Advertisement

Endocrine

, Volume 63, Issue 1, pp 101–111 | Cite as

Role of kisspeptin and Kiss1R in the regulation of prolactin gene expression in rat somatolactotroph GH3 cells

  • Tomomi Hara
  • Haruhiko KanasakiEmail author
  • Tuvshintugs Tumurbaatar
  • Aki Oride
  • Hiroe Okada
  • Satoru Kyo
Original Article
  • 111 Downloads

Abstract

Hypothalamic kisspeptin is a known principal activator of gonadotropin-releasing hormone neurons and governs the hypothalamic-pituitary-gonadal axis. Previous reports have shown that kisspeptin is also released into the hypophyseal portal circulation and directly affects the anterior pituitary. In this study, we examined the direct effect of kisspeptin on pituitary prolactin-producing cells. The rat pituitary somatolactotroph cell line GH3 expresses the kisspeptin receptor (Kiss1R); however, in these cells, kisspeptin failed to stimulate prolactin-promoter activity. When GH3 cells overexpressed Kiss1R, kisspeptin clearly increased prolactin-promoter activity, with a concomitant increase in extracellular signal-regulated kinase (ERK) and cAMP/protein kinase A (PKA) signaling pathways. In the experiments using GH3 cells overexpressing Kiss1R, kisspeptin did not potentiate thyrotropin-releasing hormone (TRH)-induced prolactin-promoter activity, but it potentiated the pituitary adenylate cyclase-activating polypeptide-induced prolactin-promoter activity, with a concomitant enhancement of ERK and PKA signaling pathways. Although the basal and TRH-induced prolactin-promoter activities were not modulated by increasing amounts of Kiss1R expression in GH3 cells, kisspeptin-stimulated prolactin-promoter activity was increased by the amount of Kiss1R overexpression. Endogenous Kiss1r mRNA expression in GH3 cells was significantly increased by treatment with estradiol (E2) but not by TRH. In addition, kisspeptin’s ability to stimulate prolactin-promoter activity was restored after E2 treatment in non-transfected GH3 cells. Our current observations suggest that kisspeptin might have a direct effect on prolactin expression in the anterior pituitary prolactin-producing cells under the influence of E2, which may regulate Kiss1R expression and function.

Keywords

Kisspeptin Prolactin Kiss1R TRH PACAP 

Notes

Funding

This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (No. 17K11237).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

References

  1. 1.
    L. Pinilla, E. Aguilar, C. Dieguez, R.P. Millar, M. Tena-Sempere, Kisspeptins and reproduction: Physiological roles and regulatory mechanisms. Physiol. Rev. 92(3), 1235–1316 (2012).  https://doi.org/10.1152/physrev.00037.2010 CrossRefGoogle Scholar
  2. 2.
    J.T. Smith, M.J. Cunningham, E.F. Rissman, D.K. Clifton, R.A. Steiner, Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology 146(9), 3686–3692 (2005).  https://doi.org/10.1210/en.2005-0488 CrossRefGoogle Scholar
  3. 3.
    S. Adachi, S. Yamada, Y. Takatsu, H. Matsui, M. Kinoshita, K. Takase, H. Sugiura, T. Ohtaki, H. Matsumoto, Y. Uenoyama, H. Tsukamura, K. Inoue, K. Maeda, Involvement of anteroventral periventricular metastin/kisspeptin neurons in estrogen positive feedback action on luteinizing hormone release in female rats. J. Reprod. Dev. 53(2), 367–378 (2007)CrossRefGoogle Scholar
  4. 4.
    M. Kinoshita, H. Tsukamura, S. Adachi, H. Matsui, Y. Uenoyama, K. Iwata, S. Yamada, K. Inoue, T. Ohtaki, H. Matsumoto, K. Maeda, Involvement of central metastin in the regulation of preovulatory luteinizing hormone surge and estrous cyclicity in female rats. Endocrinology 146(10), 4431–4436 (2005).  https://doi.org/10.1210/en.2005-0195 CrossRefGoogle Scholar
  5. 5.
    J.T. Smith, S.M. Popa, D.K. Clifton, G.E. Hoffman, R.A. Steiner, Kiss1 neurons in the forebrain as central processors for generating the preovulatory luteinizing hormone surge. J. Neurosci. 26(25), 6687–6694 (2006).  https://doi.org/10.1523/JNEUROSCI.1618-06.2006 CrossRefGoogle Scholar
  6. 6.
    Z. Xu, S. Kaga, A. Mochiduki, J. Tsubomizu, S. Adachi, T. Sakai, K. Inoue, A.A. Adachi, Immunocytochemical localization of kisspeptin neurons in the rat forebrain with special reference to sexual dimorphism and interaction with GnRH neurons. Endocr. J. 59(2), 161–171 (2012)CrossRefGoogle Scholar
  7. 7.
    M.N. Lehman, C.M. Merkley, L.M. Coolen, R.L. Goodman, Anatomy of the kisspeptin neural network in mammals. Brain Res. 1364, 90–102 (2010).  https://doi.org/10.1016/j.brainres.2010.09.020 CrossRefGoogle Scholar
  8. 8.
    J. Kim, S.J. Semaan, D.K. Clifton, R.A. Steiner, S. Dhamija, A.S. Kauffman, Regulation of Kiss1 expression by sex steroids in the amygdala of the rat and mouse. Endocrinology 152(5), 2020–2030 (2011).  https://doi.org/10.1210/en.2010-1498 CrossRefGoogle Scholar
  9. 9.
    J.T. Smith, A. Rao, A. Pereira, A. Caraty, R.P. Millar, I.J. Clarke, Kisspeptin is present in ovine hypophysial portal blood but does not increase during the preovulatory luteinizing hormone surge: Evidence that gonadotropes are not direct targets of kisspeptin in vivo. Endocrinology 149(4), 1951–1959 (2008).  https://doi.org/10.1210/en.2007-1425 CrossRefGoogle Scholar
  10. 10.
    T. Ohtaki, Y. Shintani, S. Honda, H. Matsumoto, A. Hori, K. Kanehashi, Y. Terao, S. Kumano, Y. Takatsu, Y. Masuda, Y. Ishibashi, T. Watanabe, M. Asada, T. Yamada, M. Suenaga, C. Kitada, S. Usuki, T. Kurokawa, H. Onda, O. Nishimura, M. Fujino, Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 411(6837), 613–617 (2001).  https://doi.org/10.1038/35079135 CrossRefGoogle Scholar
  11. 11.
    A.I. Muir, L. Chamberlain, N.A. Elshourbagy, D. Michalovich, D.J. Moore, A. Calamari, P.G. Szekeres, H.M. Sarau, J.K. Chambers, P. Murdock, K. Steplewski, U. Shabon, J.E. Miller, S.E. Middleton, J.G. Darker, C.G. Larminie, S. Wilson, D.J. Bergsma, P. Emson, R. Faull, K.L. Philpott, D.C. Harrison, AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J. Biol. Chem. 276(31), 28969–28975 (2001).  https://doi.org/10.1074/jbc.M102743200 CrossRefGoogle Scholar
  12. 12.
    J. Clarkson, X. d’Anglemont de Tassigny, W.H. Colledge, A. Caraty, A.E. Herbison, Distribution of kisspeptin neurones in the adult female mouse brain. J. Neuroendocrinol. 21(8), 673–682 (2009).  https://doi.org/10.1111/j.1365-2826.2009.01892.x CrossRefGoogle Scholar
  13. 13.
    E. Gutierrez-Pascual, A.J. Martinez-Fuentes, L. Pinilla, M. Tena-Sempere, M.M. Malagon, J.P. Castano, Direct pituitary effects of kisspeptin: Activation of gonadotrophs and somatotrophs and stimulation of luteinising hormone and growth hormone secretion. J. Neuroendocrinol. 19(7), 521–530 (2007).  https://doi.org/10.1111/j.1365-2826.2007.01558.x CrossRefGoogle Scholar
  14. 14.
    H. Kadokawa, S. Suzuki, T. Hashizume, Kisspeptin-10 stimulates the secretion of growth hormone and prolactin directly from cultured bovine anterior pituitary cells. Anim. Reprod. Sci. 105(3-4), 404–408 (2008).  https://doi.org/10.1016/j.anireprosci.2007.11.005 CrossRefGoogle Scholar
  15. 15.
    S. Suzuki, H. Kadokawa, T. Hashizume, Direct kisspeptin-10 stimulation on luteinizing hormone secretion from bovine and porcine anterior pituitary cells. Anim. Reprod. Sci. 103(3-4), 360–365 (2008).  https://doi.org/10.1016/j.anireprosci.2007.05.016 CrossRefGoogle Scholar
  16. 16.
    H. Matsui, Y. Takatsu, S. Kumano, H. Matsumoto, T. Ohtaki, Peripheral administration of metastin induces marked gonadotropin release and ovulation in the rat. Biochem. Biophys. Res. Commun. 320(2), 383–388 (2004).  https://doi.org/10.1016/j.bbrc.2004.05.185 CrossRefGoogle Scholar
  17. 17.
    E.L. Thompson, M. Patterson, K.G. Murphy, K.L. Smith, W.S. Dhillo, J.F. Todd, M.A. Ghatei, S.R. Bloom, Central and peripheral administration of kisspeptin-10 stimulates the hypothalamic-pituitary-gonadal axis. J. Neuroendocrinol. 16(10), 850–858 (2004).  https://doi.org/10.1111/j.1365-2826.2004.01240.x CrossRefGoogle Scholar
  18. 18.
    R.M. Luque, J. Cordoba-Chacon, M.D. Gahete, V.M. Navarro, M. Tena-Sempere, R.D. Kineman, J.P. Castano, Kisspeptin regulates gonadotroph and somatotroph function in nonhuman primate pituitary via common and distinct signaling mechanisms. Endocrinology 152(3), 957–966 (2011).  https://doi.org/10.1210/en.2010-1142 CrossRefGoogle Scholar
  19. 19.
    T. Mijiddorj, H. Kanasaki, U. Sukhbaatar, A. Oride, T. Hara, S. Kyo, Mutual regulation by GnRH and kisspeptin of their receptor expression and its impact on the gene expression of gonadotropin subunits. Gen. Comp. Endocrinol. 246, 382–389 (2017).  https://doi.org/10.1016/j.ygcen.2017.01.014 CrossRefGoogle Scholar
  20. 20.
    A.A. Ezzat, H. Saito, T. Sawada, T. Yaegashi, Y. Goto, Y. Nakajima, J. Jin, T. Yamashita, K. Sawai, T. Hashizume, The role of sexual steroid hormones in the direct stimulation by Kisspeptin-10 of the secretion of luteinizing hormone, follicle-stimulating hormone and prolactin from bovine anterior pituitary cells. Anim. Reprod. Sci. 121(3-4), 267–272 (2010).  https://doi.org/10.1016/j.anireprosci.2010.06.002 CrossRefGoogle Scholar
  21. 21.
    R.E. Szawka, A.B. Ribeiro, C.M. Leite, C.V. Helena, C.R. Franci, G.M. Anderson, G.E. Hoffman, J.A. Anselmo-Franci, Kisspeptin regulates prolactin release through hypothalamic dopaminergic neurons. Endocrinology 151(7), 3247–3257 (2010).  https://doi.org/10.1210/en.2009-1414 CrossRefGoogle Scholar
  22. 22.
    B. Yang, Q. Jiang, T. Chan, W.K. Ko, A.O. Wong, Goldfish kisspeptin: molecular cloning, tissue distribution of transcript expression, and stimulatory effects on prolactin, growth hormone and luteinizing hormone secretion and gene expression via direct actions at the pituitary level. Gen. Comp. Endocrinol. 165(1), 60–71 (2010).  https://doi.org/10.1016/j.ygcen.2009.06.001 CrossRefGoogle Scholar
  23. 23.
    T. Hashizume, H. Saito, T. Sawada, T. Yaegashi, A.A. Ezzat, K. Sawai, T. Yamashita, Characteristics of stimulation of gonadotropin secretion by kisspeptin-10 in female goats. Anim. Reprod. Sci. 118(1), 37–41 (2010).  https://doi.org/10.1016/j.anireprosci.2009.05.017 CrossRefGoogle Scholar
  24. 24.
    F.R. Boockfor, L.K. Schwarz, Cultures of GH3 cells contain both single and dual hormone secretors. Endocrinology 122(2), 762–764 (1988).  https://doi.org/10.1210/endo-122-2-762 CrossRefGoogle Scholar
  25. 25.
    S.G. Cho, Z. Yi, X. Pang, T. Yi, Y. Wang, J. Luo, Z. Wu, D. Li, M. Liu, Kisspeptin-10, a KISS1-derived decapeptide, inhibits tumor angiogenesis by suppressing Sp1-mediated VEGF expression and FAK/Rho GTPase activation. Cancer Res. 69(17), 7062–7070 (2009).  https://doi.org/10.1158/0008-5472.CAN-09-0476 CrossRefGoogle Scholar
  26. 26.
    N. Shintani, H. Hashimoto, A. Kunugi, Y. Koyama, K. Yamamoto, S. Tomimoto, W. Mori, T. Matsuda, A. Baba, Desensitization, surface expression, and glycosylation of a functional, epitope-tagged type I PACAP (PAC(1)) receptor. Biochim. Biophys. Acta 1509(1-2), 195–202 (2000)CrossRefGoogle Scholar
  27. 27.
    H. Kanasaki, T. Yonehara, H. Yamamoto, Y. Takeuchi, K. Fukunaga, K. Takahashi, K. Miyazaki, E. Miyamoto, Differential regulation of pituitary hormone secretion and gene expression by thyrotropin-releasing hormone. A role for mitogen-activated protein kinase signaling cascade in rat pituitary GH3 cells. Biol. Reprod. 67(1), 107–113 (2002)CrossRefGoogle Scholar
  28. 28.
    T. Harada, H. Kanasaki, S. Mutiara, A. Oride, K. Miyazaki, Cyclic adenosine 3’,5’monophosphate/protein kinase A and mitogen-activated protein kinase 3/1 pathways are involved in adenylate cyclase-activating polypeptide 1-induced common alpha-glycoprotein subunit gene (Cga) expression in mouse pituitary gonadotroph LbetaT2 cells. Biol. Reprod. 77(4), 707–716 (2007).  https://doi.org/10.1095/biolreprod.107.060327 CrossRefGoogle Scholar
  29. 29.
    T. Mijiddorj, H. Kanasaki, A. Oride, T. Hara, U. Sukhbaatar, T. Tumurbaatar, S. Kyo, Interaction between kisspeptin and adenylate cyclase-activating polypeptide 1 on the expression of pituitary gonadotropin subunits: a study using mouse pituitary lbetaT2 cells. Biol. Reprod. 96(5), 1043–1051 (2017).  https://doi.org/10.1093/biolre/iox030 CrossRefGoogle Scholar
  30. 30.
    T. Yonehara, H. Kanasaki, H. Yamamoto, K. Fukunaga, K. Miyazaki, E. Miyamoto, Involvement of mitogen-activated protein kinase in cyclic adenosine 3‵,5‵-monophosphate-induced hormone gene expression in rat pituitary GH(3) cells. Endocrinology 142(7), 2811–2819 (2001).  https://doi.org/10.1210/endo.142.7.8226 CrossRefGoogle Scholar
  31. 31.
    V.M. Navarro, J.M. Castellano, R. Fernandez-Fernandez, M.L. Barreiro, J. Roa, J.E. Sanchez-Criado, E. Aguilar, C. Dieguez, L. Pinilla, M. Tena-Sempere, Developmental and hormonally regulated messenger ribonucleic acid expression of KiSS-1 and its putative receptor, GPR54, in rat hypothalamus and potent luteinizing hormone-releasing activity of KiSS-1 peptide. Endocrinology 145(10), 4565–4574 (2004).  https://doi.org/10.1210/en.2004-0413 CrossRefGoogle Scholar
  32. 32.
    U. Sukhbaatar, H. Kanasaki, T. Mijiddorj, A. Oride, K. Miyazaki, Kisspeptin induces expression of gonadotropin-releasing hormone receptor in GnRH-producing GT1-7 cells overexpressing G protein-coupled receptor 54. Gen. Comp. Endocrinol. 194, 94–101 (2013).  https://doi.org/10.1016/j.ygcen.2013.09.002 CrossRefGoogle Scholar
  33. 33.
    J.P. Castano, A.J. Martinez-Fuentes, E. Gutierrez-Pascual, H. Vaudry, M. Tena-Sempere, M.M. Malagon, Intracellular signaling pathways activated by kisspeptins through GPR54: do multiple signals underlie function diversity? Peptides 30(1), 10–15 (2009).  https://doi.org/10.1016/j.peptides.2008.07.025 CrossRefGoogle Scholar
  34. 34.
    M. Kotani, M. Detheux, A. Vandenbogaerde, D. Communi, J.M. Vanderwinden, E. Le Poul, S. Brezillon, R. Tyldesley, N. Suarez-Huerta, F. Vandeput, C. Blanpain, S.N. Schiffmann, G. Vassart, M. Parmentier, The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J. Biol. Chem. 276(37), 34631–34636 (2001).  https://doi.org/10.1074/jbc.M104847200 CrossRefGoogle Scholar
  35. 35.
    Q. Jiang, M. He, W.K. Ko, A.O. Wong, Kisspeptin induction of somatolactin-alpha release in goldfish pituitary cells: functional role of cAMP/PKA, PLC/PKC, and Ca(2+)/calmodulin-dependent cascades. Am. J. Physiol. Endocrinol. Metab. 307(10), E872–E884 (2014).  https://doi.org/10.1152/ajpendo.00321.2014 CrossRefGoogle Scholar
  36. 36.
    D.T. Coleman, C. Bancroft, Pituitary adenylate cyclase-activating polypeptide stimulates prolactin gene expression in a rat pituitary cell line. Endocrinology 133(6), 2736–2742 (1993).  https://doi.org/10.1210/endo.133.6.8243297 CrossRefGoogle Scholar
  37. 37.
    M.C. Gershengorn, Mechanism of thyrotropin releasing hormone stimulation of pituitary hormone secretion. Annu. Rev. Physiol. 48, 515–526 (1986).  https://doi.org/10.1146/annurev.ph.48.030186.002503 CrossRefGoogle Scholar
  38. 38.
    A. Miyata, A. Arimura, R.R. Dahl, N. Minamino, A. Uehara, L. Jiang, M.D. Culler, D.H. Coy, Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem. Biophys. Res. Commun. 164(1), 567–574 (1989)CrossRefGoogle Scholar
  39. 39.
    J. Roa, E. Vigo, J.M. Castellano, V.M. Navarro, R. Fernandez-Fernandez, F.F. Casanueva, C. Dieguez, E. Aguilar, L. Pinilla, M. Tena-Sempere, Hypothalamic expression of KiSS-1 system and gonadotropin-releasing effects of kisspeptin in different reproductive states of the female Rat. Endocrinology 147(6), 2864–2878 (2006).  https://doi.org/10.1210/en.2005-1463 CrossRefGoogle Scholar
  40. 40.
    W.S. Dhillo, O.B. Chaudhri, E.L. Thompson, K.G. Murphy, M. Patterson, R. Ramachandran, G.K. Nijher, V. Amber, A. Kokkinos, M. Donaldson, M.A. Ghatei, S.R. Bloom, Kisspeptin-54 stimulates gonadotropin release most potently during the preovulatory phase of the menstrual cycle in women. J. Clin. Endocrinol. Metab. 92(10), 3958–3966 (2007).  https://doi.org/10.1210/jc.2007-1116 CrossRefGoogle Scholar
  41. 41.
    T. Terasaka, F. Otsuka, N. Tsukamoto, E. Nakamura, K. Inagaki, K. Toma, K. Ogura-Ochi, C. Glidewell-Kenney, M.A. Lawson, H. Makino, Mutual interaction of kisspeptin, estrogen and bone morphogenetic protein-4 activity in GnRH regulation by GT1-7 cells. Mol. Cell. Endocrinol. 381(1-2), 8–15 (2013).  https://doi.org/10.1016/j.mce.2013.07.009 CrossRefGoogle Scholar
  42. 42.
    N. Sawai, N. Iijima, K. Takumi, K. Matsumoto, H. Ozawa, Immunofluorescent histochemical and ultrastructural studies on the innervation of kisspeptin/neurokinin B neurons to tuberoinfundibular dopaminergic neurons in the arcuate nucleus of rats. Neurosci. Res. 74(1), 10–16 (2012).  https://doi.org/10.1016/j.neures.2012.05.011 CrossRefGoogle Scholar
  43. 43.
    A.B. Ribeiro, C.M. Leite, B. Kalil, C.R. Franci, J.A. Anselmo-Franci, R.E. Szawka, Kisspeptin regulates tuberoinfundibular dopaminergic neurones and prolactin secretion in an oestradiol-dependent manner in male and female rats. J. Neuroendocrinol. 27(2), 88–99 (2015).  https://doi.org/10.1111/jne.12242 CrossRefGoogle Scholar
  44. 44.
    N.S.S. Aquino, R. Araujo-Lopes, P.C. Henriques, F.E.F. Lopes, D.O. Gusmao, C.C. Coimbra, C.R. Franci, A.M. Reis, R.E. Szawka, Alpha-estrogen and progesterone receptors modulate kisspeptin effects on prolactin: Role in estradiol-induced prolactin surge in female rats. Endocrinology 158(6), 1812–1826 (2017).  https://doi.org/10.1210/en.2016-1855 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Tomomi Hara
    • 1
  • Haruhiko Kanasaki
    • 1
    Email author
  • Tuvshintugs Tumurbaatar
    • 1
  • Aki Oride
    • 1
  • Hiroe Okada
    • 1
  • Satoru Kyo
    • 1
  1. 1.Department of Obstetrics and GynecologyShimane University School of MedicineIzumoJapan

Personalised recommendations