, Volume 63, Issue 1, pp 164–166 | Cite as

Alterations in levels of intermediate-chained acylcarnitines associate with weight-gain following reestablishment of euthyroidism in Graves’ disease

  • Mahmoud Al Majdoub
  • Mikael Lantz
  • Peter SpégelEmail author
Research Letter


Graves’ disease (GD) is an autoimmune disease resulting in increased production of thyroid hormones. The disease is associated with a state of relative starvation that, despite of increased hunger and food intake, result in weight loss and muscle weakness [1]. Fatty acid oxidation is increased due to a reduced sensitivity of carnitine palmitoyl transferase 1 (CPT1), a master regulator of lipid metabolism, to inhibition by malonyl-CoA [2, 3]. Moreover, increased expression and activity of this protein has been suggested in the disease [2, 3]. Hence, the disease is likely to result in exaggerated production of acylcarnitines, resulting in release of these intermediates into the circulation [4]. In line with this, two recent studies have shown a marked reduction in acylcarnitine levels, particularly of those with intermediate chain length, following reinstatement of euthyroidism in GD [5, 6].

GD is treated by anti-thyroid medication, radioiodine or surgery and depending on...



Thanks to associate professor Bengt Hallengren for valuable discussion of the manuscript.


This work was supported by the Royal Physiographic Society, the Novo Nordisk-, Påhlsson-, the Swedish Diabetes-, Hjelt- and Crafoord Foundations, the research funds of Malmö University Hospital, the Faculty of Medicine at Lund University, the Skåne Research Foundation, the Swedish Research Council Strategic Research Area Exodiab (2009-1039) and Linnaeus grant (349-2006-237), and the Swedish Foundation for Strategic Research (IRC15-0067).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

12020_2018_1735_MOESM1_ESM.docx (35 kb)
Supplemental Table 1


  1. 1.
    G. Dimitriadis, P. Mitrou, V. Lambadiari, E. Boutati, E. Maratou, E. Koukkou, D. Panagiotakos, N. Tountas, T. Economopoulos, S.A. Raptis, Insulin-stimulated rates of glucose uptake in muscle in hyperthyroidism: the importance of blood flow. J. Clin. Endocrinol. Metab. 93(6), 2413–2415 (2008)CrossRefPubMedGoogle Scholar
  2. 2.
    R.L. Mynatt, E.A. Park, F.E. Thorngate, H.K. Das, G.A. Cook, Changes in carnitine palmitoyltransferase-I mRNA abundance produced by hyperthyroidism and hypothyroidism parallel changes in activity. Biochem. Biophys. Res. Commun. 201(2), 932–937 (1994)CrossRefPubMedGoogle Scholar
  3. 3.
    M.S. Jansen, G.A. Cook, S. Song, E.A. Park, Thyroid hormone regulates carnitine palmitoyltransferase Ialpha gene expression through elements in the promoter and first intron. J. Biol. Chem. 275(45), 34989–34997 (2000)CrossRefPubMedGoogle Scholar
  4. 4.
    R.R. Ramsay, A. Arduini, The carnitine acyltransferases and their role in modulating Acyl-Coa pools. Arch. Biochem. Biophys. 302(2), 307–314 (1993)CrossRefPubMedGoogle Scholar
  5. 5.
    C.L. Chng, A.Y. Lim, H.C. Tan, J.P. Kovalik, K.W. Tham, Y.M. Bee, W. Lim, S. Acharyya, O.F. Lai, M.F. Chong, P.M. Yen, Physiological and metabolic changes during the transition from hyperthyroidism to euthyroidism in Graves’ disease. Thyroid 26(10), 1422–1430 (2016)CrossRefPubMedGoogle Scholar
  6. 6.
    M. Al-Majdoub, M. Lantz, P. Spegel, Treatment of Swedish patients with Graves’ hyperthyroidism is associated with changes in acylcarnitine levels. Thyroid 27(9), 1109–1117 (2017)CrossRefPubMedGoogle Scholar
  7. 7.
    C.M. Girgis, B.L. Champion, J.R. Wall, Current concepts in graves’ disease. Ther. Adv. Endocrinol. Metab. 2(3), 135–144 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    S. Jansson, G. Berg, G. Lindstedt, A. Michanek, E. Nyström, Overweight - a common problme among women treated for hyperthydoidism. Postgrad. Med. J. 69, 107–111 (1993)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    J. Dale, J. Daykin, R. Holder, M.C. Sheppard, J.A. Franklyn, Weight gain following treatment of hyperthyroidism. Clin. Endocrinol. 55(2), 233–239 (2001)CrossRefGoogle Scholar
  10. 10.
    M. Ng, T. Fleming, M. Robinson, B. Thomson, N. Graetz, C. Margono, E.C. Mullany, S. Biryukov, C. Abbafati, S.F. Abera, J.P. Abraham, N.M. Abu-Rmeileh, T. Achoki, F.S. AlBuhairan, Z.A. Alemu, R. Alfonso, M.K. Ali, R. Ali, N.A. Guzman, W. Ammar, P. Anwari, A. Banerjee, S. Barquera, S. Basu, D.A. Bennett, Z. Bhutta, J. Blore, N. Cabral, I.C. Nonato, J.C. Chang, R. Chowdhury, K.J. Courville, M.H. Criqui, D.K. Cundiff, K.C. Dabhadkar, L. Dandona, A. Davis, A. Dayama, S.D. Dharmaratne, E.L. Ding, A.M. Durrani, A. Esteghamati, F. Farzadfar, D.F. Fay, V.L. Feigin, A. Flaxman, M.H. Forouzanfar, A. Goto, M.A. Green, R. Gupta, N. Hafezi-Nejad, G.J. Hankey, H.C. Harewood, R. Havmoeller, S. Hay, L. Hernandez, A. Husseini, B.T. Idrisov, N. Ikeda, F. Islami, E. Jahangir, S.K. Jassal, S.H. Jee, M. Jeffreys, J.B. Jonas, E.K. Kabagambe, S.E. Khalifa, A.P. Kengne, Y.S. Khader, Y.H. Khang, D. Kim, R.W. Kimokoti, J.M. Kinge, Y. Kokubo, S. Kosen, G. Kwan, T. Lai, M. Leinsalu, Y. Li, X. Liang, S. Liu, G. Logroscino, P.A. Lotufo, Y. Lu, J. Ma, N.K. Mainoo, G.A. Mensah, T.R. Merriman, A.H. Mokdad, J. Moschandreas, M. Naghavi, A. Naheed, D. Nand, K.M. Narayan, E.L. Nelson, M.L. Neuhouser, M.I. Nisar, T. Ohkubo, S.O. Oti, A. Pedroza, D. Prabhakaran, N. Roy, U. Sampson, H. Seo, S.G. Sepanlou, K. Shibuya, R. Shiri, I. Shiue, G.M. Singh, J.A. Singh, V. Skirbekk, N.J. Stapelberg, L. Sturua, B.L. Sykes, M. Tobias, B.X. Tran, L. Trasande, H. Toyoshima, S. van de Vijver, T.J. Vasankari, J.L. Veerman, G. Velasquez-Melendez, V.V. Vlassov, S.E. Vollset, T. Vos, C. Wang, X. Wang, E. Weiderpass, A. Werdecker, J.L. Wright, Y.C. Yang, H. Yatsuya, J. Yoon, S.J. Yoon, Y. Zhao, M. Zhou, S. Zhu, A.D. Lopez, C.J. Murray, E. Gakidou, Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384(9945), 766–781 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    M.G. Schooneman, A. Napolitano, S.M. Houten, G.K. Ambler, P.R. Murgatroyd, S.R. Miller, C.E. Hollak, C.Y. Tan, S. Virtue, A. Vidal-Puig, D.J. Nunez, M.R. Soeters, Assessment of plasma acylcarnitines before and after weight loss in obese subjects. Arch. Biochem. Biophys. 606, 73–80 (2016)CrossRefPubMedGoogle Scholar
  12. 12.
    S.J. Mihalik, B.H. Goodpaster, D.E. Kelley, D.H. Chace, J. Vockley, F.G. Toledo, J.P. DeLany, Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity. Obesity 18(9), 1695–1700 (2010)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mahmoud Al Majdoub
    • 1
  • Mikael Lantz
    • 1
    • 2
  • Peter Spégel
    • 1
    • 3
    Email author
  1. 1.Department of Clinical Sciences in MalmöLund UniversityMalmöSweden
  2. 2.Department of EndocrinologySkåne University HospitalMalmöSweden
  3. 3.Department of Chemistry, Centre for Analysis and SynthesisLund UniversityLundSweden

Personalised recommendations