Advertisement

Endocrine

, Volume 63, Issue 3, pp 639–650 | Cite as

Overexpression of CAV3 facilitates bone formation via the Wnt signaling pathway in osteoporotic rats

  • Run-Bao Yang
  • Feng-Fei Lin
  • Jun Yang
  • Bin Chen
  • Ming-Hua Zhang
  • Qiao-Ping Lu
  • Bo Xiao
  • Yan Liu
  • Ke Zheng
  • Yong-Rong QiuEmail author
Original Article

Abstract

Purpose

Osteoporosis is a condition characterized by decreased bone density and bone strength, commonly observed among older individuals. Caveolin-3 (CAV3) is a principal structural protein of the caveolae membrane domains, which has been reported to participate in cell signaling as well as the maintenance of cell structure. The aim of the current study was to investigate the effects involved with the silencing of CAV3 on bone formation among osteoporotic rat models via the Wnt signaling pathway.

Methods

Osteoporosis was initially induced by means of ovariotomy among rat models in order to determine the expression of CAV3. Then, to confirm the specific function and mechanism of CAV3 from an osteoporosis perspective, the CAV3 expression vector was constructed and transfected into the osteoblasts of the osteoporotic rats. Afterward, the mRNA and protein expressions of CAV3, β-catenin, low-density lipoprotein receptor-related protein 5 (LRP5), T-cell factor (TCF), and Wnt3a in addition to cell proliferation and apoptosis were detected accordingly.

Results

Positive expression of CAV3 exhibited diminished levels in the bone tissues of osteoporotic rats. The osteoblasts of the osteoporotic rats treated with overexpressed CAV3 displayed elevated mRNA and protein expression levels of β-catenin, LRP5, TCF, and Wnt3a. Increased cell proliferation and decreased cell apoptosis were also observed, while the osteoblasts of the osteoporotic rats treated with si-CAV3 exhibited an opposite result.

Conclusion

Overexpressed CAV3 promotes bone formation and suppresses the osteoporosis progression via the activation of the Wnt signaling in rat models, suggesting CAV3 as a potential target biomarker in the treatment of osteoporosis.

Keywords

Osteoporosis CAV3 Gene silencing Wnt signaling pathway Bone formation 

Notes

Acknowledgements

We would like to acknowledge the helpful comments on this paper received from our reviewers.

Funding

This study was supported by Fuzhou Science and Technology Bureau (No. 2013-S-123-4) and Natural Science Foundation of Fujian Province (No. 2016J01598).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All animal operations in this study were performed was in line with the local principles of management and use of experimental animals.

References

  1. 1.
    E.M. Curtis, R.J. Moon, N.C. Harvey, C. Cooper, The impact of fragility fracture and approaches to osteoporosis risk assessment worldwide. Bone 104, 29–38 (2017)CrossRefGoogle Scholar
  2. 2.
    R. Baron, M. Kneissel, WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat. Med. 19(2), 179–192 (2013)CrossRefGoogle Scholar
  3. 3.
    S.W. Wade, C. Strader, L.A. Fitzpatrick, M.S. Anthony, C.D. O’Malley, Estimating prevalence of osteoporosis: examples from industrialized countries. Arch. Osteoporos. 9, 182 (2014)CrossRefGoogle Scholar
  4. 4.
    N.D. Zhang, T. Han, B.K. Huang, K. Rahman, Y.P. Jiang, H.T. Xu, L.P. Qin, H.L. Xin, Q.Y. Zhang, Y.M. Li, Traditional Chinese medicine formulas for the treatment of osteoporosis: Implication for antiosteoporotic drug discovery. J. Ethnopharmacol. 189, 61–80 (2016)CrossRefGoogle Scholar
  5. 5.
    K. Lippuner, The future of osteoporosis treatment - a research update. Swiss Med. Wkly 142, w13624 (2012)Google Scholar
  6. 6.
    R. Yuan, S. Ma, X. Zhu, J. Li, Y. Liang, T. Liu, Y. Zhu, B. Zhang, S. Tan, H. Guo, S. Guan, P. Ao, G. Zhou, Core level regulatory network of osteoblast as molecular mechanism for osteoporosis and treatment. Oncotarget 7(4), 3692–3701 (2016)CrossRefGoogle Scholar
  7. 7.
    J. Cheng, C.R. Valdivia, R. Vaidyanathan, R.C. Balijepalli, M.J. Ackerman, J.C. Makielski, Caveolin-3 suppresses late sodium current by inhibiting nNOS-dependent S-nitrosylation of SCN5A. J. Mol. Cell. Cardiol. 61, 102–110 (2013)CrossRefGoogle Scholar
  8. 8.
    P. Nassoy, C. Lamaze, Stressing caveolae new role in cell mechanics. Trends Cell Biol. 22(7), 381–389 (2012)CrossRefGoogle Scholar
  9. 9.
    M. Maceckova, H. Martiskova, A. Koudelka, L. Kubala, A. Lojek, M. Pekarova, Bone marrow-derived macrophages exclusively expressed caveolin-2: the role of inflammatory activators and hypoxia. Immunobiology 220(11), 1266–1274 (2015)CrossRefGoogle Scholar
  10. 10.
    C. Niehrs, The complex world of WNT receptor signalling. Nat. Rev. Mol. Cell Biol. 13(12), 767–779 (2012)CrossRefGoogle Scholar
  11. 11.
    J.N. Anastas, R.T. Moon, WNT signalling pathways as therapeutic targets in cancer. Nat. Rev. Cancer 13(1), 11–26 (2013)CrossRefGoogle Scholar
  12. 12.
    D.G. Monroe, M.E. McGee-Lawrence, M.J. Oursler, J.J. Westendorf, Update on Wnt signaling in bone cell biology and bone disease. Gene 492(1), 1–18 (2012)CrossRefGoogle Scholar
  13. 13.
    G. Yuan, I. Regel, F. Lian, T. Friedrich, I. Hitkova, R.D. Hofheinz, P. Strobel, R. Langer, G. Keller, C. Rocken, W. Zimmermann, R.M. Schmid, M.P. Ebert, E. Burgermeister, WNT6 is a novel target gene of caveolin-1 promoting chemoresistance to epirubicin in human gastric cancer cells. Oncogene 32(3), 375–387 (2013)CrossRefGoogle Scholar
  14. 14.
    H. Namkung-Matthai, R. Appleyard, J. Jansen, J. Hao Lin, S. Maastricht, M. Swain, R.S. Mason, G.A. Murrell, A.D. Diwan, T. Diamond, Osteoporosis influences the early period of fracture healing in a rat osteoporotic model. Bone 28(1), 80–86 (2001)CrossRefGoogle Scholar
  15. 15.
    K. Jensen, R. Krusenstjerna-Hafstrom, J. Lohse, K.H. Petersen, H. Derand, A novel quantitative immunohistochemistry method for precise protein measurements directly in formalin-fixed, paraffin-embedded specimens: analytical performance measuring HER2. Mod. Pathol. 30(2), 180–193 (2017)CrossRefGoogle Scholar
  16. 16.
    T.D. Rachner, S. Khosla, L.C. Hofbauer, Osteoporosis: now and the future. Lancet 377(9773), 1276–1287 (2011)CrossRefGoogle Scholar
  17. 17.
    P.J. Marie, M. Kassem, Osteoblasts in osteoporosis: past, emerging, and future anabolic targets. Eur. J. Endocrinol. 165(1), 1–10 (2011)CrossRefGoogle Scholar
  18. 18.
    Y. Miyauchi, Y. Sato, T. Kobayashi, S. Yoshida, T. Mori, H. Kanagawa, E. Katsuyama, A. Fujie, W. Hao, K. Miyamoto, T. Tando, H. Morioka, M. Matsumoto, P. Chambon, R.S. Johnson, S. Kato, Y. Toyama, T. Miyamoto, HIF1alpha is required for osteoclast activation by estrogen deficiency in postmenopausal osteoporosis. Proc. Natl. Acad. Sci. USA 110(41), 16568–16573 (2013)CrossRefGoogle Scholar
  19. 19.
    L.M. Havill, L.G. Hale, D.E. Newman, S.M. Witte, M.C. Mahaney, Bone, ALP and OC reference standards in adult baboons (Papio hamadryas) by sex and age. J. Med. Primatol. 35(2), 97–105 (2006)CrossRefGoogle Scholar
  20. 20.
    C. Li, Z. Jiang, X. Liu, Biochemical mechanism of gallium on prevention of fatal cage-layer osteoporosis. Biol. Trace Elem. Res. 134(2), 195–202 (2010)CrossRefGoogle Scholar
  21. 21.
    S. Zenger, K. Hollberg, J. Ljusberg, M. Norgard, B. Ek-Rylander, R. Kiviranta, G. Andersson, Proteolytic processing and polarized secretion of tartrate-resistant acid phosphatase is altered in a subpopulation of metaphyseal osteoclasts in cathepsin K-deficient mice. Bone 41(5), 820–832 (2007)CrossRefGoogle Scholar
  22. 22.
    Z. Tang, P.E. Scherer, T. Okamoto, K. Song, C. Chu, D.S. Kohtz, I. Nishimoto, H.F. Lodish, M.P. Lisanti, Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J. Biol. Chem. 271(4), 2255–2261 (1996)CrossRefGoogle Scholar
  23. 23.
    Z. Wang, N. Wang, W. Li, P. Liu, Q. Chen, H. Situ, S. Zhong, L. Guo, Y. Lin, J. Shen, J. Chen, Caveolin-1 mediates chemoresistance in breast cancer stem cells via beta-catenin/ABCG2 signaling pathway. Carcinogenesis 35(10), 2346–2356 (2014)CrossRefGoogle Scholar
  24. 24.
    J. Korvala, H. Juppner, O. Makitie, E. Sochett, D. Schnabel, S. Mora, C.F. Bartels, M.L. Warman, D. Deraska, W.G. Cole, H. Hartikka, L. Ala-Kokko, M. Mannikko, Mutations in LRP5 cause primary osteoporosis without features of OI by reducing Wnt signaling activity. Bmc. Med. Genet. 13, 26 (2012)CrossRefGoogle Scholar
  25. 25.
    M. Rossini, D. Gatti, S. Adami, Involvement of WNT/beta-catenin signaling in the treatment of osteoporosis. Calcif. Tissue Int. 93(2), 121–132 (2013)CrossRefGoogle Scholar
  26. 26.
    R.K. Bikkavilli, C.C. Malbon, Arginine methylation of G3BP1 in response to Wnt3a regulates beta-catenin mRNA. J. Cell. Sci. 124(Pt 13), 2310–2320 (2011)CrossRefGoogle Scholar
  27. 27.
    J. Chen, F. Long, beta-catenin promotes bone formation and suppresses bone resorption in postnatal growing mice. J. Bone Miner. Res. 28(5), 1160–1169 (2013)CrossRefGoogle Scholar
  28. 28.
    J. Su, A. Zhang, Z. Shi, F. Ma, P. Pu, T. Wang, J. Zhang, C. Kang, Q. Zhang, MicroRNA-200a suppresses the Wnt/beta-catenin signaling pathway by interacting with beta-catenin. Int. J. Oncol. 40(4), 1162–1170 (2012)Google Scholar
  29. 29.
    Z. von Marschall, L.W. Fisher, Secreted Frizzled-related protein-2 (sFRP2) augments canonical Wnt3a-induced signaling. Biochem. Biophys. Res. Commun. 400(3), 299–304 (2010)CrossRefGoogle Scholar
  30. 30.
    S. Iyer, E. Ambrogini, S.M. Bartell, L. Han, P.K. Roberson, R. de Cabo, R.L. Jilka, R.S. Weinstein, C.A. O’Brien, S.C. Manolagas, M. Almeida, FOXOs attenuate bone formation by suppressing Wnt signaling. J. Clin. Invest. 123(8), 3409–3419 (2013)CrossRefGoogle Scholar
  31. 31.
    J. Wang, J.S. Park, Y. Wei, M. Rajurkar, J.L. Cotton, Q. Fan, B.C. Lewis, H. Ji, J. Mao, TRIB2 acts downstream of Wnt/TCF in liver cancer cells to regulate YAP and C/EBPalpha function. Mol. Cell 51(2), 211–225 (2013)CrossRefGoogle Scholar
  32. 32.
    S. Bousserouel, M. Raymondjean, A. Brouillet, G. Bereziat, M. Andreani, Modulation of cyclin D1 and early growth response factor-1 gene expression in interleukin-1beta-treated rat smooth muscle cells by n-6 and n-3 polyunsaturated fatty acids. Eur. J. Biochem. 271(22), 4462–4473 (2004)CrossRefGoogle Scholar
  33. 33.
    F. Fang, W.Y. Zhao, R.K. Li, X.M. Yang, J. Li, J.P. Ao, S.H. Jiang, F.Z. Kong, L. Tu, C. Zhuang, W.X. Qin, P. He, W.M. Zhang, H. Cao, Z.G. Zhang, Silencing of WISP3 suppresses gastric cancer cell proliferation and metastasis and inhibits Wnt/beta-catenin signaling. Int. J. Clin. Exp. Pathol. 7(10), 6447–6461 (2014)Google Scholar
  34. 34.
    N. Pecina-Slaus, Wnt signal transduction pathway and apoptosis: a review. Cancer Cell. Int. 10, 22 (2010)CrossRefGoogle Scholar
  35. 35.
    H. Yamamoto, H. Komekado, A. Kikuchi, Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of beta-catenin. Dev. Cell. 11(2), 213–223 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Run-Bao Yang
    • 1
  • Feng-Fei Lin
    • 2
  • Jun Yang
    • 1
  • Bin Chen
    • 2
  • Ming-Hua Zhang
    • 1
  • Qiao-Ping Lu
    • 1
  • Bo Xiao
    • 1
  • Yan Liu
    • 1
  • Ke Zheng
    • 2
  • Yong-Rong Qiu
    • 3
    Email author
  1. 1.Department of Orthopedics and TraumatologyLongyan First HospitalLongyanP. R. China
  2. 2.Department of Orthopedic SurgeryFuzhou Second HospitalFuzhouP. R. China
  3. 3.Department of Orthopaedics SurgeryLongyan First HospitalLongyanP. R. China

Personalised recommendations