Advertisement

Endocrine

, Volume 63, Issue 3, pp 554–562 | Cite as

Determination of effective half-life of 131I in patients with differentiated thyroid carcinoma: comparison of cystatin C and creatinine-based estimation of renal function

  • Martin FreesmeyerEmail author
  • Falk Gühne
  • Christian Kühnel
  • Thomas Opfermann
  • Thomas Winkens
  • Anke Werner
Original Article
  • 61 Downloads

Abstract

Purpose

Renal function and effective half-life (t1/2,eff) of I-131 have not been fully elucidated in patients undergoing radioiodine therapy (RAIT) for differentiated thyroid cancer (DTC). Aim of the present analysis was to evaluate the potential of cystatin C-based estimated glomerular filtration rate (eGFRCysC) in comparison to conventional creatinine (eGFRCrea) and to verify which methods to determine t1/2,eff are most accurate to predict t1/2,eff.

Methods

Forty-eight patients receiving whole-body I-131-scintigraphy were included. eGFRCysC was compared to eGFRCrea with regard to accuracy of t1/2,eff prediction. Three different methods (i.e. blood-based, gamma camera-based and probe-based) and two protocols with either three (short period,SP; up to 42 h) or four (long period,LP; up to 114 h) time points were compared using the Akaike’s information criterion.

Results

The eGFRCysC measurement is more likely than eGFRCrea in predicting the t1/2,eff. High correlation coefficients were found between t1/2,eff assessed by gamma camera and probe measurements and blood-based determination revealed lower values. Patients with normal eGFR showed higher values of t1/2,eff of LP compared to SP.

Conclusions

eGFRCysC should be included in further study protocols. As camera and probe measurements lead to almost superimposable results, one of the methods is expendable. Blood-based results of t1/2,eff were lower, presumably due to unspecific iodine retention, whereas the lower correlation with renal function may be caused by individual differences in intestinal iodine resorption. SP-protocols up to 42 h after I-131 administration are sufficient to determine t1/2,eff. Further studies are necessary for specific recommendations regarding I-131 activity reduction during RAIT in patients with DTC and renal insufficiency.

Keywords

Renal insufficiency Thyroid Cancer Radioiodine Therapy Effective Half-life eGFR 

Notes

Acknowledgements

Dr. Ernesta Palombo-Kinne is gratefully acknowledged for language assistance with this manuscript. Dominik Driesch is gratefully acknowledged for statistical analyses.

Funding

This study was funded by the intramural grants of the Jena University Hospital only.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    M. Dietlein, W. Eschner, F. Grunwald, M. Lassmann, F. Verburg, M. Luster, Procedure guidelines for radioiodine therapy of differentiated thyroid cancer. Nuklearmedizin 55, 77–89 (2016). Version 4CrossRefGoogle Scholar
  2. 2.
    M. Luster, S.E. Clarke, M. Dietlein, M. Lassmann, P. Lind, W. Oyen, J. Tennvall, E. Bombardieri, Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur. J. Nucl. Med. Mol. Imaging 35, 1941–1959 (2008)CrossRefGoogle Scholar
  3. 3.
    B.R. Haugen, E.K. Alexander, K.C. Bible, G.M. Doherty, S.J. Mandel, Y.E. Nikiforov, F. Pacini, G.W. Randolph, A.M. Sawka, M. Schlumberger, K.G. Schuff, S.I. Sherman, J.A. Sosa, D.L. Steward, R.M. Tuttle, L. Wartofsky, 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 26, 1–133 (2016)CrossRefGoogle Scholar
  4. 4.
    R.R. Cavalieri, Iodine metabolism and thyroid physiology: current concepts. Thyroid 7, 177–181 (1997)CrossRefGoogle Scholar
  5. 5.
    C. Alevizaki, M. Molfetas, A. Samartzis, B. Vlassopoulou, C. Vassilopulos, P. Rondogianni, S. Kottou, V. Hadjiconstantinou, M. Alevizaki, Iodine 131 treatment for differentiated thyroid carcinoma in patients with end stage renal failure: dosimetric, radiation safety, and practical considerations. Hormones 5, 276–287 (2006)CrossRefGoogle Scholar
  6. 6.
    M. Lassmann, H. Hanscheid, C. Chiesa, C. Hindorf, C. Flux, M. Luster, EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry I: blood and bone marrow dosimetry in differentiated thyroid cancer therapy. Eur. J. Nucl. Med. Mol. Imaging 35, 1405–1412 (2008)CrossRefGoogle Scholar
  7. 7.
    K. Vogel, T. Opfermann, S. Wiegand, J. Biemann, M. Busch, T. Winkens, M. Freesmeyer, Relationship between estimated glomerular filtration rate and biological half-life of 131I. Retrospective analysis in patients with differentiated thyroid carcinoma. Nuklearmedizin 52, 164–169 (2013)CrossRefGoogle Scholar
  8. 8.
    A.S. Levey, L.A. Stevens, C.H. Schmid, Y.P. Zhang, A.F. Castro, H.I. Feldman, J.W. Kusek, P. Eggers, F. van Lente, T. Greene, J. Coresh, A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 150, 604–612 (2009)CrossRefGoogle Scholar
  9. 9.
    L.A. Inker, C.H. Schmid, H. Tighiouart, J.H. Eckfeldt, H.I. Feldman, T. Greene, J.W. Kusek, J. Manzi, F. van Lente, Y.P. Zhang, J. Coresh, A.S. Levey, Estimating glomerular filtration rate from serum creatinine and cystatin C. N. Engl. J. Med. 367, 20–29 (2012)CrossRefGoogle Scholar
  10. 10.
    A.S. Levey, J. Coresh, E. Balk, A.T. Kausz, A. Levin, M.W. Steffes, R.J. Hogg, R.D. Perrone, J. Lau, G. Eknoyan, National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann. Intern. Med. 139, 137–147 (2003)CrossRefGoogle Scholar
  11. 11.
    R. Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
  12. 12.
    S.F. Barrington, A.G. Kettle, M.J. O’Doherty, C.P. Wells, E.J.R. Somer, A.J. Coakley, Radiation dose rates from patients receiving iodine-131 therapy for carcinoma of the thyroid. Eur. J. Nucl. Med. 23, 123–130 (1996)CrossRefGoogle Scholar
  13. 13.
    T. Smith, C.J. Edmonds, A slow component of iodine turnover in athyreotic individuals. Clin. Sci. Mol. Med. 53, 81–86 (1977)Google Scholar
  14. 14.
    Y. Sakamoto, M. Ishiguro, G. Kitagawa, Akaike information criterion statistics. Tokyo (u.a.): KTK Scient. Publ.; 1986Google Scholar
  15. 15.
    K.P. Burnham, D.R. Anderson, K.P. Huyvaert, AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011)CrossRefGoogle Scholar
  16. 16.
    H. Hanscheid, M. Lassmann, M. Luster, S.R. Thomas, F. Pacini, C. Ceccarelli, P.W. Ladenson, R.L. Wahl, M. Schlumberger, M. Ricard, A. Driedger, R.T. Kloos, S.I. Sherman, B.R. Haugen, V. Carriere, C. Corone, C. Reiners, Iodine biokinetics and dosimetry in radioiodine therapy of thyroid cancer: procedures and results of a prospective international controlled study of ablation after rhTSH or hormone withdrawal. J. Nucl. Med. 47, 648–654 (2006)Google Scholar
  17. 17.
    H. Remy, I. Borget, S. Leboulleux, N. Guilabert, F. Lavielle, J. Garsi, C. Bournaud, S. Gupta, M. Schlumberger, M. Ricard, 131I effective half-life and dosimetry in thyroid cancer patients. J. Nucl. Med. 49, 1445–1450 (2008)CrossRefGoogle Scholar
  18. 18.
    C. Menzel, W.T. Kranert, N. Dobert, M. Diehl, T. Fietz, N. Hamscho, U. Berner, F. Grunwald, rhTSH stimulation before radioiodine therapy in thyroid cancer reduces the effective half-life of (131)I. J. Nucl. Med. 44, 1065–1068 (2003)Google Scholar
  19. 19.
    M. Luster, S.I. Sherman, M.C. Skarulis, J.R. Reynolds, M. Lassmann, H. Hanscheid, C. Reiners, Comparison of radioiodine biokinetics following the administration of recombinant human thyroid stimulating hormone and after thyroid hormone withdrawal in thyroid carcinoma. Eur. J. Nucl. Med. Mol. Imaging 30, 1371–1377 (2003)CrossRefGoogle Scholar
  20. 20.
    F. Pacini, P.W. Ladenson, M. Schlumberger, A. Drieder, M. Luster, R.T. Kloos, S. Sherman, B. Haugen, C. Corone, E. Molinaro, R. Elisei, C. Ceccarelli, A. Pinchera, R.L. Wahl, S. Leoulleux, M. Ricard, J. Yoo, N.L. Busaidy, E. Delpassand, H. Hanscheid, R. Felbinger, M. Lassmann, Cl Reiners, Radioiodine ablation of thyroid remnants after preparation with recombinant human thyrotropin in differentiated thyroid carcinoma: results of an international, randomized, controlled study. J. Clin. Endocrinol. Metab. 91, 926–932 (2006)CrossRefGoogle Scholar
  21. 21.
    F. Duranton, A. Lacoste, P. Faurous, E. Deshayes, J. Ribstein, A. Avignon, G. Mourad, A. Argiles, Exogenous thyrotropin improves renal function in euthyroid patients, while serum creatinine levels are increased in hypothyroidism. Clin. Kidney J. 6, 478–483 (2013)CrossRefGoogle Scholar
  22. 22.
    G.B. Coura-Filho, J. Willegaignon, C.A. Buchpiguel, M.T. Sapienza, Effects of thyroid hormone withdrawal and recombinant human thyrotropin on glomerular filtration rate during radioiodine therapy for well-differentiated thyroid cancer. Thyroid 25, 1291–1296 (2015)CrossRefGoogle Scholar
  23. 23.
    S.J. Lee, H.Y. Lee, W.W. Lee, S.E. Kim, The effect of recombinant human thyroid stimulating hormone on sustaining liver and renal function in thyroid cancer patients during radioactive iodine therapy. Nucl. Med. Commun. 35, 727–732 (2014)CrossRefGoogle Scholar
  24. 24.
    D. Taieb, F. Sebag, B. Farman-Ara, T. Portal, K. Baumstarck-Barrau, C. Fortanier, M. Bourrelly, J. Mancini, C. De Micco, P. Auquier, B. Conte-Devolx, J.F. Henry, O. Mundler, Iodine biokinetics and radioiodine exposure after recombinant human thyrotropin-assisted remnant ablation in comparison with thyroid hormone withdrawal. J. Clin. Endocrinol. Metab. 95, 3283–3290 (2010)CrossRefGoogle Scholar
  25. 25.
    J. Halstenberg, W.T. Kranert, H. Korkusuz, A. Mayer, H. Ackermann, F. Grunwald, C. Happel, Influence of glucocorticoid therapy on intratherapeutic biodistribution of 131I radioiodine therapy in Graves’ disease. Nuklearmedizin 57, 43–49 (2018)CrossRefGoogle Scholar
  26. 26.
    J. Willegaignon, R.A. Pelissoni, B.C. Lima, M.T. Sapienza, G.B. Coura, C.A. Buchpiguel, Prediction of iodine-131 biokinetics and radiation doses from therapy on the basis of tracer studies: an important question for therapy planning in nuclear medicine. Nucl. Med. Commun. 37, 473–479 (2016)CrossRefGoogle Scholar
  27. 27.
    R. Hojs, S. Bevc, R. Ekart, M. Gorenjak, L. Puklavec, Serum cystatin C-based equation compared to serum creatinine-based equations for estimation of glomerular filtration rate in patients with chronic kidney disease. Clin. Nephrol. 70, 10–17 (2008)CrossRefGoogle Scholar
  28. 28.
    M.T. Keddis, H. Amer, N. Voskoboev, W.K. Kremers, A.D. Rule, J.C. Lieske, Creatinine-Based, G.F.R. Cystatin C-Based, Estimating equations and their non-GFR determinants in kidney transplant recipients. Clin. J. Am. Soc. Nephrol. 11, 1640–1649 (2016)CrossRefGoogle Scholar
  29. 29.
    L.A. Stevens, C.H. Schmid, T. Greene, L. Li, G.J. Beck, M.M. Joffe, M. Froissart, J.W. Kusek, Y.P. Zhang, J. Coresh, A.S. Levey, Factors other than glomerular filtration rate affect serum cystatin C levels. Kidney Int. 75, 652–660 (2009)CrossRefGoogle Scholar
  30. 30.
    D.S. Riggs, Quantitative aspects of iodine metabolism in man. Pharmacol. Rev. 4, 284–370 (1952)Google Scholar
  31. 31.
    R.D. Perrone, N.E. Madias, A.S. Levey, Serum creatinine as an index of renal function: new insights into old concepts. Clin. Chem. 38, 1933–1953 (1992)Google Scholar
  32. 32.
    E. Randers, E.J. Erlandsen, Serum cystatin C as an endogenous marker of the renal function--a review. Clin. Chem. Lab. Med. 37, 389–395 (1999)CrossRefGoogle Scholar
  33. 33.
    O.P. Soldin, Controversies in urinary iodine determinations. Clin. Biochem. 35, 575–579 (2002)CrossRefGoogle Scholar
  34. 34.
    D.C. Brater, Measurement of renal function during drug development. Br. J. Clin. Pharmacol. 54, 87–95 (2002)CrossRefGoogle Scholar
  35. 35.
    H.S. Lee, H. Rhee, E.Y. Seong, D.W. Lee, S.B. Lee, I.S. Kwak, Comparison of glomerular filtration rates calculated by different serum cystatin C-based equations in patients with chronic kidney disease. Kidney Res. Clin. Pract. 33, 45–51 (2014)CrossRefGoogle Scholar
  36. 36.
    A.S. Levey, J. Coresh, T. Greene, L.A. Stevens, Y.L. Zhang, S. Hendriksen, J.W. Kusek, F. Van Lente, Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann. Intern. Med. 145, 247–254 (2006)CrossRefGoogle Scholar
  37. 37.
    D.W. Cockcroft, M.H. Gault, Prediction of creatinine clearance from serum creatinine. Nephron 16, 31–41 (1976)CrossRefGoogle Scholar
  38. 38.
    J. Willegaignon, R.A. Pelissoni, B.C. Lima, M.T. Sapienza, G.B. Coura-Filho, M.A. Queiroz, C.A. Buchpiguel, Estimating (131)I biokinetics and radiation doses to the red marrow and whole body in thyroid cancer patients: probe detection versus image quantification. Radiol. Bras. 49, 150–157 (2016)CrossRefGoogle Scholar
  39. 39.
    L. Johansson, S. Leide-Svegborn, S. Mattsson, B. Nosslin, Biokinetics of iodide in man: refinement of current ICRP dosimetry models. Cancer Biother. Radiopharm. 18, 445–450 (2003)CrossRefGoogle Scholar
  40. 40.
    G.H. Kramer, B.M. Hauck, M.J. Chamberlain, Biological half-life of iodine in adults with intact thyroid function and in athyreotic persons. Radiat. Prot. Dosim. 102, 129–135 (2002)CrossRefGoogle Scholar
  41. 41.
    N.R. Hill, S.T. Fatoba, J.L. Oke, J.A. Hirst, C.A. O’Callaghan, D.S. Lasserson, F.D.R. Hobbs, Global prevalence of chronic kidney disease – a systematic review and meta-analysis. PLoS ONE 11, e0158765 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Clinic of Nuclear MedicineJena University HospitalJenaGermany

Personalised recommendations