Endocrine

, Volume 60, Issue 2, pp 317–322 | Cite as

IGF-1-based screening reveals a low prevalence of acromegaly in patients with obstructive sleep apnea

  • Daniel A. Heinrich
  • Claudia Reinholz
  • Maximilian Bauer
  • Amanda Tufman
  • Richard Frohner
  • Jochen Schopohl
  • Martin Bidlingmaier
  • Robert P. Kosilek
  • Martin Reincke
  • Harald J. Schneider
Original Article
  • 77 Downloads

Abstract

Purpose

Recent epidemiologic studies suggest a high prevalence of acromegaly. The prevalence of obstructive sleep apnea syndrome (OSAS) in acromegaly patients ranges from 47 to 70%. A recent study identified 2 patients with acromegaly among 567 OSAS patients. However, it remains unclear whether screening for acromegaly among OSAS patients is necessary. The aim was to screen for acromegaly among OSAS patients by measuring IGF-1 levels and performing confirmatory tests if necessary.

Methods

We performed a prospective cross-sectional diagnostic study on the prevalence of acromegaly in patients with OSAS. A total of 507 patients with a confirmed diagnosis of OSAS (357 male, 150 female) were screened.

Results

Seven male and three female patients (1.97% of total) were positively screened for elevated IGF-1 levels. Nine out of ten patients suppressed growth hormone levels during OGTT excluding acromegaly, whereas one individual was identified to have acromegaly according to established criteria (1/507, prevalence 0.2%). Analysis of the data showed no correlation between elevated IGF-1 values and the severity of OSAS or BMI.

Conclusions

Our data demonstrate a low prevalence of acromegaly in patients with OSAS. Until data from population-based studies is available we suggest restricting screening for acromegaly in OSAS to those patients who have additional clinical features of acromegaly.

Keywords

Acromegaly Obstructive sleep apnea Growth hormone OSAS IGF-1 

Notes

Acknowledgements

We thank Sandra Rutz for helping to organize and coordinate the research study.

Funding

The study was supported by a research grant from Pfizer.

Author contributions

D.H. analyzed the data and wrote the manuscript. C.R. performed the research and analyzed the data. M.B. and A.T. helped to conceptualize the structure of the study and helped to perform the study. R.F. contributed to the execution of the research. M.B. supervised laboratory analysis. R.P.K. contributed to writing the manuscript. J.S. and M.R. helped to conceptualize the structure of the study. H.J.S. acted in an advisory role, designed the research study, helped analyze the data and contributed to writing the manuscript. All authors revised it critically for important intellectual content and gave final approval for publication.

Compliance with ethical standards

Conflict of interest

H.J.S. received research grants, speaker fees, and travel grants from Pfizer, and speaker fees and travel grants from Novartis. M.R. received speaker fees from Pfizer, Ipsen, and Novartis. J.S. has received research grants, lecture fees and travel/accommodation/meeting expenses from Ipsen, Novartis, and Pfizer. The remaining authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

12020_2018_1538_MOESM1_ESM.docx (209 kb)
Supplementary Material

References

  1. 1.
    S. Melmed, Medical progress: acromegaly. N. Engl. J. Med. 355(24), 2558–2573 (2006).  https://doi.org/10.1056/NEJMra062453 CrossRefPubMedGoogle Scholar
  2. 2.
    J. Etxabe, S. Gaztambide, P. Latorre, J.A. Vazquez, Acromegaly: an epidemiological study. J. Endocrinol. Invest. 16(3), 181–187 (1993)CrossRefPubMedGoogle Scholar
  3. 3.
    I.M. Holdaway, C. Rajasoorya, Epidemiology of acromegaly. Pituitary 2(1), 29–41 (1999)CrossRefPubMedGoogle Scholar
  4. 4.
    A.F. Daly, M. Rixhon, C. Adam, A. Dempegioti, M.A. Tichomirowa, A. Beckers, High prevalence of pituitary adenomas: a cross-sectional study in the province of Liege, Belgium. J. Clin. Endocrinol. Metab. 91(12), 4769–4775 (2006).  https://doi.org/10.1210/jc.2006-1668 CrossRefPubMedGoogle Scholar
  5. 5.
    A. Fernandez, N. Karavitaki, J.A. Wass, Prevalence of pituitary adenomas: a community-based, cross-sectional study in Banbury (Oxfordshire, UK). Clin. Endocrinol. 72(3), 377–382 (2010).  https://doi.org/10.1111/j.1365-2265.2009.03667.x CrossRefGoogle Scholar
  6. 6.
    G.T. Hoskuldsdottir, S.B. Fjalldal, H.A. Sigurjonsdottir, The incidence and prevalence of acromegaly, a nationwide study from 1955 through 2013. Pituitary 18(6), 803–807 (2015).  https://doi.org/10.1007/s11102-015-0655-4 CrossRefPubMedGoogle Scholar
  7. 7.
    A. Lavrentaki, A. Paluzzi, J.A. Wass, N. Karavitaki, Epidemiology of acromegaly: review of population studies. Pituitary 20(1), 4–9 (2017).  https://doi.org/10.1007/s11102-016-0754-x CrossRefPubMedGoogle Scholar
  8. 8.
    H.J. Schneider, C. Sievers, B. Saller, H.U. Wittchen, G.K. Stalla, High prevalence of biochemical acromegaly in primary care patients with elevated IGF-1 levels. Clin. Endocrinol. 69(3), 432–435 (2008).  https://doi.org/10.1111/j.1365-2265.2008.03221.x CrossRefGoogle Scholar
  9. 9.
    M.S. Broder, M.P. Neary, E. Chang, D. Cherepanov, L. Katznelson, Treatments, complications, and healthcare utilization associated with acromegaly: a study in two large United States databases. Pituitary 17(4), 333–341 (2014).  https://doi.org/10.1007/s11102-013-0506-0 CrossRefPubMedGoogle Scholar
  10. 10.
    A. Colao, D. Ferone, P. Marzullo, G. Lombardi, Systemic complications of acromegaly: epidemiology, pathogenesis, and management. Endocr. Rev. 25(1), 102–152 (2004).  https://doi.org/10.1210/er.2002-0022 CrossRefPubMedGoogle Scholar
  11. 11.
    S. Melmed, F.F. Casanueva, A. Klibanski, M.D. Bronstein, P. Chanson, S.W. Lamberts, C.J. Strasburger, J.A. Wass, A. Giustina, A consensus on the diagnosis and treatment of acromegaly complications. Pituitary 16(3), 294–302 (2013).  https://doi.org/10.1007/s11102-012-0420-x CrossRefPubMedGoogle Scholar
  12. 12.
    P. Attal, P. Chanson, Endocrine aspects of obstructive sleep apnea. J. Clin. Endocrinol. Metab. 95(2), 483–495 (2010).  https://doi.org/10.1210/jc.2009-1912 CrossRefPubMedGoogle Scholar
  13. 13.
    E. Kuhn, L. Maione, A. Bouchachi, M. Roziere, S. Salenave, S. Brailly-Tabard, J. Young, P. Kamenicky, P. Assayag, P. Chanson, Long-term effects of pegvisomant on comorbidities in patients with acromegaly: a retrospective single-center study. Eur. J. Endocrinol. 173(5), 693–702 (2015).  https://doi.org/10.1530/EJE-15-0500 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    L.M. Fatti, M. Scacchi, A.I. Pincelli, E. Lavezzi, F. Cavagnini, Prevalence and pathogenesis of sleep apnea and lung disease in acromegaly. Pituitary 4(4), 259–262 (2001)CrossRefPubMedGoogle Scholar
  15. 15.
    M.V. Davi, L. Dalle Carbonare, A. Giustina, M. Ferrari, A. Frigo, V. Lo Cascio, G. Francia, Sleep apnoea syndrome is highly prevalent in acromegaly and only partially reversible after biochemical control of the disease. Eur. J. Endocrinol. 159(5), 533–540 (2008).  https://doi.org/10.1530/EJE-08-0442 CrossRefPubMedGoogle Scholar
  16. 16.
    P. Petrossians, A.F. Daly, E. Natchev, L. Maione, K. Blijdorp, M. Sahnoun-Fathallah, R. Auriemma, A.M. Diallo, A.L. Hulting, D. Ferone, V. Hana Jr., S. Filipponi, C. Sievers, C. Nogueira, C. Fajardo-Montanana, D. Carvalho, V. Hana, G.K. Stalla, M.L. Jaffrain-Rea, B. Delemer, A. Colao, T. Brue, S. Neggers, S. Zacharieva, P. Chanson, A. Beckers, Acromegaly at diagnosis in 3173 patients from the Liege Acromegaly Survey (LAS) Database. Endocr. Relat. Cancer 24(10), 505–518 (2017).  https://doi.org/10.1530/ERC-17-0253 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    R.R. Grunstein, K.Y. Ho, C.E. Sullivan, Sleep apnea in acromegaly. Ann. Intern. Med. 115(7), 527–532 (1991)CrossRefPubMedGoogle Scholar
  18. 18.
    L.M. Galerneau, J.L. Pepin, A.L. Borel, O. Chabre, M. Sapene, B. Stach, J. Girey-Rannaud, N. Arnol, R. Tamisier, P. Caron; scientific council, investigators of the French national sleep apnoea registry, Acromegaly in sleep apnoea patients: a large observational study of 755 patients. Eur. Respir. J. 48(5), 1489–1492 (2016).  https://doi.org/10.1183/13993003.01229-2016 CrossRefPubMedGoogle Scholar
  19. 19.
    G. Sesmilo, E. Resmini, M. Sambo, C. Blanco, F. Calvo, F. Pazos, P. Fernandez-Catalina, P. Martinez de Icaya, C. Paramo, C. Fajardo, M. Marazuela, C. Alvarez-Escola, J.J. Diez, V. Perea; group, A.s., Prevalence of acromegaly in patients with symptoms of sleep apnea. PLoS. ONE. 12(9), e0183539 (2017).  https://doi.org/10.1371/journal.pone.0183539 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    W. Lee, S. Nagubadi, M.H. Kryger, B. Mokhlesi, Epidemiology of obstructive sleep apnea: a population-based perspective. Expert Rev. Respir. Med. 2(3), 349–364 (2008).  https://doi.org/10.1586/17476348.2.3.349 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    L.J. Epstein, D. Kristo, P.J. Strollo Jr., N. Friedman, A. Malhotra, S.P. Patil, K. Ramar, R. Rogers, R.J. Schwab, E.M. Weaver, M.D. Weinstein; Adult Obstructive Sleep Apnea Task Force of the American Academy of Sleep Medicine, Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J. Clin. Sleep. Med. 5(3), 263–276 (2009).PubMedGoogle Scholar
  22. 22.
    C.L. Rosen, D. Auckley, R. Benca, N. Foldvary-Schaefer, C. Iber, V. Kapur, M. Rueschman, P. Zee, S. Redline, A multisite randomized trial of portable sleep studies and positive airway pressure autotitration versus laboratory-based polysomnography for the diagnosis and treatment of obstructive sleep apnea: the HomePAP study. Sleep 35(6), 757–767 (2012).  https://doi.org/10.5665/sleep.1870 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    M. Bidlingmaier, N. Friedrich, R.T. Emeny, J. Spranger, O.D. Wolthers, J. Roswall, A. Korner, B. Obermayer-Pietsch, C. Hubener, J. Dahlgren, J. Frystyk, A.F. Pfeiffer, A. Doering, M. Bielohuby, H. Wallaschofski, A.M. Arafat, Reference intervals for insulin-like growth factor-1 (igf-i) from birth to senescence: results from a multicenter study using a new automated chemiluminescence IGF-I immunoassay conforming to recent international recommendations. J. Clin. Endocrinol. Metab. 99(5), 1712–1721 (2014).  https://doi.org/10.1210/jc.2013-3059 CrossRefPubMedGoogle Scholar
  24. 24.
    D.R. Clemmons, Consensus statement on the standardization and evaluation of growth hormone and insulin-like growth factor assays. Clin. Chem. 57(4), 555–559 (2011).  https://doi.org/10.1373/clinchem.2010.150631 CrossRefPubMedGoogle Scholar
  25. 25.
    P.U. Freda, C.M. Reyes, A.T. Nuruzzaman, R.E. Sundeen, J.N. Bruce, Basal and glucose-suppressed GH levels less than 1 microg/L in newly diagnosed acromegaly. Pituitary 6(4), 175–180 (2003)CrossRefPubMedGoogle Scholar
  26. 26.
    J. Manolopoulou, Y. Alami, S. Petersenn, J. Schopohl, Z. Wu, C.J. Strasburger, M. Bidlingmaier, Automated 22-kD growth hormone-specific assay without interference from Pegvisomant. Clin. Chem. 58(10), 1446–1456 (2012).  https://doi.org/10.1373/clinchem.2012.188128 CrossRefPubMedGoogle Scholar
  27. 27.
    M. Reincke, S. Petersenn, M. Buchfelder, B. Gerbert, G. Skrobek-Engel, H. Franz, R. Lohmann, H.J. Quabbe, The German acromegaly registry: description of the database and initial results. Exp. Clin. Endocrinol. Diabetes 114(9), 498–505 (2006).  https://doi.org/10.1055/s-2006-948313 CrossRefPubMedGoogle Scholar
  28. 28.
    J. Roemmler, B. Gutt, R. Fischer, S. Vay, A. Wiesmeth, M. Bidlingmaier, J. Schopohl, M. Angstwurm, Elevated incidence of sleep apnoea in acromegaly-correlation to disease activity. Sleep. & breathing = Schlaf & Atm. 16(4), 1247–1253 (2012).  https://doi.org/10.1007/s11325-011-0641-7 CrossRefGoogle Scholar
  29. 29.
    H.J. Schneider, B. Saller, J. Klotsche, W. Marz, W. Erwa, H.U. Wittchen, G.K. Stalla, Opposite associations of age-dependent insulin-like growth factor-I standard deviation scores with nutritional state in normal weight and obese subjects. Eur. J. Endocrinol. 154(5), 699–706 (2006).  https://doi.org/10.1530/eje.1.02131 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Daniel A. Heinrich
    • 1
  • Claudia Reinholz
    • 1
  • Maximilian Bauer
    • 2
  • Amanda Tufman
    • 2
    • 3
  • Richard Frohner
    • 1
  • Jochen Schopohl
    • 1
  • Martin Bidlingmaier
    • 1
  • Robert P. Kosilek
    • 1
  • Martin Reincke
    • 1
  • Harald J. Schneider
    • 1
  1. 1.Medizinische Klinik und Poliklinik IVKlinikum der Universität MünchenMünchenGermany
  2. 2.Asklepios Fachkliniken München-GautingLehrklinik der LMU MünchenGautingGermany
  3. 3.Medizinische Klinik und Poliklinik VKlinikum der Universität MünchenMünchenGermany

Personalised recommendations