Advertisement

Endocrine

pp 1–9 | Cite as

Expression and clinicopathological role of miR146a in thyroid follicular carcinoma

  • Elisa Pignatti
  • Eleonora Vighi
  • Elisa Magnani
  • Elda Kara
  • Luca Roncati
  • Antonino Maiorana
  • Daniele Santi
  • Bruno Madeo
  • Katia Cioni
  • Cesare Carani
  • Vincenzo Rochira
  • Manuela SimoniEmail author
  • Giulia Brigante
Original Article
  • 17 Downloads

Abstract

Purpose

Dysregulation of microRNA expression has been involved in the development and progression of follicular thyroid carcinoma (FTC). The aim of this work was to study the expression of miRNA146a in FTC and the association with clinicopathological features of the disease.

Methods

Thirty-eight patients affected by FTC were included in the study. Twenty patients carrying follicular thyroid adenoma (FA) were also enroled as the benign counterpart of FTC. Total RNA including miRNA146a was extracted from formalin-fixed paraffin-embedded (FFPE) pairs of affected/unaffected tissue and its expression was assessed by real-time PCR. Two selected target genes, TRAF6 (tumour necrosis factor receptor-associated factor 6) and IRAK1 (Il-1 receptor-associated kinase 1/2), were also analysed.

Results

miR146a expression in FTC tissue was overall not downregulated in malignant versus unaffected tissue, but its expression was inversely correlated with clinicopathological features of FTCs at diagnosis. A decreased expression of miR146a became apparent in FTC thyroid tissue of widely compared to minimally invasive tumours. However, miR146a expression differences between contralateral unaffected tissue (extra-FTC) and FTC were not observed regardless of clinicopathological features. IRAK1, a known target for miR146a, was upregulated in FTC and the increase was mainly appreciable in Hurtle FTC variant. Unexpectedly, miR146a did not correlate with TRAF6 showing an inverse trend compared to IRAK1 although both genes regulate the activity of nuclear factor- kB (NF-kB).

Conclusion

The results of this study indicate that downregulation of miR146a, inversely correlated with clinicopathological features of FTCs at diagnosis and suggest a possible involvement of miR146a in FTC development. IRAK1 over-expression in FTC may be related to tumour development/progression. In vitro experiments are needed to support this hypothesis.

Keywords

Follicular thyroid carcinoma miR146a IRAK1 TRAF6 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. ”Research involving human participants and/or animals: This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all the subjects included in the study. Informed consent was obtained from all individual participants included in the study.

Supplementary material

12020_2019_1845_MOESM1_ESM.docx (20 kb)
Supplementary Information

References

  1. 1.
    J.A. Fagin, S.A. WellsJr., S.A. Wells Jr., Biologic and clinical perspectives on thyroid cancer. N. Engl. J. Med. 375(11), 1054–1067 (2016).CrossRefGoogle Scholar
  2. 2.
    G. Grani, L. Lamartina, C. Durante, S. Filetti, D.S. Cooper, Follicular thyroid cancer and Hürthle cell carcinoma: challenges in diagnosis, treatment, and clinical management. Lancet Diabetes Endocrinol. 6(6), 500–514 (2018).  https://doi.org/10.1016/S2213-8587(17)30325-X CrossRefGoogle Scholar
  3. 3.
    J. Braun, S. Hüttelmaier, Pathogenic mechanisms of deregulated microRNA expression in thyroid carcinomas of follicular origin. Thyroid Res. 4(Suppl 1), S1 (2011).  https://doi.org/10.1186/1756-6614-4-S1-S1 CrossRefGoogle Scholar
  4. 4.
    A. Budlhu, J. Ji, X.W. Wang, The clinical potential of microRNAs. J. Hematol. Oncol. 3–37 (2010).  https://doi.org/10.1186/1756-8722-3-37
  5. 5.
    A. Chapellede la, K. Jazdzewski, MicroRNAs in thyroid cancer. J. Clin. Endocrinol. Metab. 96(11), 3326–3336 (2011).  https://doi.org/10.1210/jc.2011-1004 CrossRefGoogle Scholar
  6. 6.
    S. Pishkari, M. Paryan, M. Hashemi, E. Baldini, S. Mohammadi-Yeganeh, The role of microRNAs in different types of thyroid carcinoma: a comprehensive analysis to find new miRNA supplementary therapies. J. Endocrinol. Invest. 41(3), 269–283 (2018).  https://doi.org/10.1007/s40618-017-0735-6 CrossRefGoogle Scholar
  7. 7.
    M.R. Vriens, J. Weng, I. Suh, N. Huynh, M.A. Guerrero, W.T. Shen, Q.Y. Duh, O.H. Clark, E. Kebebew, MicroRNA expression profiling is a potential diagnostic tool for thyroid cancer. Cancer 118(13), 3426–3432 (2012).  https://doi.org/10.1002/cncr.26587 CrossRefGoogle Scholar
  8. 8.
    R. Visone, P. Pallante, A. Vecchione, R. Cirombella, M. Ferracin, A. Ferraro, S. Volinia, S. Coluzzi, V. Leone, E. Borbone, C.G. Liu, F. Petrocca, G. Troncone, G.A. Calin, A. Scarpa, C. Colato, G. Tallini, M. Santoro, C.M. Croce, A. Fusco, Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene 26(54), 7590–7595 (2007).CrossRefGoogle Scholar
  9. 9.
    F. Weber, R.E. Teresi, C.E. Broelsch, A. Frilling, C.A. Eng, Eng. C.A, Limited set of human microRNA is deregulated in follicular thyroid carcinoma. J. Clin. Endocrinol. Metab. 91(9), 3584–3591 (2006).CrossRefGoogle Scholar
  10. 10.
    Nikiforova. M.N, Tseng. G.C, Steward. D, Diorio. D, Nikiforov. Y.E, MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J. Clin. Endocrinol. Metab. 93, 1600–1608 (2008).  https://doi.org/10.1210/jc.2007-2696 CrossRefGoogle Scholar
  11. 11.
    M. Dettmer, A. Vogetseder, MB. Durso, H. Moch, P. Kohminoth, A. Perren, YE. Nikiforov, M.N. Nikiforova, MicroRNA expression array identifies novel diagnostic markers for conventional and oncocytic follicular thyroid carcinomas. J. Clin. Endocrinol. Metab. 98, E1–E7 (2013).  https://doi.org/10.1210/jc.2012-2694 CrossRefGoogle Scholar
  12. 12.
    L. Roncati, M. Simoni, A. Maiorana, The prognostic value of miRNA146a in follicular thyroid carcinoma. Med. Oncol. 30(4), 703 (2013).  https://doi.org/10.1007/s12032-013-0703-8 CrossRefGoogle Scholar
  13. 13.
    L. Roncati, E. Pignatti, E. Vighi, E. Magnani, E. Kara, V. Rochira, C. Carani, M. Simoni, A. Maiorana, Pre-miR146a expression in follicular carcinomas of the thyroid. Pathologica 106, 58–60 (2014).Google Scholar
  14. 14.
    D. Bhaumik, G.K. Scott, S. Schokrpur, C.K. Patil, J. Campisi, C.C. Benz, Expression of microRNA-146 suppresses NF-kappa B activity with reduction of metastatic potential in breast cancer cells. Oncogene 27, 5643–5647 (2008).  https://doi.org/10.1038/onc.2008.171 CrossRefGoogle Scholar
  15. 15.
    J.L. Zhao, D.S. Rao, M.P. Boldin, K.D. Taganov, R.M. O’Connell, D. Baltimore, NF-kB dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies. Proc. Natl. Acad. Sci. USA 108, 9184–9189 (2011).  https://doi.org/10.1073/pnas.1105398108 CrossRefGoogle Scholar
  16. 16.
    E. Zilahi, T. Tarr, G. Papp, Z. Griger, S. Sipka, M. Zeher, Increased microRNA-146a/b, TRAF6 gene and decreased IRAK1 gene expressions in the peripheral mononuclear cells of patients with Sjögren's syndrome. Immunol. Lett. 141(2), 165–168 (2012).  https://doi.org/10.1016/j.imlet.2011.09.006 CrossRefGoogle Scholar
  17. 17.
    P.S. Hung, C.J. Liu, C.S. Chou, S.Y. Kao, C.C. Yang, K.W. Chang, T.H. Chiu, S.C. Lin, miR146a enhances the oncogenicity of oral carcinoma by concomitant targeting of the IRAK1, TRAF6 and NUMB genes. PLoS ONE. 8, e79926 (2013).  https://doi.org/10.1371/journal.pone.0079926 CrossRefGoogle Scholar
  18. 18.
    D.C. Woods, Y.A. White, C. Dau, A.L. Johnson, TLR4 activates NF-κB in human ovarian granulosa tumor cells. Biochem. Biophys. Res. Commun. 409, 675–680 (2011).  https://doi.org/10.1016/j.bbrc.2011.05.063 CrossRefGoogle Scholar
  19. 19.
    M. Tuttle, L.F. Morris, B. Haugen, J. Shah, J.A. Sosa, E. Rohren, R.M. Subramaniam, J.L. Hunt, N.D. Perrier, Thyroid-differentiated and anaplastic carcinoma. AJCC Cancer Staging Manual, ed. by M.B. Amin, S.B. Edge, F. Greene, D. Byrd, R.K. Brookland, M.K. Washington, J.E. Gershenwald, C.C. Compton, K.R. Hess, D.C. Sullivan, J.M. Jessup, J. Brierley, L.E. Gaspar, R.L. Schilsky, C.M. Balch, D.P. Winchester, E.A. Asare, M. Madera, D.M. Gress, L.R. Meyer (Springer International Publishing, New York, NY, 2017).Google Scholar
  20. 20.
    K. Jazdzewski, S. Liyanarachchi, M. Swierniak, J. Pachucki, M.D. Ringel, B. Jarzab, A. Chapellede la, Polymorphic mature microRNAs from passenger strand of pre-miR146a contribute to thyroid cancer. Proc. Natl. Acad. Sci. USA 106, 1502–1505 (2009).  https://doi.org/10.1073/pnas.0812591106 CrossRefGoogle Scholar
  21. 21.
    KJ. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real time quantitative PCR and 2-∆∆Ct method. Methods 25, 402–408 (2001).CrossRefGoogle Scholar
  22. 22.
    A. Grimson, K.K. Farh, W.K. Johnston, P. Garrett-Engele, L.P. Lim, D.P. Bartel,MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007).CrossRefGoogle Scholar
  23. 23.
    A. Krek, D. Grün, M.N. Poy, R. Wolf, L. Rosenberg, E.J. Epstein, P. MacMenamin, I. da Piedade, K.C. Gunsalus, M. Stoffel, N. Rajewsky, Combinatorial microRNA target predictions. Nat. Genet. 37, 495–500 (2005).Google Scholar
  24. 24.
    M. Maragkakis, M. Reczko, V.A. Simossis, P. Alexiou, G.L. Papadopoulos, T. Dalamagas, G. Giannopoulos, G. Goumas, E. Koukis, K. Kourtis, T. Vergoulis, N. Koziris, T. Sellis, P. Tsanakas, A.G. Hatzigeorgiou, DIANA-microT web server: elucidating microRNA functions through target prediction. Nucl. Acids Res. 37, W273–W276 (2009).Google Scholar
  25. 25.
    P. Lisowski, M. Pierzchała, J. Gościk, C.S. Pareek, L. Zwierzchowski, Evaluation of reference genes for studies of gene expression in the bovine liver, kidney, pituitary, and thyroid. J. Appl. Genet. 49(4), 367–372 (2008).  https://doi.org/10.1007/BF03195635 CrossRefGoogle Scholar
  26. 26.
    D. Shibru, J. Hwang, E. Khanafshar, Q.Y. Duh, O.H. Clark, E. Kebebew, Does the 3-gene diagnostic assay accurately distinguish begnin from malignant thyroid neoplasms? Cancer 113(5), 930–935 (2008).  https://doi.org/10.1002/cncr.23703 CrossRefGoogle Scholar
  27. 27.
    J.Vandesompele, K.De Preter, F.Pattyn, B.Poppe, N.Van Roy, A.De Paepe, F.Speleman, Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome. Biol. 3(7), 18 (2002).CrossRefGoogle Scholar
  28. 28.
    M. Rong, R. He, Y. Dang, G. Chen, Expression and clinicopathological significance of miR146a in hepatocellular carcinoma tissues. Ups. J. Med. Sci. 119(1), 19–24 (2014).  https://doi.org/10.3109/03009734.2013.856970 CrossRefGoogle Scholar
  29. 29.
    W. Ma, X. Zhao, L. Liang, G. Wang, Y. Li, X. Miao, Y. Zhao, miR-146a and miR-146b promote proliferation, migration and invasion of follicular thyroid carcinoma via inhibition of ST8SIA4. Oncotarget 8(17), 28028–28041 (2017).  https://doi.org/10.18632/oncotarget.15885 Google Scholar
  30. 30.
    S. Lassalle, V. Hofman, M. Ilie, C. Bonnetaud, M.P. Puisse´gur, P. Brest, C. Loubatier, N. Guevara, O. Bordone, B. Cardinaud, K. Lebrigand, G. Rios, J. Santini, B. Franc, B. Mari, A.A. Ghuzlan, P. Vielh, P. Barbry, P. Hofman, Can the microRNA signature distinguish between thyroid tumors of uncertain malignant potential and other well differentiated tumors of the thyroid gland?. Endocr. Relat. Cancer 18, 579–594 (2011).  https://doi.org/10.1530/ERC-10-0283 CrossRefGoogle Scholar
  31. 31.
    X. Zhang, D. Li, M. Li, M. Ye, L. Ding, H. Cai, D. Fu, Z. Lv, MicroRNA-146a targets PRKCE to modulate papillary thyroid tumor development. Int. J. Cancer 134(2), 257–267 (2014).  https://doi.org/10.1002/ijc.28141 CrossRefGoogle Scholar
  32. 32.
    F. Pacifico, E. Crescenzi, S. Mellone, A. Iannetti, N. Porrino, A. Iannetti, N. Porrino, D. Liguoro, F. Moscato, M. Grieco, S. Formisano, A. Leonardi, Nuclear factor -{kappa}B contributes to anaplastic thyroid carcinomas throught up-regulation of miR146a. J. Clin. Endocrinol. Metab. 95, 1421–1430 (2010).  https://doi.org/10.1210/jc.2009-1128 CrossRefGoogle Scholar
  33. 33.
    E. Peta, R. Cappellesso, G. Masi, A. Sinigaglia, M. Trevisan, A. Grassi, B. CamilloDi, E. Vassarotto, A. Fassina, G. Palù, L. Barzon, Down-regulation of microRNA-146a is associated with high-risk human papillomavirus infection and epidermal growth factor receptor overexpression in penile squamous cell carcinoma. Hum. Pathol. 61, 33–40 (2017).  https://doi.org/10.1016/j.humpath.2016.10.019 CrossRefGoogle Scholar
  34. 34.
    L.E. Jensen, M. Muzio, A. Mantovani, A.S. Whitehead, IL-1 signaling cascade in liver cells and the involvement of a soluble form of the IL-1 receptor accessory protein. J. Immunol. 164, 5277–5286 (2000).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Elisa Pignatti
    • 1
    • 2
  • Eleonora Vighi
    • 3
  • Elisa Magnani
    • 1
  • Elda Kara
    • 1
  • Luca Roncati
    • 4
  • Antonino Maiorana
    • 4
    • 5
  • Daniele Santi
    • 1
    • 4
  • Bruno Madeo
    • 4
  • Katia Cioni
    • 4
  • Cesare Carani
    • 1
  • Vincenzo Rochira
    • 1
    • 4
  • Manuela Simoni
    • 1
    • 2
    • 4
    Email author
  • Giulia Brigante
    • 1
    • 4
  1. 1.Department of Biomedical, Metabolic and Neural Sciences, Unit of EndocrinologyUniversity of Modena and Reggio EmiliaModenaItaly
  2. 2.Center for Genomic ResearchUniversity of Modena and Reggio EmiliaModenaItaly
  3. 3.Department of Life ScienceUniversity of Modena and Reggio EmiliaModenaItaly
  4. 4.Azienda Ospedaliero-Universitaria of ModenaModenaItaly
  5. 5.Department of Diagnostic and Clinical Medicine, and Public HealthUniversity of Modena and Reggio EmiliaModenaItaly

Personalised recommendations