Advertisement

Endocrine

, Volume 63, Issue 1, pp 27–35 | Cite as

Surgical outcomes and predictors of glucose metabolism alterations for growth hormone-secreting pituitary adenomas: a hospital-based study of 151 cases

  • Wenqiang He
  • Linling Yan
  • Meng Wang
  • Qin Li
  • Min He
  • Zengyi Ma
  • Zhao Ye
  • Qilin Zhang
  • Yichao Zhang
  • Nidan Qiao
  • Yun Lu
  • Hongying Ye
  • Bin Lu
  • Xuefei Shou
  • Yao Zhao
  • Yiming Li
  • Shiqi Li
  • Zhaoyun Zhang
  • Ming ShenEmail author
  • Yongfei WangEmail author
Endocrine Surgery
  • 49 Downloads

Abstract

Purpose

The surgical outcome on glucose metabolism in acromegaly patients is not fully understood. We aimed to investigate the impact of surgery on glucose metabolism and identify key factors that influence alterations of glucose metabolic status in acromegaly patients.

Methods

Oral glucose tolerance test was performed in 151 newly diagnosed acromegaly patients before and 3–12 months after surgery. Insulin resistance and insulin secretion was assessed. Patients were grouped as cured, discordant, and having active disease according to postoperative growth hormone (GH) and insulin-like growth factor-1 (IGF-1) levels. Receiver-operating characteristic curves were generated to determine the optimal cut-off points to predict the impact of surgery on glucose metabolism.

Results

At baseline, 32.5%, 41.7%, and 25.8% patients were categorized as having normal glucose tolerance (NGT), impaired glucose tolerance (IGT), and diabetes mellitus (DM), respectively. After surgery, improved glucose tolerance was observed in 87.3% patients with IGT and 66.7% patients with DM. Deterioration was observed in 14.3% patients with NGT. Glucose tolerance improved in patients with lower preoperative FBG, 2 h-BG, and HbA1c and higher HOMA-β and IGI/IR. The proportion of NGT was significantly increased in surgically cured patients (28.3% vs. 79.2%, P < 0.001) and those with normal GH but elevated IGF-1 levels (25.6% vs. 79.5%, P < 0.001), but not in patients with active disease (42.9% vs. 57.1%, P = 0.131). Baseline FBG < 6.35 mmol/l predicted improved glucose metabolism after surgery.

Conclusions

Glucose metabolic status improved in patients with preserved β-cell function. Preoperative FBG was an independent predictor for improved glucose tolerance status after surgery.

Keywords

Acromegaly Surgery Insulin resistance Glucose metabolism disorders Glucose homeostasis 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant numbers 81602191, 81702467), the Shanghai Municipal Commission of Health and Family Planning (Grant number XYQ201640058), and the Shanghai Sailing Program (Grant number 17YF1401500).

Funding

This study was funded by the National Natural Science Foundation of China (Grant numbers 81602191, 81702467), the Shanghai Municipal Commission of Health and Family Planning (Grant number XYQ201640058), and the Shanghai Sailing Program (Grant number 17YF1401500).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    J.J. Puder, S. Nilavar, K.D. Post, P.U. Freda, Relationship between disease-related morbidity and biochemical markers of activity in patients with acromegaly. J. Clin. Endocrinol. Metab. 90(4), 1972–1978 (2005)CrossRefGoogle Scholar
  2. 2.
    A. Colao, D. Ferone, P. Marzullo, G. Lombardi, Systemic complications of acromegaly: epidemiology, pathogenesis, and management. Endocr. Rev. 25(1), 102 (2004)CrossRefGoogle Scholar
  3. 3.
    D.R. Clemmons, Roles of insulin-like growth factor-I and growth hormone in mediating insulin resistance in acromegaly. Pituitary 5(3), 181–183 (2002)CrossRefGoogle Scholar
  4. 4.
    L. Katznelson, E.R. Laws Jr., S. Melmed, M.E. Molitch, M.H. Murad, A. Utz, J.A. Wass, S. Endocrine, Acromegaly: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 99(11), 3933–3951 (2014)CrossRefGoogle Scholar
  5. 5.
    A. Goldhirsch, J.H. Glick, R.D. Gelber, H.J. Senn, A consensus on criteria for cure of acromegaly. J. Clin. Endocrinol. Metab. 95(7), 3141–3148 (2010)CrossRefGoogle Scholar
  6. 6.
    M.L. Jaffrain-Rea, G. Minniti, C. Moroni, V. Esposito, E. Ferretti, A. Santoro, T. Infusino, G. Tamburrano, G. Cantore, R. Cassone, Impact of successful transsphenoidal surgery on cardiovascular risk factors in acromegaly. Eur. J. Endocrinol. 148(2), 193 (2003)CrossRefGoogle Scholar
  7. 7.
    Y. Kinoshita, H. Fujii, A. Takeshita, M. Taguchi, M. Miyakawa, K. Oyama, S. Yamada, Y. Takeuchi, Impaired glucose metabolism in Japanese patients with acromegaly is restored after successful pituitary surgery if pancreatic {beta}-cell function is preserved. Eur. J. Endocrinol. 164(4), 467–473 (2011)CrossRefGoogle Scholar
  8. 8.
    M. Tzanela, D.A. Vassiliadi, N. Gavalas, A. Szabo, E. Margelou, A. Valatsou, C. Vassilopoulos, Glucose homeostasis in patients with acromegaly treated with surgery or somatostatin analogues. Clin. Endocrinol. 75(1), 96 (2011)CrossRefGoogle Scholar
  9. 9.
    A.D. Association, Diagnosis and classification of diabetes mellitus. Diabetes Care 34(Suppl 1), S62–S69 (2011)CrossRefGoogle Scholar
  10. 10.
    A.V. Dreval, I.V. Trigolosova, I.V. Misnikova, Y.A. Kovalyova, R.S. Tishenina, I.S. Barsukov, A.V. Vinogradova, B.H.R. Wolffenbuttel, Prevalence of diabetes mellitus in patients with acromegaly. Endocr. Connect. 3(2), 93–98 (2014)CrossRefGoogle Scholar
  11. 11.
    J. Dal, U. Feldt-Rasmussen, M. Andersen, L.O. Kristensen, P. Laurberg, L. Pedersen, O.M. Dekkers, H.T. Sorensen, J.O. Jorgensen, Acromegaly incidence, prevalence, complications and long-term prognosis: a nationwide cohort study. Eur. J. Endocrinol. 175(3), 181–190 (2016)CrossRefGoogle Scholar
  12. 12.
    W. Yang, J. Lu, J. Weng, W. Jia, L. Ji, J. Xiao, Z. Shan, J. Liu, H. Tian, Q. Ji, Prevalence of diabetes among men and women in China. New Engl. J. Med. 362(25), 2425 (2010)CrossRefGoogle Scholar
  13. 13.
    O. Alexopoulou, M. Bex, P. Kamenicky, A.B. Mvoula, P. Chanson, D. Maiter, Prevalence and risk factors of impaired glucose tolerance and diabetes mellitus at diagnosis of acromegaly: a study in 148 patients. Pituitary 17(1), 81–89 (2014)CrossRefGoogle Scholar
  14. 14.
    S. Fieffe, I. Morange, P. Petrossians, P. Chanson, V. Rohmer, C. Cortet, F. Borson-Chazot, T. Brue, B. Delemer, F.A. Registry, Diabetes in acromegaly, prevalence, risk factors, and evolution: data from the French acromegaly registry. Eur. J. Endocrinol. 164(6), 877 (2011)CrossRefGoogle Scholar
  15. 15.
    S. Kasayama, M. Otsuki, M. Takagi, H. Saito, S. Sumitani, H. Kouhara, M. Koga, Y. Saitoh, T. Ohnishi, N. Arita, Impaired beta-cell function in the presence of reduced insulin sensitivity determines glucose tolerance status in acromegalic patients. Clin. Endocrinol. 52(5), 549–555 (2000)CrossRefGoogle Scholar
  16. 16.
    R. Helseth, S.M. Carlsen, J. Bollerslev, J. Svartberg, M. Øksnes, S. Skeie, S.L. Fougner, Preoperative octreotide therapy and surgery in acromegaly: associations between glucose homeostasis and treatment response. Endocrine 51(2), 298–307 (2016)CrossRefGoogle Scholar
  17. 17.
    A. Colao, R. Attanasio, R. Pivonello, P. Cappabianca, L.M. Cavallo, G. Lasio, A. Lodrini, G. Lombardi, R. Cozzi, Partial surgical removal of growth hormone-secreting pituitary tumors enhances the response to somatostatin analogs in acromegaly. J. Clin. Endocrinol. Metab. 91(1), 85–92 (2006)CrossRefGoogle Scholar
  18. 18.
    A. Colao, R.S. Auriemma, M. Galdiero, P. Cappabianca, L.M. Cavallo, F. Esposito, L.F. Grasso, G. Lombardi, R. Pivonello, Impact of somatostatin analogs versus surgery on glucose metabolism in acromegaly: results of a 5-year observational, open, prospective study. J. Clin. Endocrinol. Metab. 94(2), 528–537 (2009)CrossRefGoogle Scholar
  19. 19.
    C.L. Ronchi, V. Varca, P. Beck-Peccoz, E. Orsi, F. Donadio, A. Baccarelli, C. Giavoli, E. Ferrante, A. Lania, A. Spada, Comparison between six-year therapy with long-acting somatostatin analogs and successful surgery in acromegaly: effects on cardiovascular risk factors. J. Clin. Endocrinol. Metab. 91(1), 121–128 (2006)CrossRefGoogle Scholar
  20. 20.
    N. Møller, O. Schmitz, J.O. Jøorgensen, J. Astrup, J.F. Bak, S.E. Christensen, K.G. Alberti, J. Weeke, Basal- and insulin-stimulated substrate metabolism in patients with active acromegaly before and after adenomectomy. J. Clin. Endocrinol. Metab. 74(5), 1012–1019 (1992)Google Scholar
  21. 21.
    K. Mori, Y. Iwasaki, Y. Kawasaki-Ogita, S. Honjo, Y. Hamamoto, H. Tatsuoka, K. Fujimoto, H. Ikeda, Y. Wada, Y. Takahashi, Improvement of insulin resistance following transsphenoidal surgery in patients with acromegaly: correlation with serum IGF-I levels. J. Endocrinol. Invest. 36(10), 853–859 (2013)Google Scholar
  22. 22.
    B. Gallwitz, C. Kazda, P. Kraus, C. Nicolay, G. Schernthaner, Contribution of insulin deficiency and insulin resistance to the development of type 2 diabetes: nature of early stage diabetes. Acta Diabetol. 50(1), 39–45 (2013)CrossRefGoogle Scholar
  23. 23.
    M. Stelmachowskabanaś, G. Zieliński, P. Zdunowski, J. Podgórski, W. Zgliczyński, The impact of transsphenoidal surgery on glucose homeostasis and insulin resistance in acromegaly. Neurol. Neurochir. Pol. 45(4), 328–334 (2011)Google Scholar
  24. 24.
    A.L. Espinosa-De-Los-Monteros, B. González, G. Vargas, E. Sosa, M. Mercado, Clinical and biochemical characteristics of acromegalic patients with different abnormalities in glucose metabolism. Pituitary 14(3), 231–235 (2011)CrossRefGoogle Scholar
  25. 25.
    C. Jonas, D. Maiter, O. Alexopoulou, Evolution of glucose tolerance after treatment of acromegaly: a study in 57 patients. Horm. Metab. Res. 48(5), 299–305 (2016)CrossRefGoogle Scholar
  26. 26.
    B. Gonzalez, G. Vargas, A.L.E. de Los Monteros, V. Mendoza, M. Mercado, Persistence of diabetes and hypertension after multimodal treatment of acromegaly. J. Clin. Endocrinol. Metab. 103(6), 2369–2375 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Wenqiang He
    • 1
  • Linling Yan
    • 2
  • Meng Wang
    • 3
  • Qin Li
    • 4
  • Min He
    • 3
  • Zengyi Ma
    • 1
  • Zhao Ye
    • 1
  • Qilin Zhang
    • 1
  • Yichao Zhang
    • 1
  • Nidan Qiao
    • 1
  • Yun Lu
    • 5
  • Hongying Ye
    • 3
  • Bin Lu
    • 3
  • Xuefei Shou
    • 1
  • Yao Zhao
    • 1
  • Yiming Li
    • 3
  • Shiqi Li
    • 1
  • Zhaoyun Zhang
    • 3
  • Ming Shen
    • 1
    Email author return OK on get
  • Yongfei Wang
    • 1
    Email author
  1. 1.Department of Neurosurgery, Huashan HospitalFudan UniversityShanghaiChina
  2. 2.Department of Endocrinologythe First People’s Hospital of TaicangJiangsuChina
  3. 3.Department of Endocrinology and Metabolism, Huashan HospitalFudan UniversityShanghaiChina
  4. 4.Department of Endocrinology and Metabolism, Shanghai Ninth People’s HospitalShanghai JiaoTong UniversityShanghaiChina
  5. 5.Department of Nuclear Medicine, Huashan HospitalFudan UniversityShanghaiChina

Personalised recommendations