is a prognostic marker for aggressive papillary thyroid cancer and its variants. Oncotarget 7, 32318–28 (2016)CrossRefGoogle Scholar
  17. 17.
    S. Ahn, T.H. Kim, S.W. Kim, C.S. Ki, H.W. Jang, J.S. Kim, J.H. Kim, J.H. Choe, J.H. Shin, S.Y. Hahn, Y.L. Oh, J.H. Chung, Comprehensive screening for PD-L1 expression in thyroid cancer. Endocr. Relat. Cancer 24, 97–106 (2017)CrossRefGoogle Scholar
  18. 18.
    M.W. Rosenbaum, B.J. Gigliotti, S.I. Pai, S. Parangi, H. Wachtel, M. Mino-Kenudson, V. Gunda, W.C. Faquin, PD-L1 and IDO1 are expressed in poorly differentiated thyroid carcinoma. Endocr. Pathol. 29, 59–67 (2018)CrossRefGoogle Scholar
  19. 19.
    R. A. DeLellis, R. V. Lloyd, P. U. Heitz, C. Eng, eds. Pathology and Genetics of Tumors of Endocrine Organs. WHO Classification of Tumors, 3rd edn. vol 8, 2004Google Scholar
  20. 20.
    P. Workman, E.O. Aboagye, F. Balkwill, A. Balmain, G. Bruder, D.J. Chaplin, J.A. Double, J. Everitt, D.A.H. Farningham, M.J. Glennie, L.R. Kelland, V. Robinson, I.J. Stratford, G.M. Tozer, S. Watson, S.R. Wedge, S.A. Eccles, An ad hoc committee of the National Cancer Research Institute. Guidelines for the welfare and use of animals in cancer research. Br. J. Cancer 102, 1555–1577 (2010)CrossRefGoogle Scholar
  21. 21.
    J.R. Brahmer, S.S. Tykodi, L.Q. Chow, W.J. Hwu, S.L. Topalian, P. Hwu, C.G. Drake, L.H. Camacho, J. Kauh, K. Odunsi, H.C. Pitot, O. Hamid, S. Bhatia, R. Martins, K. Eaton, S. Chen, T.M. Salay, S. Alaparthy, J.F. Grosso, A.J. Korman, S.M. Parker, S. Agrawal, S.M. Goldberg, D.M. Pardoll, A. Gupta, J.M. Wigginton, Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012)CrossRefGoogle Scholar
  22. 22.
    I. Yamauchi, Y. Sakane, Y. Fukuda, T. Fujii, D. Taura, M. Hirata, K. Hirota, Y. Ueda, Y. Kanai, Y. Yamashita, E. Kondo, M. Sone, A. Yasoda, N. Inagaki, Clinical features of nivolumab-induced thyroiditis: a case series study. Thyroid 27, 894–901 (2017)CrossRefGoogle Scholar
  23. 23.
    F.R. Hirsch, A. McElhinny, D. Stanforth, J. Ranger-Moore, M. Jansson, K. Kulangara, W. Richardson, P. Towne, D. Hanks, B. Vennapusa, A. Mistry, R. Kalamegham, S. Averbuch, J. Novotny, E. Rubin, K. Emancipator, I. McCaffery, J.A. Williams, J. Walker, J. Longshore, M.S. Tsao, K.M. Kerr, PD-L1 immunohistochemistry assays for lung cancer: results from phase 1 of the Blueprint PD-L1 IHC assay comparison project. J. Thorac. Oncol. 12, 208–222 (2017)CrossRefGoogle Scholar
  24. 24.
    M.S. Tsao, K.M. Kerr, M. Kockx, M.B. Beasley, A.C. Borczuk, J. Botling, L. Bubendorf, L. Chirieac, G. Chen, T.Y. Chou, J.H. Chung, S. Dacic, S. Lantuejoul, M. Mino-Kenudson, A.L. Moreira, A.G. Nicholson, M. Noguchi, G. Pelosi, C. Poleri, P.A. Russell, J. Sauter, E. Thunnissen, I. Wistuba, H. Yu, M.W. Wynes, M. Pintilie, Y. Yatabe, F.R. Hirsch, PD-L1Immunohistochemistry comparability study in real-life clinical samples: results of Blueprint phase 2 project. J. Thorac. Oncol. 3, 1302–1311 (2018)CrossRefGoogle Scholar
  25. 25.
    M.J. Eppihimer, J. Gunn, G.J. Freeman, E.A. Greenfield, T. Chernova, J. Erickson, J.P. Leonard, Expression and regulation of the PD-L1 immunoinhibitory molecule on microvascular endothelial cells. Microcirculation 9, 133–145 (2002)CrossRefGoogle Scholar
  26. 26.
    N. Rodig, T. Ryan, J.A. Allen, H. Pang, N. Grabie, C. Tatyana, E.A. Greenfield, S.C. Liang, A.H. Sharpe, A.H. Lichtman, G.J. Freeman, Endothelial expression of PD-L1 and PD-L2 downregulates CD8+ T cell activation and cytolysis. Eur. J. Immunol. 33, 3117–3126 (2003)CrossRefGoogle Scholar
  27. 27.
    S. Korehisa, T. Ikeda, S. Okano, H. Saeki, E. Oki, Y. Oda, M. Hashizume, Y. Maehara, A novel histological examination with dynamic three-dimensional reconstruction from multiple immunohistochemically stained sections of a PD-L1-positive colon cancer. Histopathology 72, 697–703 (2018)CrossRefGoogle Scholar
  28. 28.
    L.C. Dieterich, K. Ikenberg, T. Cetintas, K. Kapaklikaya, C. Hutmahcer, M. Detmar, Tumor-associated lymphatic vessels upregulate PDL1 to inhibit T-cell activation. Front. Immunol. 8, 66 (2017)CrossRefGoogle Scholar
  29. 29.
    E. Allen, A. Jabouille, L.B. Rivers, I. Lodewijckx, R. Missiaen, V. Steri, K. Feyen, J. Tawney, D. Hanahan, I.P. Michael, G. Bergers, Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci. Transl. Med 9(385), pii: eaak9679 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Medical, Surgical and Neurological SciencesUniversity of SienaSienaItaly
  2. 2.Department of Molecular and Developmental MedicineUniversity of SienaSienaItaly
  3. 3.Unit of PathologyArezzo HospitalArezzoItaly
  4. 4.University of SienaSienaItaly

Personalised recommendations