Advertisement

Endocrine

pp 1–14 | Cite as

Hyperinsulinemia precedes insulin resistance in offspring rats exposed to angiotensin II type 1 autoantibody in utero

  • Suli Zhang
  • Mingming Wei
  • Mingming Yue
  • Pengli Wang
  • Xiaochen Yin
  • Li Wang
  • Xiaoli Yang
  • Huirong Liu
Original Article
  • 7 Downloads

Abstract

Objective

Insulin resistance is highly associated with an adverse intrauterine environment. We previously reported that fetal rats exposed to angiotensin II type 1 receptor (AT1R) autoantibody (AT1-AA) displayed increased susceptibility to metabolic diseases during middle age. However, the timing of the onset of insulin resistance remains unknown. In this study, we examined the offspring of AT1-AA-positive rats, tracking the development of insulin resistance.

Methods

Pregnant rats were intravenously injected with AT1-AA. Afterwards, we collected serum samples and liver tissues of the offspring at various stages, including gestation day 18, 3 weeks (weaning period), 18 weeks (young adulthood), and 48 weeks (middle age) after birth.

Results

Compared with saline control group, hepatic vacuolar degeneration was visible in AT1-AA offspring rats as early as 3 weeks; hyperinsulinemia and impaired glucose tolerance occurred at 18 weeks of age, however, insulin resistance was not observed until 48 weeks. At 18 weeks we detected suppressed protein levels of insulin receptor (IR) but increased levels of IR substrate 1 (IRS1) in the liver of AT1-AA group rats. Interestingly, both IR and IRS1/2 were significantly decreased at 48 weeks. Liver proteomic analysis indicated that the differences in protein expression between the AT1-AA and control rats became more pronounced with age, particularly in terms of mitochondrial energy metabolism.

Conclusion

Rats exposed to AT1-AA in utero developed hyperinsulinemia from young adulthood which subsequently progressed to insulin resistance, and was linked with abnormal hepatic structure and impaired IR signaling. Additionally, dysregulation of energy metabolism may play a fundamental role in predisposing offspring to insulin resistance.

Keywords

Insulin resistance Autoantibody Angiotensin II type 1 receptor Offspring Liver 

Notes

Acknowledgements

The authors thank Ligang Deng for technical assistance in liver proteomics.

Funding

This work was funded by grants from the Major Research Plan of the National Natural Science Foundation of China (NSFC; Grant no. 91539205) to Huirong Liu, NSFC (Grant no. 31771267 and 81300694) to Suli Zhang and NSFC (Grant no.81471478) to Xiaoli Yang.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

12020_2018_1700_MOESM1_ESM.xlsx (123 kb)
Supplementary Table

References

  1. 1.
    M.P. Czech, Insulin action and resistance in obesity and type 2 diabetes. Nat. Med. 23, 804–814 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    S. Bussler, M. Penke, G. Flemming, Y.S. Elhassan, J. Kratzsch, E. Sergeyev, T. Lipek, M. Vogel, U. Spielau, A. Körner, T. de, Giorgis, W. Kiess, Novel insights in the metabolic syndrome in childhood and adolescence. Horm. Res. Paediatr. 88, 181–193 (2017)CrossRefPubMedGoogle Scholar
  3. 3.
    D.A. Giussani, S.T. Davidge, Developmental programming of cardiovascular disease by prenatal hypoxia. J. Dev. Orig. Health Dis. 4, 328–337 (2013)CrossRefPubMedGoogle Scholar
  4. 4.
    B. Brenseke, M.R. Prater, J. Bahamonde, J.C. Gutierrez, Current thoughts on maternal nutrition and fetal programming of the metabolic syndrome. J. Pregnancy 2013, 368461 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    B. Portha, A. Fournier, M.D. Kioon, V. Mezger, J. Movassat, Early environmental factors, alteration of epigenetic marks and metabolic disease susceptibility. Biochimie 97, 1–15 (2014)CrossRefPubMedGoogle Scholar
  6. 6.
    D.I. Vaney, The morphology and topographic distribution of AII amacrine cells in the cat retina. Proc. R. Soc. Lond. B. Biol. Sci. 224, 475–488 (1985)CrossRefPubMedGoogle Scholar
  7. 7.
    Z. Jin, W. Zhang, H. Yang, X. Wang, Y. Zheng, Q. Zhang, J. Zhi, Maternal treatment with agonistic autoantibodies against type-1 angiotensin II receptor in late pregnancy increases apoptosis of myocardial cells and myocardial susceptibility to ischemia-reperfusion injury in offspring rats. PLoS ONE 8, e80709 2013).CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    F. Herse, S. Verlohren, K. Wenzel, J. Pape, D.N. Muller, S. Modrow, G. Wallukat, F.C. Luft, C.W. Redman, R. Dechend, Prevalence of agonistic autoantibodies against the angiotensin II type 1 receptor and soluble fms-like tyrosine kinase 1 in a gestational age-matched case study. Hypertension 53, 393–398 (2009)CrossRefPubMedGoogle Scholar
  9. 9.
    T. Walther, G. Wallukat, A. Jank, S. Bartel, H.P. Schultheiss, R. Faber, H. Stepan, Angiotensin II type 1 receptor agonistic antibodies reflect fundamental alterations in the uteroplacental vasculature. Hypertension 46, 1275–1279 (2005)CrossRefPubMedGoogle Scholar
  10. 10.
    F. Herse, S. Verlohren, K. Wenzel, J. Pape, D.N. Muller, S. Modrow, G. Wallukat, F.C. Luft, C.W. Redman, R. Dechend, Prevalence of agonistic autoantibodies against the angiotensin II type 1 receptor and soluble fms-like tyrosine kinase 1 in a gestational age-matched case study. Hypertension 53, 393–398 (2009)CrossRefPubMedGoogle Scholar
  11. 11.
    G. Hönger, H. Cardinal, M. Dieudé, A. Buser, I. Hösli, D. Dragun, M.J. Hébert, S. Schaub, Human pregnancy and generation of anti-angiotensin receptor and anti-perlecan antibodies. Transpl. Int. 27, 467–474 (2014)CrossRefPubMedGoogle Scholar
  12. 12.
    C.C. Zhou, R.A. Irani, Y. Zhang, S.C. Blackwell, T. Mi, J. Wen, H. Shelat, Y.J. Geng, S.M. Ramin, R.E. Kellems, Y. Xia, Angiotensin receptor agonistic autoantibody-mediated tumor necrosis factor-alpha induction contributes to increased soluble endoglin production in preeclampsia. Circulation 121, 436–444 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Y. Xia, H. Wen, S. Bobst, M.C. Day, R.E. Kellems, Maternal autoantibodies from preeclamptic patients activate angiotensin receptors on human trophoblast cells. J. Soc. Gynecol. Investig. 10, 82–93 (2003)CrossRefPubMedGoogle Scholar
  14. 14.
    S. Zhang, R. Zheng, L. Yang, X. Zhang, L. Zuo, X. Yang, K. Bai, L. Song, J. Tian, J. Yang, H. Liu, Angiotensin type 1 receptor autoantibody from preeclamptic patients induces human fetoplacental vasoconstriction. J. Cell. Physiol. 228, 142–148 (2013)CrossRefPubMedGoogle Scholar
  15. 15.
    S. Zhang, X. Zhang, L. Yang, Z. Yan, L. Yan, J. Tian, X. Li, L. Song, L. Wang, X. Yang, R. Zheng, W. Lau, X. Ma, H. Liu, Increased susceptibility to metabolic syndrome in adult offspring of angiotensin type 1 receptor autoantibody-positive rats. Antioxid. Redox Signal. 17, 733–743 (2012)CrossRefPubMedGoogle Scholar
  16. 16.
    M. Liu, J. Sun, J. Cui, W. Chen, H. Guo, F. Barbetti, P. Arvan, INS-gene mutations: from genetics and beta cell biology to clinical disease. Mol. Asp. Med. 42, 3–18 (2015)CrossRefGoogle Scholar
  17. 17.
    L.V. Renna, F. Bosè, S. Iachettini, B. Fossati, L. Saraceno, V. Milani, R. Colombo, G. Meola, R. Cardani, Receptor and post-receptor abnormalities contribute to insulin resistance in myotonic dystrophy type 1 and type 2 skeletal muscle. PLoS ONE 12, e0184987 2017).CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    M. Wei, C. Zhao, S. Zhang, L. Wang, H. Liu, X. Ma, Preparation and biological activity of the monoclonal antibody against the second extracellular loop of the angiotensin II type 1 receptor. J. Immunol. Res. 2016, 1858252 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    V.S. Effoe, L.E. Wagenknecht, J.B. Echouffo-Tcheugui, H. Chen, J.J. Joseph, R.R. Kalyani, R.A. Bell, W.H. Wu, R. Casanova, A.G. Bertoni, Sex differences in the association between insulin resistance and incident coronary heart disease and stroke among blacks without diabetes mellitus: the Jackson Heart Study. J. Am. Heart Assoc. 6, e004229 2017).CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    N.K. Francis, H.S. Pawar, A. Mitra, A. Mitra, Assessment of insulin sensitivity and its convalescence with dietary rehabilitation in undernourished rural West Bengal population. J. Clin. Diagn. Res. 11, LC29–LC32 (2017)PubMedPubMedCentralGoogle Scholar
  21. 21.
    H. Li, L. Yang, Y. Qi, P. Guo, Y. Lu, L. Chen, Aluminum toxicity-induced alterations of leaf proteome in two citrus species differing in aluminum tolerance. Int. J. Mol. Sci. 17, E1180 (2016).CrossRefPubMedGoogle Scholar
  22. 22.
    R.A. Irani, Y. Zhang, S.C. Blackwell, C.C. Zhou, S.M. Ramin, R.E. Kellems, Y. Xia, The detrimental role of angiotensin receptor agonistic autoantibodies in intrauterine growth restriction seen in preeclampsia. J. Exp. Med. 206, 2809–2822 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    C.C. Zhou, Y. Zhang, R.A. Irani, H. Zhang, T. Mi, E.J. Popek, M.J. Hicks, S.M. Ramin, R.E. Kellems, Y. Xia, Angiotensin receptor agonistic autoantibodies induce pre-eclampsia in pregnant mice. Nat. Med. 14, 855–862 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    R. Marin-Juez, S. Jong-Raadsen, S. Yang, H.P. Spaink, Hyperinsulinemia induces insulin resistance and immune suppression via Ptpn6/Shp1 in zebrafish. J. Endocrinol. 222, 229–241 (2014)CrossRefPubMedGoogle Scholar
  25. 25.
    E. Mourmoura, K. Couturier, I. Hininger-Favier, C. Malpuech-Brugère, K. Azarnoush, M. Richardson, L. Demaison, Functional changes of the coronary microvasculature with aging regarding glucose tolerance, energy metabolism, and oxidative stress. Age 36, 9670 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    J. Lei, S. Zhang, P. Wang, Y. Liao, J. Bian, X. Yin, Y. Wu, L. Bai, F. Wang, X. Yang, H. Liu, Long-term presence of angiotensin II type 1 receptor autoantibody reduces aldosterone production by triggering Ca2+ overload in H295R cells. Immunol. Res. 66, 44–51 (2018)CrossRefPubMedGoogle Scholar
  27. 27.
    A.L. Birkenfeld, G.I. Shulman, Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology 59, 713–723 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    M. Fujikawa, K. Sugawara, T. Tanabe, M. Yoshida, Assembly of human mitochondrial ATP synthase through two separate intermediates, F1-c-ring and b-e-g complex. FEBS Lett. 589, 2707–2712 (2015)CrossRefPubMedGoogle Scholar
  29. 29.
    J. Ye, Mechanisms of insulin resistance in obesity. Front. Med. 7, 14–24 (2013)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physiology & Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
  2. 2.Department of PathologyShanxi Medical UniversityTaiyuanChina
  3. 3.Department of Reproductive CenterTaiyuan Central HospitalTaiyuanChina
  4. 4.Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular DiseaseCapital Medical UniversityBeijingChina

Personalised recommendations