Advertisement

Endocrine

pp 1–11 | Cite as

Dysbiosis of the gut microbiome is associated with thyroid cancer and thyroid nodules and correlated with clinical index of thyroid function

  • Jiaming Zhang
  • Fanghua Zhang
  • Changying Zhao
  • Qian Xu
  • Cheng Liang
  • Ying Yang
  • Huiling Wang
  • Yongfang Shang
  • Ye Wang
  • Xiaofeng Mu
  • Dequan Zhu
  • Chunling Zhang
  • Junjie Yang
  • Minxiu Yao
  • Lei Zhang
Original Article

Abstract

Purpose

Thyroid cancer and thyroid nodules are the most prevalent form of thyroid endocrine disorder. The balance of gut microbiome is highly crucial for a healthy human body, especially for the immune and endocrine system. However, the relationship between gut microbiome and the thyroid endocrine disorders such as thyroid cancer and thyroid nodules has not been reported yet.

Methods

A cohort of 74 patients was recruited for this study. Among them, 20 patients had thyroid cancer, 18 patients had thyroid nodules, and 36 were matched healthy controls. Gut microbiome composition was analyzed by 16S rRNA (16S ribosomal RNA) gene-based sequencing protocol.

Results

We compared the gut microbiome results of 74 subjects and established the correlation between gut microbiome and thyroid endocrine function for both thyroid cancer and thyroid nodules. The results inferred that alpha and beta diversity were different for patients with thyroid tumor than the healthy controls (p < 0.01). In comparison to healthy controls, the relative abundance of Neisseria (p < 0.001) and Streptococcus (p < 0.001) was significantly higher for thyroid cancer and thyroid nodules. Butyricimonas (p < 0.001) and Lactobacillus (p < 0.001) displayed notably lower relative abundance for thyroid cancer and thyroid nodules, respectively. It was also found that the clinical indexes were correlated with gut microbiome.

Conclusion

Our results indicate that both thyroid cancer and thyroid nodules are associated with the composition of gut microbiome. These results may support further clinical diagnosis to a great extent and help in developing potential probiotics to facilitate the treatment of thyroid cancer and thyroid nodules.

Keywords

Gut microbiome Thyroid cancer Thyroid nodules 16S rRNA gene sequencing Clinical index 

Abbreviations

Tg

Thyroglobulin

TgAb

Thyroglobulin antibody

TSH

Thyroid stimulating hormone

FT3

Free triiodothyronine

FT4

Free tetraiodothyronine

TRAb

Thyrotropin receptor antibody

TPOAb

Thyroid peroxidase antibody

Notes

Funding

This study was supported by the National Natural Science Foundation of China under contract No.31471202 (Lei Zhang) and No. 81670822 (Ye Wang); the Shandong Provincial Key Research and Development Program under contract No. 2016YYSP009 (Lei Zhang); Weihai Technique Extension Project under contract No. 2016GNS023 (Lei Zhang). Qingdao Key Research Project No. 17-3-3-10-nsh (Chunling Zhang). Lei Zhang was also supported by the Taishan Scholars Program of Shandong Province (No. tshw20120206).

Author Contributions

L.Z., J.Y. and M.Y. designed the study. J.Z., C.L., Y.Y., H.W., Y.S., Y.W., X.M., D.Z., and C.Z. performed measurements and data analysis. C.Z. and Q.X. obtained samples. F.Z., J.Z. and L.Z. wrote the manuscript. All authors have read and critically revised the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest. The authors have nothing to disclose.

Ethical approval

All procedures performed in the above studies involving human participants were in accordance with the ethical standards of the institution and/or national research committee and with the 1964 Declaration of Helsinki along with its later amendments or comparable ethical standards.

Informed consent

All the subjects signed informed consent beforehand and belonged to the same geographical area. Data was collected by using a standardized questionnaire including basic information, medical history and examination results.

References

  1. 1.
    J.A. Gilbert, M.J. Blaser, J.G. Caporaso, J.K. Jansson, S.V. Lynch, R. Knight, Current understanding of the human microbiome. Nat. Med. 24(4), 392–400 (2018).  https://doi.org/10.1038/nm.4517 CrossRefGoogle Scholar
  2. 2.
    C. De Filippo, D. Cavalieri, M. Di Paola, M. Ramazzotti, J.B. Poullet, S. Massart, S. Collini, G. Pieraccini, P. Lionetti. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA. 107(33), 14691-14696 (2010).  https://doi.org/10.1073/pnas.1005963107
  3. 3.
    L. Dethlefsen, M. McFall-Ngai, D.A. Relman, An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449(7164), 811–818 (2007).  https://doi.org/10.1038/nature06245 CrossRefGoogle Scholar
  4. 4.
    O. Huck, J. Al-Hashemi, L. Poidevin, O. Poch, J.L. Davideau, H. Tenenbaum, S. Amar. identification and characterization of microrna differentially expressed in macrophages exposed to porphyromonas gingivalis infection. Infect. Immunity 85(3), (2017).  https://doi.org/10.1128/IAI.00771-16
  5. 5.
    C. Pere-Vedrenne, M. Prochazkova-Carlotti, B. Rousseau, W. He, L. Chambonnier, E. Sifre, A. Buissonniere, P. Dubus, F. Megraud, C. Varon, A. Menard, The cytolethal distending toxin subunit cdtb of helicobacter hepaticus promotes senescence and endoreplication in xenograft mouse models of hepatic and intestinal cell lines. Front. Cell. Infect. Microbiol. 7, 268 (2017).  https://doi.org/10.3389/fcimb.2017.00268 CrossRefGoogle Scholar
  6. 6.
    L. Zitvogel, M. Ayyoub, B. Routy, G. Kroemer, Microbiome and anticancer immunosurveillance. Cell 165(2), 276–287 (2016).  https://doi.org/10.1016/j.cell.2016.03.001 CrossRefGoogle Scholar
  7. 7.
    Y. Guo, Y. Qi, X. Yang, L. Zhao, S. Wen, Y. Liu, L. Tang, Association between Polycystic Ovary Syndrome and Gut Microbiota. PloS One 11(4), e0153196 (2016).  https://doi.org/10.1371/journal.pone.0153196 CrossRefGoogle Scholar
  8. 8.
    R.J. Perry, L. Peng, N.A. Barry, G.W. Cline, D. Zhang, R.L. Cardone, K.F. Petersen, R.G. Kibbey, A.L. Goodman, G.I. Shulman, Acetate mediates a microbiome-brain-beta-cell axis to promote metabolic syndrome. Nature 534(7606), 213–217 (2016).  https://doi.org/10.1038/nature18309 CrossRefGoogle Scholar
  9. 9.
    T. Vatanen, E.A. Franzosa, R. Schwager, S. Tripathi, T.D. Arthur, K. Vehik, A. Lernmark, W.A. Hagopian, M.J. Rewers, J.X. She, J. Toppari, A.G. Ziegler, B. Akolkar, J.P. Krischer, C.J. Stewart, N.J. Ajami, J.F. Petrosino, D. Gevers, H. Lahdesmaki, H. Vlamakis, C. Huttenhower, R.J. Xavier, The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature 562(7728), 589–594 (2018).  https://doi.org/10.1038/s41586-018-0620-2 CrossRefGoogle Scholar
  10. 10.
    K. Forslund, F. Hildebrand, T. Nielsen, G. Falony, E. Le Chatelier, S. Sunagawa, E. Prifti, S. Vieira-Silva, V. Gudmundsdottir, H.K. Pedersen, M. Arumugam, K. Kristiansen, A.Y. Voigt, H. Vestergaard, R. Hercog, P.I. Costea, J.R. Kultima, J. Li, T. Jorgensen, F. Levenez, J. Dore, H.I.Tc Meta, H.B. Nielsen, S. Brunak, J. Raes, T. Hansen, J. Wang, S.D. Ehrlich, P. Bork, O. Pedersen, Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528(7581), 262–266 (2015).  https://doi.org/10.1038/nature15766 CrossRefGoogle Scholar
  11. 11.
    C.F.L. Goncalves, M.L. de Freitas, A.C.F. Ferreira. Flavonoids, thyroid iodide uptake and thyroid cancer-a review. Int. J. Mol. Sci. 18(6), (2017).  https://doi.org/10.3390/ijms18061247
  12. 12.
    T. Carling, R. Udelsman, Thyroid cancer. Annu. Rev. Med. 65, 125–137 (2014).  https://doi.org/10.1146/annurev-med-061512-105739 CrossRefGoogle Scholar
  13. 13.
    J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, D.M. Parkin, D. Forman, F. Bray, Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136(5), E359–386 (2015).  https://doi.org/10.1002/ijc.29210 CrossRefGoogle Scholar
  14. 14.
    G. Pellegriti, F. Frasca, C. Regalbuto, S. Squatrito, R. Vigneri, Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. J. Cancer Epidemiol. 2013, 965212 (2013).  https://doi.org/10.1155/2013/965212 CrossRefGoogle Scholar
  15. 15.
    L. Rahib, B.D. Smith, R. Aizenberg, A.B. Rosenzweig, J.M. Fleshman, L.M. Matrisian, Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 74(11), 2913–2921 (2014).  https://doi.org/10.1158/0008-5472.CAN-14-0155 CrossRefGoogle Scholar
  16. 16.
    D.M. Parkin, J. Ferlay, M.P. Curado, F. Bray, B. Edwards, H.R. Shin, D. Forman, Fifty years of cancer incidence: CI5 I-IX. Int. J. Cancer 127(12), 2918–2927 (2010).  https://doi.org/10.1002/ijc.25517 CrossRefGoogle Scholar
  17. 17.
    K.D. Burman, L. Wartofsky, Clinical practice. thyroid nodules. New Engl. J. Med. 373(24), 2347–2356 (2015).  https://doi.org/10.1056/NEJMcp1415786 CrossRefGoogle Scholar
  18. 18.
    S. Guth, U. Theune, J. Aberle, A. Galach, C.M. Bamberger, Very high prevalence of thyroid nodules detected by high frequency (13 MHz) ultrasound examination. Eur. J. Clin. Investig. 39(8), 699–706 (2009).  https://doi.org/10.1111/j.1365-2362.2009.02162.x CrossRefGoogle Scholar
  19. 19.
    F. Clavel-Chapelon, G. Guillas, L. Tondeur, C. Kernaleguen, M.C. Boutron-Ruault, Risk of differentiated thyroid cancer in relation to adult weight, height and body shape over life: the French E3N cohort. Int. J. Cancer 126(12), 2984–2990 (2010).  https://doi.org/10.1002/ijc.25066 Google Scholar
  20. 20.
    A. Magreni, D.V. Bann, J.R. Schubart, D. Goldenberg, The effects of race and ethnicity on thyroid cancer incidence. JAMA Otolaryngol. Head. Neck Surg. 141(4), 319–323 (2015).  https://doi.org/10.1001/jamaoto.2014.3740 CrossRefGoogle Scholar
  21. 21.
    M. Sokouti, V. Montazeri, A. Fakhrjou, S. Samankan, M. Goldust, Thyroid cancer, clinical and hystopathological study on patients under 25 years in Tabriz, Iran (2000-2012). Pak. J. Biol. Sci.: PJBS 16(24), 2003–2008 (2013)CrossRefGoogle Scholar
  22. 22.
    L.H. Veiga, E. Holmberg, H. Anderson, L. Pottern, S. Sadetzki, M.J. Adams, R. Sakata, A.B. Schneider, P. Inskip, P. Bhatti, R. Johansson, G. Neta, R. Shore, F. de Vathaire, L. Damber, R. Kleinerman, M.M. Hawkins, M. Tucker, M. Lundell, J.H. Lubin, Thyroid cancer after childhood exposure to external radiation: an updated pooled analysis of 12 studies. Radiat. Res. 185(5), 473–484 (2016).  https://doi.org/10.1667/RR14213.1 CrossRefGoogle Scholar
  23. 23.
    M. Zane, C. Parello, G. Pennelli, D.M. Townsend, S. Merigliano, M. Boscaro, A. Toniato, G. Baggio, M.R. Pelizzo, D. Rubello, I.M. Boschin, Estrogen and thyroid cancer is a stem affair: a preliminary study. Biomed. Pharmacother. 85, 399–411 (2017).  https://doi.org/10.1016/j.biopha.2016.11.043 CrossRefGoogle Scholar
  24. 24.
    C. Virili, M. Centanni, “With a little help from my friends” - The role of microbiota in thyroid hormone metabolism and enterohepatic recycling. Mol. Cell. Endocrinol. 458, 39–43 (2017).  https://doi.org/10.1016/j.mce.2017.01.053 CrossRefGoogle Scholar
  25. 25.
    E. Jasarevic, K.E. Morrison, T.L. Bale, Sex differences in the gut microbiome-brain axis across the lifespan. Philosophical transactions of the Royal Society of London. Ser. B, Biol. Sci. 371(1688), 20150122 (2016).  https://doi.org/10.1098/rstb.2015.0122 CrossRefGoogle Scholar
  26. 26.
    D. Covelli, M. Ludgate, The thyroid, the eyes and the gut: a possible connection. J. Endocrinol. Investig. 40(6), 567–576 (2017).  https://doi.org/10.1007/s40618-016-0594-6 CrossRefGoogle Scholar
  27. 27.
    H.M. Ishaq, I.S. Mohammad, H. Guo, M. Shahzad, Y.J. Hou, C. Ma, Z. Naseem, X. Wu, P. Shi, J. Xu, Molecular estimation of alteration in intestinal microbial composition in Hashimoto’s thyroiditis patients. Biomed. Pharmacother. 95, 865–874 (2017).  https://doi.org/10.1016/j.biopha.2017.08.101 CrossRefGoogle Scholar
  28. 28.
    F. Zhao, J. Feng, J. Li, L. Zhao, Y. Liu, H. Chen, Y. Jin, B. Zhu, Y. Wei, Alterations of the gut microbiota in hashimoto’s thyroiditis patients. Thyroid 28(2), 175–186 (2018).  https://doi.org/10.1089/thy.2017.0395 CrossRefGoogle Scholar
  29. 29.
    X. Wang, L. Zhang, Y. Wang, X. Liu, H. Zhang, Y. Liu, N. Shen, J. Yang, Z. Gai, Gut microbiota dysbiosis is associated with Henoch-Schonlein Purpura in children. Int. Immunopharmacol. 58, 1–8 (2018).  https://doi.org/10.1016/j.intimp.2018.03.003 CrossRefGoogle Scholar
  30. 30.
    K. Findley, J. Oh, J. Yang, S. Conlan, C. Deming, J.A. Meyer, D. Schoenfeld, E. Nomicos, M. Park; Program, N.I.H.I.S.C.C.S., H.H. Kong, J.A. Segre, Topographic diversity of fungal and bacterial communities in human skin. Nature 498(7454), 367–370 (2013).  https://doi.org/10.1038/nature12171 CrossRefGoogle Scholar
  31. 31.
    T. Magoc, S.L. Salzberg, FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21), 2957–2963 (2011).  https://doi.org/10.1093/bioinformatics/btr507 CrossRefGoogle Scholar
  32. 32.
    J.G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F.D. Bushman, E.K. Costello, N. Fierer, A.G. Pena, J.K. Goodrich, J.I. Gordon, G.A. Huttley, S.T. Kelley, D. Knights, J.E. Koenig, R.E. Ley, C.A. Lozupone, D. McDonald, B.D. Muegge, M. Pirrung, J. Reeder, J.R. Sevinsky, P.J. Turnbaugh, W.A. Walters, J. Widmann, T. Yatsunenko, J. Zaneveld, R. Knight, QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7(5), 335–336 (2010).  https://doi.org/10.1038/nmeth.f.303 CrossRefGoogle Scholar
  33. 33.
    R.C. Edgar, Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19), 2460 (2010)CrossRefGoogle Scholar
  34. 34.
    J.R. Cole, Q. Wang, E. Cardenas, J. Fish, B. Chai, R.J. Farris, A.S. Kulam-Syed-Mohideen, D.M. McGarrell, T. Marsh, G.M. Garrity, J.M. Tiedje, The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37(Database issue), D141–145 (2009).  https://doi.org/10.1093/nar/gkn879 CrossRefGoogle Scholar
  35. 35.
    S.V. Rajagopala, S. Vashee, L.M. Oldfield, Y. Suzuki, J.C. Venter, A. Telenti, K.E. Nelson, The human microbiome and cancer. Cancer Prev. Res. 10(4), 226–234 (2017).  https://doi.org/10.1158/1940-6207.CAPR-16-0249 CrossRefGoogle Scholar
  36. 36.
    S. Meng, B. Chen, J. Yang, J. Wang, D. Zhu, Q. Meng, L. Zhang, Study of microbiomes in aseptically collected samples of human breast tissue using needle biopsy and the potential role of in situ tissue microbiomes for promoting malignancy. Front Oncol. 8, 318 (2018).  https://doi.org/10.3389/fonc.2018.00318 CrossRefGoogle Scholar
  37. 37.
    X. Wang, T. Ye, W.J. Chen, Y. Lv, Z. Hao, J. Chen, J.Y. Zhao, H.P. Wang, Y.K. Cai, Structural shift of gut microbiota during chemo-preventive effects of epigallocatechin gallate on colorectal carcinogenesis in mice. World J. Gastroenterol. 23(46), 8128–8139 (2017).  https://doi.org/10.3748/wjg.v23.i46.8128 CrossRefGoogle Scholar
  38. 38.
    J. Zhu, M. Liao, Z. Yao, W. Liang, Q. Li, J. Liu, H. Yang, Y. Ji, W. Wei, A. Tan, S. Liang, Y. Chen, H. Lin, X. Zhu, S. Huang, J. Tian, R. Tang, Q. Wang, Z. Mo, Breast cancer in postmenopausal women is associated with an altered gut metagenome. Microbiome 6(1), 136 (2018).  https://doi.org/10.1186/s40168-018-0515-3 CrossRefGoogle Scholar
  39. 39.
    K.M. Trapani, L.J. Boghossian, E. Caskey, Clostridium subterminale Septicemia in a patient with metastatic gastrointestinal adenocarcinoma. Case Rep. Infect. Dis. 2018, 6031510 (2018).  https://doi.org/10.1155/2018/6031510 Google Scholar
  40. 40.
    A.J. Benitez, C. Hoffmann, A.B. Muir, K.K. Dods, J.M. Spergel, F.D. Bushman, M.L. Wang, Inflammation-associated microbiota in pediatric eosinophilic esophagitis. Microbiome 3, 23 (2015).  https://doi.org/10.1186/s40168-015-0085-6 CrossRefGoogle Scholar
  41. 41.
    S. Macfarlane, E. Furrie, G.T. Macfarlane, J.F. Dillon, Microbial colonization of the upper gastrointestinal tract in patients with Barrett’s esophagus. Clin. Infect. Dis. 45(1), 29–38 (2007).  https://doi.org/10.1086/518578 CrossRefGoogle Scholar
  42. 42.
    J. Si, C. Lee, G. Ko, Oral microbiota: microbial biomarkers of metabolic syndrome independent of host genetic factors. Front Cell Infect. Microbiol 7, 516 (2017).  https://doi.org/10.3389/fcimb.2017.00516 CrossRefGoogle Scholar
  43. 43.
    R. Memba, S.N. Duggan, H.M. Ni Chonchubhair, O.M. Griffin, Y. Bashir, D.B. O’Connor, A. Murphy, J. McMahon, Y. Volcov, B.M. Ryan, K.C. Conlon, The potential role of gut microbiota in pancreatic disease: a systematic review. Pancreatology 17(6), 867–874 (2017).  https://doi.org/10.1016/j.pan.2017.09.002 CrossRefGoogle Scholar
  44. 44.
    J.S. Gold, S. Bayar, R.R. Salem, Association of Streptococcus bovis bacteremia with colonic neoplasia and extracolonic malignancy. Arch. Surg. 139(7), 760–765 (2004).  https://doi.org/10.1001/archsurg.139.7.760 CrossRefGoogle Scholar
  45. 45.
    A.S. Abdulamir, R.R. Hafidh, F. Abu Bakar, The association of Streptococcus bovis/gallolyticus with colorectal tumors: the nature and the underlying mechanisms of its etiological role. J. Exp. Clin. Cancer Res 30, 11 (2011).  https://doi.org/10.1186/1756-9966-30-11 CrossRefGoogle Scholar
  46. 46.
    J.D. Dahmus, D.L. Kotler, D.M. Kastenberg, C.A. Kistler, The gut microbiome and colorectal cancer: a review of bacterial pathogenesis. J. Gastrointest. Oncol. 9(4), 769–777 (2018).  https://doi.org/10.21037/jgo.2018.04.07 CrossRefGoogle Scholar
  47. 47.
    M. Sakamoto, A. Takagaki, K. Matsumoto, Y. Kato, K. Goto, Y. Benno, Butyricimonas synergistica gen. nov., sp. nov. and Butyricimonas virosa sp. nov., butyric acid-producing bacteria in the family ‘Porphyromonadaceae’ isolated from rat faeces. Int. J. Syst. Evolut. Microbiol. 59(Pt 7), 1748–1753 (2009).  https://doi.org/10.1099/ijs.0.007674-0 CrossRefGoogle Scholar
  48. 48.
    J. Zhao, L. Nian, L.Y. Kwok, T. Sun, J. Zhao, Reduction in fecal microbiota diversity and short-chain fatty acid producers in Methicillin-resistant Staphylococcus aureus infected individuals as revealed by PacBio single molecule, real-time sequencing technology. Eur. J. Clin. Microbiol. Infect. Dis. 36(8), 1463–1472 (2017).  https://doi.org/10.1007/s10096-017-2955-2 CrossRefGoogle Scholar
  49. 49.
    Y. Furusawa, Y. Obata, S. Fukuda, T.A. Endo, G. Nakato, D. Takahashi, Y. Nakanishi, C. Uetake, K. Kato, T. Kato, M. Takahashi, N.N. Fukuda, S. Murakami, E. Miyauchi, S. Hino, K. Atarashi, S. Onawa, Y. Fujimura, T. Lockett, J.M. Clarke, D.L. Topping, M. Tomita, S. Hori, O. Ohara, T. Morita, H. Koseki, J. Kikuchi, K. Honda, K. Hase, H. Ohno, Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504(7480), 446–450 (2013).  https://doi.org/10.1038/nature12721 CrossRefGoogle Scholar
  50. 50.
    E. Pessione, Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows. Front. Cell. Infect. Microbiol. 2, 86 (2012).  https://doi.org/10.3389/fcimb.2012.00086 CrossRefGoogle Scholar
  51. 51.
    S. Danzi, I. Klein, Thyroid hormone and the cardiovascular system. Med. Clin. North Am. 96(2), 257–268 (2012).  https://doi.org/10.1016/j.mcna.2012.01.006 CrossRefGoogle Scholar
  52. 52.
    A.P. Garcia-Gonzalez, A.D. Ritter, S. Shrestha, E.C. Andersen, L.S. Yilmaz, A.J.M. Walhout, Bacterial metabolism affects the C. elegans response to cancer chemotherapeutics. Cell 169(3), 431–441 e438 (2017).  https://doi.org/10.1016/j.cell.2017.03.046 CrossRefGoogle Scholar
  53. 53.
    V. Gopalakrishnan, C.N. Spencer, L. Nezi, A. Reuben, M.C. Andrews, T.V. Karpinets, P.A. Prieto, D. Vicente, K. Hoffman, S.C. Wei, A.P. Cogdill, L. Zhao, C.W. Hudgens, D.S. Hutchinson, T. Manzo, M. Petaccia de Macedo, T. Cotechini, T. Kumar, W.S. Chen, S.M. Reddy, R. Szczepaniak Sloane, J. Galloway-Pena, H. Jiang, P.L. Chen, E.J. Shpall, K. Rezvani, A.M. Alousi, R.F. Chemaly, S. Shelburne, L.M. Vence, P.C. Okhuysen, V.B. Jensen, A.G. Swennes, F. McAllister, E. Marcelo Riquelme Sanchez, Y. Zhang, E. Le Chatelier, L. Zitvogel, N. Pons, J.L. Austin-Breneman, L.E. Haydu, E.M. Burton, J.M. Gardner, E. Sirmans, J. Hu, A.J. Lazar, T. Tsujikawa, A. Diab, H. Tawbi, I.C. Glitza, W.J. Hwu, S.P. Patel, S.E. Woodman, R.N. Amaria, M.A. Davies, J.E. Gershenwald, P. Hwu, J.E. Lee, J. Zhang, L.M. Coussens, Z.A. Cooper, P.A. Futreal, C.R. Daniel, N.J. Ajami, J.F. Petrosino, M.T. Tetzlaff, P. Sharma, J.P. Allison, R.R. Jenq, J.A. Wargo, Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359(6371), 97–103 (2018).  https://doi.org/10.1126/science.aan4236 CrossRefGoogle Scholar
  54. 54.
    Y. Gu, X. Wang, J. Li, Y. Zhang, H. Zhong, R. Liu, D. Zhang, Q. Feng, X. Xie, J. Hong, H. Ren, W. Liu, J. Ma, Q. Su, H. Zhang, J. Yang, X. Wang, X. Zhao, W. Gu, Y. Bi, Y. Peng, X. Xu, H. Xia, F. Li, X. Xu, H. Yang, G. Xu, L. Madsen, K. Kristiansen, G. Ning, W. Wang, Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment. Nat. Commun. 8(1), 1785 (2017).  https://doi.org/10.1038/s41467-017-01682-2 CrossRefGoogle Scholar
  55. 55.
    H. Zhao, H. Li, T. Huang, High urinary iodine, thyroid autoantibodies, and thyroid-stimulating hormone for papillary thyroid cancer risk. Biol. Trace Elem. Res. 184(2), 317–324 (2018).  https://doi.org/10.1007/s12011-017-1209-6 CrossRefGoogle Scholar
  56. 56.
    R. Guerrero-Preston, F. Godoy-Vitorino, A. Jedlicka, A. Rodriguez-Hilario, H. Gonzalez, J. Bondy, F. Lawson, O. Folawiyo, C. Michailidi, A. Dziedzic, R. Thangavel, T. Hadar, M.G. Noordhuis, W. Westra, W. Koch, D. Sidransky, 16S rRNA amplicon sequencing identifies microbiota associated with oral cancer, human papilloma virus infection and surgical treatment. Oncotarget 7(32), 51320–51334 (2016).  https://doi.org/10.18632/oncotarget.9710 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Qingdao Human Microbiome CenterThe Affiliated Central Hospital of Qingdao UniversityQingdaoChina
  2. 2.College of Life ScienceShandong Normal UniversityJinanChina
  3. 3.Department of EndocrinologyThe Affiliated Central Hospital of Qingdao UniversityQingdaoChina
  4. 4.School of Information Science and EngineeringShandong Normal UniversityJinanChina
  5. 5.Clinical Laboratory and Core Research LaboratoryThe Affiliated Central Hospital of Qingdao UniversityQingdao 266042China
  6. 6.Microbiological LaboratoryLin Yi People’s HospitalLinyi 276003China
  7. 7.College of Life ScienceQilu Normal UniversityJinanChina
  8. 8.Shandong Children’s Microbiome CenterQilu Children’s Hospital of Shandong UniversityJinanChina
  9. 9.Shandong Institutes for Food and Drug Control, Xinluo Street 2749JinanChina
  10. 10.Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Chemistry and EnvironmentBeihang UniversityBeijingChina

Personalised recommendations