Advertisement

Endocrine

, Volume 63, Issue 1, pp 44–51 | Cite as

Cause-specific risk of major adverse cardiovascular outcomes and hypoglycemic in patients with type 2 diabetes: a multicenter prospective cohort study

  • Bao Sun
  • Fazhong He
  • Lei Sun
  • Jiecan Zhou
  • Jiayi Shen
  • Jing Xu
  • Bin Wu
  • Rong Liu
  • Xingyu Wang
  • Heng Xu
  • Xiaoping Chen
  • Honghao Zhou
  • Zhaoqian Liu
  • Wei ZhangEmail author
Original Article
  • 137 Downloads

Abstract

Purpose

Glycated hemoglobin A1c (HbA1c) and fasting plasma glucose (FPG) was identified to account for the risk of cardiovascular diseases in type 2 diabetic patients, but no study evaluated the risk based on both HbA1c and FPG levels. We described the risk of major adverse cardiovascular events (MACE) and hypoglycemic in type 2 diabetic patients according to both HbA1c and FPG levels.

Methods

With the usage of databases of Action in Diabetes and Vascular disease: preterAx and diamicroN-MR Controlled Evaluation (ADVANCE), 1815 patients from 61 centers in China was identified and grouped according to the criterion value of HbA1c and FPG: Good glycemic control (HbA1c < 6.5%, FPG < 6.1 mmol/L); Insufficient glycemic control (HbA1c < 6.5%, FPG ≥ 6.1 mmol/L or HbA1c ≥ 6.5%, FPG < 6.1 mmol/L); Poor glycemic control (HbA1c ≥ 6.5%, FPG ≥ 6.1 mmol/L). Time-varying multivariable Cox proportional hazards models were employed.

Results

Average age was 64.8 ± 5.8 years, with a median of 4.8 years of follow-up. Overall, the incidence rates of MACE were 20.6 per 1000-person-years in Good glycemic control compared with 45.9 per 1000-person-years in Insufficient glycemic control (adjusted hazard ratio (aHR): 1.99; 95% CI 1.11–3.56; p = 0.02) and 54.7 per 1000-person-years in Poor glycemic control (aHR: 2.46; 95% CI 1.38–4.40; p = 0.002), respectively. The risk of hypoglycemic was highest in Insufficient glycemic control; 67.3 per 1000-person-years compared with 46.3 per 1000-person-years in Good glycemic control (aHR: 1.62; 95% CI 1.03–2.56; p = 0.04). Apart from this, we also observed that both MACE (aHR:1.41; 95% CI 1.13–1.77; p = 0.003) and hypoglycemic episodes (aHR: 1.82; 95% CI 1.48–2.24; p < 0.001) were sufficiently more frequent in the insulin-exposed group than the non-exposed group. In a post-hoc analysis, the risk of MACE (aHR:1.43; 95% CI 1.09–1.86; p = 0.01) and hypoglycemic (aHR: 1.99; 95% CI 1.46–2.69; p < 0.001) were more pronounced in Insufficient glycemic control with insulin exposure.

Conclusions

We observed a significant association of cause-specific risk of MACE and hypoglycemic with Insufficient glycemic control, particularly with insulin exposure.

Keywords

Type 2 diabetes Major adverse cardiovascular events Good glycemic control Insufficient glycemic control Poor glycemic control 

Abbreviations

HbA1c

Glycated hemoglobin A1c

FPG

fasting plasma glucose

MACE

major adverse cardiovascular events

ADVANCE

Action in Diabetes and Vascular disease: preterAx and diamicroN-MR Controlled Evaluation

aHR

adjusted hazard ratio

IQR

Interquartile range

BMI

body mass index

ACCORD

Action to Control Cardiovascular Risk in Diabetes

VADT

Veterans Affairs Diabetes Trail.

Notes

Acknowledgements

We acknowledge the contributions of ADVANCE group at 61 centers in China. We also thank all patients and participants who have contributed to the register.

Funding

This work was funded by grants from National Key Research and Development Program (No. 2016YFC0905000), National Natural Science Foundation of China (No 81522048, 81573511) and the Innovation Driven Project of Central South University (No 2016CX024).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

The study was approved by the local ethics committee and was in accordance with the 1964 Helsinki declaration and its later amendments.

Informed consent

All patients provide written informed consent.

Supplementary material

12020_2018_1715_MOESM1_ESM.tif (5.2 mb)
Supplementary Figure
12020_2018_1715_MOESM2_ESM.docx (20 kb)
Supplementary Table 1
12020_2018_1715_MOESM3_ESM.docx (14 kb)
Supplementary Figure legend

References

  1. 1.
    International Diabetes Federation. IDF Diabetes Atlas, 8 edn. http://www.diabetesatlas.org (2017). Accessed 2017.
  2. 2.
    L. Wang, P. Gao, M. Zhang, Z. Huang, D. Zhang, Q. Deng, Y. Li, Z. Zhao, X. Qin, D. Jin, M. Zhou, X. Tang, Y. Hu, L. Wang, Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013. JAMA 317(24), 2515–2523 (2017).  https://doi.org/10.1001/jama.2017.7596 CrossRefGoogle Scholar
  3. 3.
    S.M. Haffner, S. Lehto, T. Ronnemaa, K. Pyorala, M. Laakso, Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N. Eng. J. Med. 339(4), 229–234 (1998).  https://doi.org/10.1056/nejm199807233390404 CrossRefGoogle Scholar
  4. 4.
    S.H. Saydah, M. Miret, J. Sung, C. Varas, D. Gause, F.L. Brancati, Postchallenge hyperglycemia and mortality in a national sample of U.S. adults. Diabetes Care 24(8), 1397–1402 (2001)CrossRefGoogle Scholar
  5. 5.
    Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33)., UK Prospective Diabetes Study (UKPDS) Group. Lancet (Lond., Engl.) 352(9131), 837–853 (1998)CrossRefGoogle Scholar
  6. 6.
    D.M. Nathan, S. Genuth, J. Lachin, P. Cleary, O. Crofford, M. Davis, L. Rand, C. Siebert, The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Eng. J. Med. 329(14), 977–986 (1993).  https://doi.org/10.1056/nejm199309303291401 CrossRefGoogle Scholar
  7. 7.
    M. Shichiri, H. Kishikawa, Y. Ohkubo, N. Wake, Long-term results of the Kumamoto Study on optimal diabetes control in type 2 diabetic patients. Diabetes Care 23(suppl 2), B21–B29 (2000)Google Scholar
  8. 8.
    C. Abraira, J. Colwell, F. Nuttall, C.T. Sawin, W. Henderson, J.P. Comstock, N.V. Emanuele, S.R. Levin, I. Pacold, H.S. Lee, Cardiovascular events and correlates in the Veterans Affairs Diabetes Feasibility Trial. Veterans Affairs Cooperative Study on Glycemic Control and Complications in Type II Diabetes. Arch. Intern. Med. 157(2), 181–188 (1997)CrossRefGoogle Scholar
  9. 9.
    C. Stettler, S. Allemann, P. Juni, C.A. Cull, R.R. Holman, M. Egger, S. Krahenbuhl, P. Diem, Glycemic control and macrovascular disease in types 1 and 2 diabetes mellitus: Meta-analysis of randomized trials. Am. Heart J. 152(1), 27–38 (2006).  https://doi.org/10.1016/j.ahj.2005.09.015 CrossRefGoogle Scholar
  10. 10.
    C.J. Currie, J.R. Peters, A. Tynan, M. Evans, R.J. Heine, O.L. Bracco, T. Zagar, C.D. Poole, Survival as a function of HbA(1c) in people with type 2 diabetes: a retrospective cohort study. Lancet (Lond., Engl.) 375(9713), 481–489 (2010).  https://doi.org/10.1016/s0140-6736(09)61969-3 CrossRefGoogle Scholar
  11. 11.
    B. Balkau, M. Shipley, R.J. Jarrett, K. Pyorala, M. Pyorala, A. Forhan, E. Eschwege, High blood glucose concentration is a risk factor for mortality in middle-aged nondiabetic men. 20-year follow-up in the Whitehall Study, the Paris Prospective Study, and the Helsinki Policemen Study. Diabetes Care 21(3), 360–367 (1998)CrossRefGoogle Scholar
  12. 12.
    M. Coutinho, H.C. Gerstein, Y. Wang, S. Yusuf, The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care 22(2), 233–240 (1999)CrossRefGoogle Scholar
  13. 13.
    D.E. Goldstein, R.R. Little, R.A. Lorenz, J.I. Malone, D.M. Nathan, C.M. Peterson, Tests of glycemia in diabetes. Diabetes Care 26(Suppl 1), S106–S108 (2003)Google Scholar
  14. 14.
    E. Selvin, M.W. Steffes, H. Zhu, K. Matsushita, L. Wagenknecht, J. Pankow, J. Coresh, F.L. Brancati, Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N. Eng. J. Med. 362(9), 800–811 (2010).  https://doi.org/10.1056/NEJMoa0908359 CrossRefGoogle Scholar
  15. 15.
    E. Selvin, S. Marinopoulos, G. Berkenblit, T. Rami, F.L. Brancati, N.R. Powe, S.H. Golden, Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann. Intern. Med. 141(6), 421–431 (2004)CrossRefGoogle Scholar
  16. 16.
    S.E. Moss, R. Klein, B.E. Klein, S.M. Meuer, The association of glycemia and cause-specific mortality in a diabetic population. Arch. Intern. Med. 154(21), 2473–2479 (1994)CrossRefGoogle Scholar
  17. 17.
    X. Guan, L. Zheng, G. Sun, X. Guo, Y. Li, H. Song, F. Tian, Y. Sun, The changing relationship between HbA1c and FPG according to different FPG ranges. J. Endocrinol. Invest. 39(5), 523–528 (2016).  https://doi.org/10.1007/s40618-015-0389-1 CrossRefGoogle Scholar
  18. 18.
    A. Patel, S. MacMahon, J. Chalmers, B. Neal, L. Billot, M. Woodward, M. Marre, M. Cooper, P. Glasziou, D. Grobbee, P. Hamet, S. Harrap, S. Heller, L. Liu, G. Mancia, C.E. Mogensen, C. Pan, N. Poulter, A. Rodgers, B. Williams, S. Bompoint, B.E. de Galan, R. Joshi, F. Travert, Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Eng. J. Med. 358(24), 2560–2572 (2008).  https://doi.org/10.1056/NEJMoa0802987 CrossRefGoogle Scholar
  19. 19.
    S. Zoungas, J. Chalmers, B. Neal, L. Billot, Q. Li, Y. Hirakawa, H. Arima, H. Monaghan, R. Joshi, S. Colagiuri, M.E. Cooper, P. Glasziou, D. Grobbee, P. Hamet, S. Harrap, S. Heller, L. Lisheng, G. Mancia, M. Marre, D.R. Matthews, C.E. Mogensen, V. Perkovic, N. Poulter, A. Rodgers, B. Williams, S. MacMahon, A. Patel, M. Woodward, Follow-up of blood-pressure lowering and glucose control in type 2 diabetes. N. Eng. J. Med. 371(15), 1392–1406 (2014).  https://doi.org/10.1056/NEJMoa1407963 CrossRefGoogle Scholar
  20. 20.
    Rationale and design of the ADVANCE study: a randomised trial of blood pressure lowering and intensive glucose control in high-risk individuals with type 2 diabetes mellitus., Action in diabetes and vascular disease: PreterAx and diamicron modified-release controlled evaluation. J. Hypertens. Suppl.: Off. J. Int. Soc. Hypertens. 19(4), S21–S28 (2001)Google Scholar
  21. 21.
    ADVANCE Management Committee. Study rationale and design of ADVANCE: action in diabetes and vascular disease--preterax and diamicron MR controlled evaluation. Diabetologia 44(9), 1118–1120 (2001).Google Scholar
  22. 22.
    F. He, M. Liu, Z. Chen, G. Liu, Z. Wang, R. Liu, J. Luo, J. Tang, X. Wang, X. Liu, H. Zhou, X. Chen, Z. Liu, W. Zhang, Assessment of Human Tribbles Homolog 3 Genetic Variation (rs2295490) Effects on Type 2 Diabetes Patients with Glucose Control and Blood Pressure Lowering Treatment. EBioMedicine 13, 181–189 (2016).  https://doi.org/10.1016/j.ebiom.2016.10.025 CrossRefGoogle Scholar
  23. 23.
    I.M. Stratton, A.I. Adler, H.A.Neil, D.R. Matthews, S.E. Manley, C.A. Cull, D. Hadden, R.C. Turner, R.R. Holman, Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ (Clinical research ed.) 321(7258), 405–412 (2000)Google Scholar
  24. 24.
    M.S. Kirkman, M. McCarren, J. Shah, W. Duckworth, C. Abraira, The association between metabolic control and prevalent macrovascular disease in Type 2 diabetes: the VA Cooperative Study in diabetes. J. Diabetes Complicat. 20(2), 75–80 (2006).  https://doi.org/10.1016/j.jdiacomp.2005.06.013 CrossRefGoogle Scholar
  25. 25.
    H.C. Gerstein, M.E. Miller, R.P. Byington, D.C. Goff Jr., J.T. Bigger, J.B. Buse, W.C. Cushman, S. Genuth, F. Ismail-Beigi, R.H. Grimm Jr., J.L. Probstfield, D.G. Simons-Morton, W.T. Friedewald, Effects of intensive glucose lowering in type 2 diabetes. N. Eng. J. Med. 358(24), 2545–2559 (2008).  https://doi.org/10.1056/NEJMoa0802743 CrossRefGoogle Scholar
  26. 26.
    C. Abraira, W. Duckworth, M. McCarren, N. Emanuele, D. Arca, D. Reda, W. Henderson, Design of the cooperative study on glycemic control and complications in diabetes mellitus type 2: Veterans Affairs Diabetes Trial. J. Diabetes Complicat. 17(6), 314–322 (2003)CrossRefGoogle Scholar
  27. 27.
    P.E. Cryer, Glycemic goals in diabetes: trade-off between glycemic control and iatrogenic hypoglycemia. Diabetes 63(7), 2188–2195 (2014).  https://doi.org/10.2337/db14-0059 CrossRefGoogle Scholar
  28. 28.
    S.E. Inzucchi, R.M. Bergenstal, J.B. Buse, M. Diamant, E. Ferrannini, M. Nauck, A.L. Peters, A. Tsapas, R. Wender, D.R. Matthews, Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 38(1), 140–149 (2015).  https://doi.org/10.2337/dc14-2441 CrossRefGoogle Scholar
  29. 29.
    K.J. Lipska, H. Krumholz, T. Soones, S.J. Lee, Polypharmacy in the aging patient: A review of glycemic control in older adults with type 2 diabetes. JAMA 315(10), 1034–1045 (2016).  https://doi.org/10.1001/jama.2016.0299 CrossRefGoogle Scholar
  30. 30.
    M.K. Rutter, Devoting attention to glucose variability and hypoglycaemia in type 2 diabetes. Diabetologia 61(1), 43–47 (2018).  https://doi.org/10.1007/s00125-017-4421-1 CrossRefGoogle Scholar
  31. 31.
    B. Zinman, S.P. Marso, N.R. Poulter, S.S. Emerson, T.R. Pieber, R.E. Pratley, M. Lange, K. Brown-Frandsen, A. Moses, A.M. Ocampo Francisco, J. Barner Lekdorf, K. Kvist, J.B. Buse, Day-to-day fasting glycaemic variability in DEVOTE: associations with severe hypoglycaemia and cardiovascular outcomes (DEVOTE 2). Diabetologia 61(1), 48–57 (2018).  https://doi.org/10.1007/s00125-017-4423-z CrossRefGoogle Scholar
  32. 32.
    C.R.L. Cardoso, N.C. Leite, C.B.M. Moram, G.F. Salles, Long-term visit-to-visit glycemic variability as predictor of micro- and macrovascular complications in patients with type 2 diabetes: The Rio de Janeiro Type 2. Diabetes Cohort Study 17(1), 33 (2018).  https://doi.org/10.1186/s12933-018-0677-0 Google Scholar
  33. 33.
    H.C. Gerstein, M.E. Miller, F. Ismail-Beigi, J. Largay, C. McDonald, H.A. Lochnan, G.L. Booth, Effects of intensive glycaemic control on ischaemic heart disease: analysis of data from the randomised, controlled ACCORD trial. Lancet 384(9958), 1936–1941 (2014).  https://doi.org/10.1016/S0140-6736(14)60611-5 CrossRefGoogle Scholar
  34. 34.
    B. Zinman, C. Wanner, J.M. Lachin, D. Fitchett, E. Bluhmki, S. Hantel, M. Mattheus, T. Devins, O.E. Johansen, H.J. Woerle, U.C. Broedl, S.E. Inzucchi, Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Eng. J. Med. 373(22), 2117–2128 (2015).  https://doi.org/10.1056/NEJMoa1504720 CrossRefGoogle Scholar
  35. 35.
    S.P. Marso, S.C. Bain, A. Consoli, F.G. Eliaschewitz, E. Jódar, L.A. Leiter, I. Lingvay, J. Rosenstock, J. Seufert, M.L. Warren, V. Woo, O. Hansen, A.G. Holst, J. Pettersson, T. Vilsbøll, Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Eng. J. Med. 375(19), 1834–1844 (2016).  https://doi.org/10.1056/NEJMoa1607141 CrossRefGoogle Scholar
  36. 36.
    S.P. Marso, G.H. Daniels, K. Brown-Frandsen, P. Kristensen, J.F. Mann, M.A. Nauck, S.E. Nissen, S. Pocock, N.R. Poulter, L.S. Ravn, W.M. Steinberg, M. Stockner, B. Zinman, R.M. Bergenstal, J.B. Buse, Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Eng. J. Med. 375(4), 311–322 (2016).  https://doi.org/10.1056/NEJMoa1603827 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Bao Sun
    • 1
    • 2
  • Fazhong He
    • 1
    • 2
  • Lei Sun
    • 3
  • Jiecan Zhou
    • 1
    • 2
  • Jiayi Shen
    • 1
    • 2
  • Jing Xu
    • 1
    • 2
  • Bin Wu
    • 1
    • 2
  • Rong Liu
    • 1
    • 2
  • Xingyu Wang
    • 4
  • Heng Xu
    • 5
  • Xiaoping Chen
    • 1
    • 2
  • Honghao Zhou
    • 1
    • 2
  • Zhaoqian Liu
    • 1
    • 2
  • Wei Zhang
    • 1
    • 2
    Email author
  1. 1.Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaChina
  2. 2.Institute of Clinical Pharmacology, Central South UniversityHunan Key Laboratory of pharmacogeneticsChangshaChina
  3. 3.Data Analysis Technology Lab, School of Mathematics and StatisticsHenan UniversityKaifengChina
  4. 4.Beijing Hypertension League InstituteBeijingChina
  5. 5.Department of Laboratory Medicine, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China HospitalSichuan UniversityChengduChina

Personalised recommendations