, Volume 63, Issue 3, pp 602–614 | Cite as

Impaired HPA axis function in diabetes involves adrenal apoptosis and phagocytosis

  • Esteban M. RepettoEmail author
  • Morena Wiszniewski
  • Ana L. Bonelli
  • Carolina V. Vecino
  • Camila Martinez Calejman
  • Pablo Arias
  • Cora B. Cymeryng
Original Article



The aim of the present study was to analyze the involvement of oxidative stress and inflammation in the modulation of glucocorticoid production in the adrenal cortex of diabetic rats.


Male Wistar rats were treated with or without streptozotocin (STZ, an insulinopenic model of diabetes) and either α-lipoic (90 mg/kg ip.), α-tocopherol (200 mg/kg po.) or with STZ and supplemented with insulin (STZ + INS: 2.5U/day) for 4 weeks. Oxidative/nitrosative stress parameters and antioxidant enzymes were determined in adrenocortical tissues. Apoptosis and macrophage activation were evaluated by immunohistochemistry (TUNEL and ED1+). Basal and ACTH-stimulated corticosterone production were assessed by RIA and plasma ACTH levels were determined by an immunometric assay.


Diabetic rats showed a diminished response to exogenous ACTH stimulation along with higher basal corticosterone and lower plasma ACTH levels. In the adrenal cortex we determined an increase in the levels of lipoperoxides, S-nitrosothiols, nitric oxide synthase activity and nitro-tyrosine modified proteins while catalase activity and heme oxygenase-1 expression levels were also elevated. Antioxidant treatments were effective in the prevention of these effects, and in the increase in the number of apoptotic and phagocytic (ED1+) cells detected in diabetic rats. No changes were observed in the STZ + INS group.


Generation of oxidative/nitrosative stress in the adrenal cortex of diabetic rats leads to the induction of apoptosis and the activation of adrenocortical macrophages and is associated with an elevated basal corticosteronemia and the loss of the functional capacity of the gland.


Diabetes Oxidative stress Apoptosis HPA dysfuntion α-tocopherol α-lipoic acid 



The authors want to thank Dr. Silvia Sanchez Puch for the invaluable technical support.


This work was supported by grants from ANPCyT (PICT 2008 N°1034), CONICET (PIP11220120100257) and UBA (UBACYT 20020130100115BA-UBACYT 20020150200065BA).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12020_2018_1755_MOESM1_ESM.pdf (14.2 mb)
Supplementary Information
12020_2018_1755_MOESM2_ESM.docx (21 kb)
Supplementary Information


  1. 1.
    J.L. Rains, S.K. Jain, Oxidative stress, insulin signaling, and diabetes. Free Radic. Biol. Med. 50(5), 567–575 (2011)PubMedGoogle Scholar
  2. 2.
    D.A. Greene, M.J. Stevens, I. Obrosova, E.L. Feldman, Glucose-induced oxidative stress and programmed cell death in diabetic neuropathy. Eur. J. Pharmacol. 375(1-3), 217–223 (1999)PubMedGoogle Scholar
  3. 3.
    P. Pacher, I.G. Obrosova, J.G. Mabley, C. Szabo, Role of nitrosative stress and peroxynitrite in the pathogenesis of diabetic complications. Emerging new therapeutical strategies. Curr. Med. Chem. 12(3), 267–275 (2005)PubMedPubMedCentralGoogle Scholar
  4. 4.
    T. Nishikawa, D. Edelstein, M. Brownlee, The missing link: a single unifying mechanism for diabetic complications. Kidney Int. Suppl. 77, S26–30 (2000)PubMedGoogle Scholar
  5. 5.
    F. Giacco, M. Brownlee, Oxidative stress and diabetic complications. Circ. Res. 107(9), 1058–1070 (2010)PubMedPubMedCentralGoogle Scholar
  6. 6.
    E. Di Marco, J.C. Jha, A. Sharma, J.L. Wilkinson-Berka, K.A. Jandeleit-Dahm, J.B. de Haan, Are reactive oxygen species still the basis for diabetic complications? Clin. Sci. 129(2), 199–216 (2015)PubMedGoogle Scholar
  7. 7.
    R. Brito, G. Castillo, J. Gonzalez, N. Valls, R. Rodrigo, Oxidative stress in hypertension: mechanisms and therapeutic opportunities. Exp. Clin. Endocrinol. Diabetes 123(6), 325–335 (2015)PubMedGoogle Scholar
  8. 8.
    C. Karasu, Glycoxidative stress and cardiovascular complications in experimentally-induced diabetes: effects of antioxidant treatment. Open Cardiovasc. Med. J. 4, 240–256 (2010)PubMedPubMedCentralGoogle Scholar
  9. 9.
    L. Rochette, S. Ghibu, A. Muresan, C. Vergely, Alpha-lipoic acid: molecular mechanisms and therapeutic potential in diabetes. Can. J. Physiol. Pharmacol. 93(12), 1021–1027 (2015)PubMedGoogle Scholar
  10. 10.
    H. Goldenstein, N.S. Levy, Y.T. Lipener, A.P. Levy, Patient selection and vitamin E treatment in diabetes mellitus. Expert. Rev. Cardiovasc. Ther. 11(3), 319–326 (2013)PubMedPubMedCentralGoogle Scholar
  11. 11.
    K. Petersen Shay, R.F. Moreau, E.J. Smith, T.M. Hagen, Is alpha-lipoic acid a scavenger of reactive oxygen species in vivo? Evidence for its initiation of stress signaling pathways that promote endogenous antioxidant capacity. IUBMB Life 60(6), 362–367 (2008)PubMedGoogle Scholar
  12. 12.
    H. Moini, L. Packer, N.E. Saris, Antioxidant and prooxidant activities of alpha-lipoic acid and dihydrolipoic acid. Toxicol. Appl. Pharmacol. 182(1), 84–90 (2002)PubMedGoogle Scholar
  13. 13.
    M. Whiteman, H. Tritschler, B. Halliwell, Protection against peroxynitrite-dependent tyrosine nitration and alpha 1-antiproteinase inactivation by oxidized and reduced lipoic acid. FEBS Lett. 379(1), 74–76 (1996)PubMedGoogle Scholar
  14. 14.
    L. Packer, E.H. Witt, H.J. Tritschler, alpha-Lipoic acid as a biological antioxidant. Free Radic. Biol. Med. 19(2), 227–250 (1995)PubMedGoogle Scholar
  15. 15.
    V.E. Kagan, A. Shvedova, E. Serbinova, S. Khan, C. Swanson, R. Powell, L. Packer, Dihydrolipoic acid—a universal antioxidant both in the membrane and in the aqueous phase. Reduction of peroxyl, ascorbyl and chromanoxyl radicals. Biochem. Pharmacol. 44(8), 1637–1649 (1992)PubMedGoogle Scholar
  16. 16.
    S. Golbidi, M. Badran, I. Laher, Diabetes and alpha lipoic acid. Front. Pharmacol. 2, 69 (2011)PubMedPubMedCentralGoogle Scholar
  17. 17.
    T. Tankova, D. Koev, L. Dakovska, Alpha-lipoic acid in the treatment of autonomic diabetic neuropathy (controlled, randomized, open-label study). Rom. J. Intern. Med. 42(2), 457–464 (2004)PubMedGoogle Scholar
  18. 18.
    T. Varkonyi, A. Korei, Z. Putz, T. Martos, K. Keresztes, C. Lengyel, S. Nyiraty, A. Stirban, G. Jermendy, P. Kempler, Advances in the management of diabetic neuropathy. Minerva Med. 108(5), 419–437 (2017)PubMedGoogle Scholar
  19. 19.
    D. Ziegler, A. Ametov, A. Barinov, P.J. Dyck, I. Gurieva, P.A. Low, U. Munzel, N. Yakhno, I. Raz, M. Novosadova, J. Maus, R. Samigullin, Oral treatment with alpha-lipoic acid improves symptomatic diabetic polyneuropathy: the SYDNEY 2 trial. Diabetes Care 29(11), 2365–2370 (2006)PubMedGoogle Scholar
  20. 20.
    J.W. Chang, E.K. Lee, T.H. Kim, W.K. Min, S. Chun, K.U. Lee, S.B. Kim, J.S. Park, Effects of alpha-lipoic acid on the plasma levels of asymmetric dimethylarginine in diabetic end-stage renal disease patients on hemodialysis: a pilot study. Am. J. Nephrol. 27(1), 70–74 (2007)PubMedGoogle Scholar
  21. 21.
    M. Morcos, V. Borcea, B. Isermann, S. Gehrke, T. Ehret, M. Henkels, S. Schiekofer, M. Hofmann, J. Amiral, H. Tritschler, R. Ziegler, P. Wahl, P.P. Nawroth, Effect of alpha-lipoic acid on the progression of endothelial cell damage and albuminuria in patients with diabetes mellitus: an exploratory study. Diabetes Res. Clin. Pract. 52(3), 175–183 (2001)PubMedGoogle Scholar
  22. 22.
    S.K. Hegazy, O.A. Tolba, T.M. Mostafa, M.A. Eid, D.R. El-Afify, Alpha-lipoic acid improves subclinical left ventricular dysfunction in asymptomatic patients with type 1 diabetes. Rev. Diabet. Stud. 10(1), 58–67 (2013)PubMedPubMedCentralGoogle Scholar
  23. 23.
    G.W. Burton, K.U. Ingold, Vitamin E as an in vitro and in vivo antioxidant. Ann. N. Y. Acad. Sci. 570, 7–22 (1989)PubMedGoogle Scholar
  24. 24.
    P.G. Khatami, A. Soleimani, N. Sharifi, E. Aghadavod, Z. Asemi, The effects of high-dose vitamin E supplementation on biomarkers of kidney injury, inflammation, and oxidative stress in patients with diabetic nephropathy: a randomized, double-blind, placebo-controlled trial. J. Clin. Lipidol. 10(4), 922–929 (2016)PubMedGoogle Scholar
  25. 25.
    S. Gupta, T.K. Sharma, G.G. Kaushik, V.P. Shekhawat, Vitamin E supplementation may ameliorate oxidative stress in type 1 diabetes mellitus patients. Clin. Lab. 57(5-6), 379–386 (2011)PubMedGoogle Scholar
  26. 26.
    C. Giannini, F. Lombardo, F. Curro, M. Pomilio, T. Bucciarelli, F. Chiarelli, A. Mohn, Effects of high-dose vitamin E supplementation on oxidative stress and microalbuminuria in young adult patients with childhood onset type 1 diabetes mellitus. Diabetes Metab. Res. Rev. 23(7), 539–546 (2007)PubMedGoogle Scholar
  27. 27.
    E.M. Repetto, R. Sanchez, J. Cipelli, F. Astort, C.M. Calejman, G.G. Piroli, P. Arias, C.B. Cymeryng, Dysregulation of corticosterone secretion in streptozotocin-diabetic rats: modulatory role of the adrenocortical nitrergic system. Endocrinology 151(1), 203–210 (2010)PubMedGoogle Scholar
  28. 28.
    D.D. Wink, S. Kim, E. Coffin, J. Cook, Y. Vodovotz, D. Chistodoulou, D. Jourd’heuil, M. Grisham, Detection of S-nitrosothiols by fluorometric and colorimetric methods. Methods Enzymol. 301, 201–211 (1999). PubMedGoogle Scholar
  29. 29.
    Y. Pomeraniec, N. Grion, L. Gadda, V. Pannunzio, E.J. Podesta, C.B. Cymeryng, Adrenocorticotropin induces heme oxygenase-1 expression in adrenal cells. J. Endocrinol. 180(1), 113–124 (2004)PubMedGoogle Scholar
  30. 30.
    H. Aebi. Catalase. Methods of Enzymatic Analysis. H. Bermeyer (ed.) Verlag Chemie, Wenheim), 1982) 271–282Google Scholar
  31. 31.
    M.E. Mercau, F. Astort, E.F. Giordanino, C. Martinez Calejman, R. Sanchez, L. Caldareri, E.M. Repetto, O.A. Coso, C.B. Cymeryng, Involvement of PI3K/Akt and p38 MAPK in the induction of COX-2 expression by bacterial lipopolysaccharide in murine adrenocortical cells. Mol. Cell. Endocrinol. 384(1-2), 43–51 (2013)Google Scholar
  32. 32.
    S.A. Motzer, V. Hertig, Stress, stress response, and health. Nurs. Clin. N. Am. 39(1), 1–17 (2004)Google Scholar
  33. 33.
    T.H. Puar, N.M. Stikkelbroeck, L.C. Smans, P.M. Zelissen, A.R. Hermus, Adrenal crisis: still a deadly event in the 21st century. Am. J. Med. 129(3), 339 e331–339 (2016)Google Scholar
  34. 34.
    P.K. Singh, D. Baxi, S. Banerjee, A.V. Ramachandran, Therapy with methanolic extract of Pterocarpus marsupium Roxb and Ocimum sanctum Linn reverses dyslipidemia and oxidative stress in alloxan induced type I diabetic rat model. Exp. Toxicol. Pathol. 64(5), 441–448 (2010)PubMedGoogle Scholar
  35. 35.
    I.G. Danilova, T.S. Bulavintceva, I.F. Gette, S.Y. Medvedeva, V.V. Emelyanov, M.T. Abidov, Partial recovery from alloxan-induced diabetes by sodium phthalhydrazide in rats. Biomed. Pharmacother. 95, 103–110 (2017)PubMedGoogle Scholar
  36. 36.
    O. Chan, K. Inouye, M. Vranic, S.G. Matthews, Hyperactivation of the hypothalamo-pituitary-adrenocortical axis in streptozotocin-diabetes is associated with reduced stress responsiveness and decreased pituitary and adrenal sensitivity. Endocrinology 143(5), 1761–1768 (2002)PubMedGoogle Scholar
  37. 37.
    K. Simunkova, R. Hampl, M. Hill, L. Kriz, P. Hrda, D. Janickova-Zdarska, V. Zamrazil, J. Vrbikova, K. Vondra, Adrenocortical function in young adults with diabetes mellitus type 1. J. Steroid Biochem. Mol. Biol. 122(1-3), 35–41 (2010)PubMedGoogle Scholar
  38. 38.
    X. Gaete, G. Iniguez, J. Linares, A. Avila, V. Mericq, Cortisol hyporesponsiveness to the low dose ACTH test is a frequent finding in a pediatric population with type 1 diabetes mellitus. Pediatr. Diabetes 14(6), 429–434 (2010)Google Scholar
  39. 39.
    A.N. Sharma, J. Wigham, J.D. Veldhuis, Corticotropic axis drive of overnight cortisol secretion is suppressed in adolescents and young adults with type 1 diabetes mellitus. Pediatr. Diabetes 15(6), 444–452 (2014)PubMedGoogle Scholar
  40. 40.
    S. Azhar, L. Cao, E. Reaven, Alteration of the adrenal antioxidant defense system during aging in rats. J. Clin. Invest. 96(3), 1414–1424 (1995)PubMedPubMedCentralGoogle Scholar
  41. 41.
    P. Patak, H.S. Willenberg, S.R. Bornstein, Vitamin C is an important cofactor for both adrenal cortex and adrenal medulla. Endocr. Res. 30(4), 871–875 (2004)PubMedGoogle Scholar
  42. 42.
    J. Zhen, H. Lu, X.Q. Wang, N.D. Vaziri, X.J. Zhou, Upregulation of endothelial and inducible nitric oxide synthase expression by reactive oxygen species. Am. J. Hypertens. 21(1), 28–34 (2008)PubMedGoogle Scholar
  43. 43.
    J.H. Jang, J.N. Chun, S. Godo, G. Wu, H. Shimokawa, C.Z. Jin, J.H. Jeon, S.J. Kim, Z.H. Jin, Y.H. Zhang, ROS and endothelial nitric oxide synthase (eNOS)-dependent trafficking of angiotensin II type 2 receptor begets neuronal NOS in cardiac myocytes. Basic Res. Cardiol. 110(3), 21 (2015)PubMedPubMedCentralGoogle Scholar
  44. 44.
    N.D. Vaziri, Y. Ding, Z. Ni, Compensatory up-regulation of nitric-oxide synthase isoforms in lead-induced hypertension; reversal by a superoxide dismutase-mimetic drug. J. Pharmacol. Exp. Ther. 298(2), 679–685 (2001)PubMedGoogle Scholar
  45. 45.
    G.M. Buga, J.M. Griscavage, N.E. Rogers, L.J. Ignarro, Negative feedback regulation of endothelial cell function by nitric oxide. Circ. Res. 73(5), 808–812 (1993)PubMedGoogle Scholar
  46. 46.
    Y. Du, C.M. Miller, T.S. Kern, Hyperglycemia increases mitochondrial superoxide in retina and retinal cells. Free Radic. Biol. Med. 35(11), 1491–1499 (2003)PubMedGoogle Scholar
  47. 47.
    R.A. Kowluru, R.L. Engerman, T.S. Kern, Diabetes-induced metabolic abnormalities in myocardium: effect of antioxidant therapy. Free Radic. Res. 32(1), 67–74 (2000)PubMedGoogle Scholar
  48. 48.
    D. Koya, K. Hayashi, M. Kitada, A. Kashiwagi, R. Kikkawa, M. Haneda, Effects of antioxidants in diabetes-induced oxidative stress in the glomeruli of diabetic rats. J. Am. Soc. Nephrol. 14(8Suppl 3), S250–253 (2003)PubMedGoogle Scholar
  49. 49.
    V.M. Altan, The pharmacology of diabetic complications. Curr. Med. Chem. 10(15), 1317–1327 (2003)PubMedGoogle Scholar
  50. 50.
    M.A. Haidara, D.P. Mikhailidis, M.A. Rateb, Z.A. Ahmed, H.Z. Yassin, I.M. Ibrahim, L.A. Rashed, Evaluation of the effect of oxidative stress and vitamin E supplementation on renal function in rats with streptozotocin-induced Type 1 diabetes. J. Diabetes Complicat. 23(2), 130–136 (2009)PubMedGoogle Scholar
  51. 51.
    S. Alireza, N. Leila, S. Siamak, K.A. Mohammad-Hasan, I. Behrouz, Effects of vitamin E on pathological changes induced by diabetes in rat lungs. Respir. Physiol. Neurobiol. 185(3), 593–599 (2013)PubMedGoogle Scholar
  52. 52.
    M.B. Gomes, C.A. Negrato, Alpha-lipoic acid as a pleiotropic compound with potential therapeutic use in diabetes and other chronic diseases. Diabetol. Metab. Syndr. 6(1), 80 (2014)PubMedPubMedCentralGoogle Scholar
  53. 53.
    G. Nascimento Gomes, F.T. Barbosa, R.F. Radaeli, M.F. Cavanal, M. Mello Aires, F. Zaladek Gil, Effect of D-alpha-tocopherol on tubular nephron acidification by rats with induced diabetes mellitus. Braz. J. Med. Biol. Res. 38(7), 1043–1051 (2005)PubMedGoogle Scholar
  54. 54.
    D. Comin, L. Gazarini, J.N. Zanoni, H. Milani, R.M. de Oliveira, Vitamin E improves learning performance and changes the expression of nitric oxide-producing neurons in the brains of diabetic rats. Behav. Brain. Res. 210(1), 38–45 (2010)PubMedGoogle Scholar
  55. 55.
    I. Obrosova, X. Cao, D.A. Greene, M.J. Stevens, Diabetes-induced changes in lens antioxidant status, glucose utilization and energy metabolism: effect of DL-alpha-lipoic acid. Diabetologia 41(12), 1442–1450 (1998)PubMedGoogle Scholar
  56. 56.
    A.C. Maritim, R.A. Sanders, J.B. Watkins, 3rd: effects of alpha-lipoic acid on biomarkers of oxidative stress in streptozotocin-induced diabetic rats. J. Nutr. Biochem. 14(5), 288–294 (2003)PubMedGoogle Scholar
  57. 57.
    C. Hurdag, I. Uyaner, E. Gurel, A. Utkusavas, P. Atukeren, C. Demirci, The effect of alpha-lipoic acid on NOS dispersion in the lung of streptozotocin-induced diabetic rats. J. Diabetes Complicat. 22(1), 56–61 (2008)PubMedGoogle Scholar
  58. 58.
    S. Xu, C. Chen, W.X. Wang, S.R. Huang, J. Yu, X.Y. Chen, IIA phospholipase A2 in pancreatitis-associated adrenal injury in acute necrotizing pancreatitis. Pathol. Res. Pract. 206(2), 73–82 (2010).PubMedGoogle Scholar
  59. 59.
    J. Yu, S. Xu, W.X. Wang, W.H. Deng, H. Jin, X.Y. Chen, C. Chen, H.T. Sun, Changes of inflammation and apoptosis in adrenal gland after experimental injury in rats with acute necrotizing pancreatitis. Inflammation 35(1), 11–22 (2012)PubMedGoogle Scholar
  60. 60.
    J. Yu, T. Zuo, W. Deng, Q. Shi, P. Ma, C. Chen, L. Zhao, K. Zhao, W. Wang, Poly(ADP-ribose) polymerase inhibition suppresses inflammation and promotes recovery from adrenal injury in a rat model of acute necrotizing pancreatitis. Bmc. Gastroenterol. 16(1), 81 (2016)PubMedPubMedCentralGoogle Scholar
  61. 61.
    A. Kupsco, D. Schlenk, Oxidative stress, unfolded protein response, and apoptosis in developmental toxicity. Int. Rev. Cell. Mol. Biol. 317, 1–66 (2011)Google Scholar
  62. 62.
    C.J. Norbury, I.D. Hickson, Cellular responses to DNA damage. Annu. Rev. Pharmacol. Toxicol. 41, 367–401 (2001)PubMedGoogle Scholar
  63. 63.
    R. Saraswathi, S.N. Devaraj, Oxidative stress in skeletal muscle impairs mitochondrial function in alloxan induced diabetic rats: role of alpha lipoic acid. Biomed. Prev. Nutr. 3(3), 213–219 (2013). Google Scholar
  64. 64.
    Y. Yang, W. Wang, Y. Liu, T. Guo, P. Chen, K. Ma, C. Zhou, Alpha-lipoic acid inhibits high glucose-induced apoptosis in HIT-T15 cells. Dev. Growth Differ. 54(5), 557–565 (2012)PubMedGoogle Scholar
  65. 65.
    J. Shin, S.J. Yang, Y. Lim, Gamma-tocopherol supplementation ameliorated hyper-inflammatory response during the early cutaneous wound healing in alloxan-induced diabetic mice. Exp. Biol. Med. 242(5), 505–515 (2017)Google Scholar
  66. 66.
    H. Almeida, J. Ferreira, D. Neves, Macrophages of the adrenal cortex: a morphological study of the effects of aging and dexamethasone administration. Ann. N. Y. Acad. Sci. 1019, 135–140 (2004)PubMedGoogle Scholar
  67. 67.
    S. McIlmoil, J. Strickland, A.M. Judd, Interleukin 6 increases the in vitro expression of key proteins associated with steroidogenesis in the bovine adrenal zona fasciculata. Domest. Anim. Endocrinol. 55, 11–24 (2016)PubMedGoogle Scholar
  68. 68.
    A.V. Turnbull, C.L. Rivier, Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action. Physiol. Rev. 79(1), 1–71 (1999)PubMedGoogle Scholar
  69. 69.
    S.R. Bornstein, H. Rutkowski, I. Vrezas, Cytokines and steroidogenesis. Mol. Cell. Endocrinol. 215(1-2), 135–141 (2004)PubMedGoogle Scholar
  70. 70.
    I.V. Tkachenko, T. Jaaskelainen, J. Jaaskelainen, J.J. Palvimo, R. Voutilainen, Interleukins 1alpha and 1beta as regulators of steroidogenesis in human NCI-H295R adrenocortical cells. Steroids 76(10-11), 1103–1115 (2011)PubMedGoogle Scholar
  71. 71.
    A. Hasanvand, H. Amini-Khoei, M.R. Hadian, A. Abdollahi, S.M. Tavangar, A.R. Dehpour, E. Semiei, S.E. Mehr, Anti-inflammatory effect of AMPK signaling pathway in rat model of diabetic neuropathy. Inflammopharmacology 24(5), 207–219 (2016)PubMedGoogle Scholar
  72. 72.
    J.F. Navarro-Gonzalez, C. Mora-Fernandez, The role of inflammatory cytokines in diabetic nephropathy. J. Am. Soc. Nephrol. 19(3), 433–442 (2008)PubMedGoogle Scholar
  73. 73.
    R.A. Kowluru, Q. Zhong, J.M. Santos, M. Thandampallayam, D. Putt, D.L. Gierhart, Beneficial effects of the nutritional supplements on the development of diabetic retinopathy. Nutr. Metab. 11(1), 8 (2014)Google Scholar
  74. 74.
    T. Ono, S. Takada, S. Kinugawa, H. Tsutsui, Curcumin ameliorates skeletal muscle atrophy in type 1 diabetic mice by inhibiting protein ubiquitination. Exp. Physiol. 100(9), 1052–1063 (2015)PubMedGoogle Scholar
  75. 75.
    M.B. Ka, A. Daumas, J. Textoris, J.L. Mege, Phenotypic diversity and emerging new tools to study macrophage activation in bacterial infectious diseases. Front. Immunol. 5, 500 (2014)PubMedPubMedCentralGoogle Scholar
  76. 76.
    A. Nilsson, L. Vesterlund, P.A. Oldenborg, Macrophage expression of LRP1, a receptor for apoptotic cells and unopsonized erythrocytes, can be regulated by glucocorticoids. Biochem. Biophys. Res. Commun. 417(4), 1304–1309 (2012)PubMedGoogle Scholar
  77. 77.
    J.S. Gilmour, A.E. Coutinho, J.F. Cailhier, T.Y. Man, M. Clay, G. Thomas, H.J. Harris, J.J. Mullins, J.R. Seckl, J.S. Savill, K.E. Chapman, Local amplification of glucocorticoids by 11 beta-hydroxysteroid dehydrogenase type 1 promotes macrophage phagocytosis of apoptotic leukocytes. J. Immunol. 176(12), 7605–7611 (2006)PubMedGoogle Scholar
  78. 78.
    M.E. Reyland, R.M. Evans, E.K. White, Lipoproteins regulate expression of the steroidogenic acute regulatory protein (StAR) in mouse adrenocortical cells. J. Biol. Chem. 275(47), 36637–36644 (2000)PubMedGoogle Scholar
  79. 79.
    G.S. Prasath, S.P. Subramanian, Antihyperlipidemic effect of fisetin, a bioflavonoid of strawberries, studied in streptozotocin-induced diabetic rats. J. Biochem. Mol. Toxicol. 28(10), 442–449 (2014)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Bioquímica Clínica, Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Facultad de Medicina, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Laboratorio de Endocrinología Molecular (LEM)Universidad de Buenos AiresBuenos AiresArgentina
  3. 3.Departamento de Fisiología, Facultad de MedicinaUniversidad Nacional de RosarioRosarioArgentina
  4. 4.Departamento de Bioquímica Humana, Facultad de MedicinaUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations