, Volume 59, Issue 3, pp 593–601 | Cite as

The influence of prehypertension, hypertension, and glycated hemoglobin on the development of type 2 diabetes mellitus in prediabetes: the Korean Genome and Epidemiology Study (KoGES)

  • Ju Young Jung
  • Chang-Mo Oh
  • Jae-Hong Ryoo
  • Joong-Myung Choi
  • Young-Jun Choi
  • Woo Taek Ham
  • Sung Keun ParkEmail author
Original Article



It has been reported that elevated blood pressure (BP) was significantly associated with the increased risk for type 2 diabetes mellitus (T2DM). However, there is still limited information about the influence of BP on the risk for T2DM across the level of glycated hemoglobin (HbA1c).


In a cohort of the Korean Genome and Epidemiology Study (KoGES), 2830 non-diabetic Korean adults with prediabetes defined by HbA1c level of 5.7–6.4% were followed-up for 10 years. Multivariate cox proportional hazards assumption was used to assess the risk for T2DM according to the baseline BP categories (normal, prehypertension and hypertension) and HbA1c level (low: 5.7–5.9% and high: 6.0–6.4%).


The risk for T2DM significantly increased proportionally to BP categories (adjusted HR; reference in normal BP, 1.32 [1.10–1.59] in prehypertension and 1.61 [1.35–1.92] in hypertension). Subgroup analysis indicated that individuals with high HbA1c had the higher risk for T2DM than individuals with low HbA1c regardless of BP. Additionally, combined presence of hypertension and high HbA1c had the highest risk for T2DM (adjusted HR: 3.82 [3.00–4.87]). In each systolic and diastolic BP level, the risk for T2DM significantly increased from systolic BP ≥ 130 mmHg (adjusted HRs: 1.39 ([1.15–1.71]) and diastolic BP ≥ 80 mmHg (adjusted HRs: 1.30 ([1.07–1.58]).


BP and HbA1c may be useful tools in identifying individuals with prediabetes more potentially predisposed to T2DM. Prospective studies should be considered to examine whether controlling BP actually lowers the risk for T2DM.


Type 2 diabetes mellitus Blood pressure HbA1c Prehypertension Hypertension 



Data in this study were from the Korean Genome and Epidemiology Study (KoGES; 4851-302), National Research Institute of Health, Centers for Disease Control and Prevention, Ministry for Health and Welfare, Republic of Korea. Therefore, this study could be done by virtue of the labor of all staffs working in KoGES.

Author contributions

All authors had access to the data used in this study and participated in writing the manuscript. J.Y.J. coordinated the study, analyzed the data, and wrote the manuscript as a first author. C.M.O. played role in analyzing data and verifying the results. J.H.R. participated in conducting study and writing manuscript. J.-M.C. conducted english editing and reviewing manuscript. Y.-J.C. played a role in monitoring study process and making manuscript. W.T.H. took part in revising manuscript. S.K.P. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12020_2018_1530_MOESM1_ESM.docx (24 kb)
Supplementary Table


  1. 1.
    Expert Committee on the Diagnosis and Classification of Diabetes Mellitus, Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 20, 1183–1197 (1997)CrossRefGoogle Scholar
  2. 2.
    American Diabetes Association, Standards of medical care in diabetes—2009. Diabetes Care. 32(Suppl. 1), S13–S61 (2009)Google Scholar
  3. 3.
    E. Selvin, M.W. Steffes, H. Zhu, K. Matsushita, L. Wagenknecht, J. Pankow, J. Coresh, F.L. Brancati, Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N. Eng. J. Med. 362, 800–811 (2010)CrossRefGoogle Scholar
  4. 4.
    E. Selvin, C.M. Crainiceanu, F.L. Brancati, J. Coresh, Short-term variability in measures of glycemia and implications for the classification of diabetes. Arch. Intern. Med. 167, 1545–1551 (2007)CrossRefGoogle Scholar
  5. 5.
    J.B. Meigs, D.M. Nathan, L.A. Cupples, P.W. Wilson, D.E. Singer, Tracking of glycated hemoglobin in the original cohort of the Framingham Heart Study. J. Clin. Epidemiol. 49, 411–417 (1996)CrossRefGoogle Scholar
  6. 6.
    American Diabetes Association, Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 33(Suppl 1), S62–S69 (2010)Google Scholar
  7. 7.
    American Diabetes Association, Standards of Medical Care in Diabetes 2016. Diabetes Care 39(Suppl. 1), S15 (2016)Google Scholar
  8. 8.
    D.H. Morris, K. Khunti, F. Achana, B. Srinivasan, L.J. Gray, M.J. Davies, D. Webb, Progression rates from HbA1c 6.0-6.4% and other prediabetes definitions to type 2 diabetes: a meta-analysis. Diabetologia 56, 1489–1493 (2013)CrossRefGoogle Scholar
  9. 9.
    S.J. Han, H.J. Kim, D.J. Kim, K.W. Lee, N.H. Cho, Incidence and predictors of type 2 diabetes among Koreans: A 12-year follow up of the Korean Genome and Epidemiology Study. Diabetes Res. Clin. Pract. 123, 173–180 (2017)CrossRefGoogle Scholar
  10. 10.
    H.C. Gerstein, P. Santaguida, P. Raina, K.M. Morrison, C. Balion, D. Hunt, H. Yazdi, L. Booker, Annual incidence and relative risk of diabetes in people with various categories of dysglycemia: a systematic overview and meta-analysis of prospective studies. Diabetes Res. Clin. Pract. 78, 305–312 (2007)CrossRefGoogle Scholar
  11. 11.
    M.A. Abdul-Ghani, T. Abdul-Ghani, N. Ali, R.A. Defronzo, One-hour plasma glucose concentration and the metabolic syndrome identify subjects at high risk for future type 2 diabetes. Diabetes Care 31, 1650–1655 (2008)CrossRefGoogle Scholar
  12. 12.
    C.H. Stahl, M. Novak, G. Lappas, L. Wilhelmsen, L. Bjorck, P.O. Hansson, A. Rosengren, High-normal blood pressure and long-term risk of type 2 diabetes: 35-year prospective population based cohort study of men. Bmc. Cardiovasc. Disord. 12, 89 (2012)CrossRefGoogle Scholar
  13. 13.
    G.S. Wei, S.A. Coady, D.C. Goff Jr, F.L. Brancati, D. Levy, E. Selvin, R.S. Vasan, C.S. Fox, Blood pressure and the risk of developing diabetes in African Americans and whites: ARIC, CARDIA, and the Framingham heart study. Diabetes Care 34, 873–879 (2011)CrossRefGoogle Scholar
  14. 14.
    N.H. Cho, K.M. Kim, S.H. Choi, K.S. Park, H.C. Jang, S.S. Kim, N. Sattar, S. Lim, High blood pressure and its association with incident diabetes over 10 years in the Korean Genome and Epidemiology Study (KoGES). Diabetes Care 38, 1333–13338 (2015)CrossRefGoogle Scholar
  15. 15.
    M.J. Kim, N.K. Lim, S.J. Choi, H.Y. Park, Hypertension is an independent risk factor for type 2 diabetes: the Korean genome and epidemiology study. Hypertens. Res. 38, 783–789 (2015)CrossRefGoogle Scholar
  16. 16.
    J.B. Meigs, F.B. Hu, N. Rifai, J.E. Manson, Biomarkers of endothelial dysfunction and risk of type 2 diabetes mellitus. JAMA 291, 1978–1986 (2004)CrossRefGoogle Scholar
  17. 17.
    U. Hink, H. Li, H. Mollnau et al., Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ. Res. 88, E14–E22 (2001)CrossRefGoogle Scholar
  18. 18.
    A. Ceriello, E. Motz, Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler. Thromb. Vasc. Biol. 24, 816–823 (2004)CrossRefGoogle Scholar
  19. 19.
    Y. Kim, B.G. Han; KoGES group, Cohort profile: The Korean Genome and Epidemiology Study (KoGES) Consortium. Int. J. Epidemiol. 46, e20 (2017)CrossRefGoogle Scholar
  20. 20.
    A.V. Chobanian, G.L. Bakris, H.R. Black, W.C. Cushman, L.A. Green, J.L. Izzo Jr, D.W. Jones, B.J. Materson, S. Oparil, J.T. Wright Jr, E.J. Roccella, National heart, lung, and blood institute joint national committee on prevention, detection, evaluation, and treatment of high blood pressure; national high blood pressure education program coordinating committee. the seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA 289, 2560–2572 (2003)CrossRefGoogle Scholar
  21. 21.
    K.J. Yun, K. Han, M.K. Kim, Y.M. Park, K.H. Baek, K.H. Song, H.S. Kwon, Insulin resistance distribution and cut-off value in Koreans from the 2008-2010 Korean National Health and Nutrition Examination Survey. PLoS. One 11, e0154593 (2016)CrossRefGoogle Scholar
  22. 22.
    N. Bansal, Prediabetes diagnosis and treatment: a review. World J. Diabetes 6, 296–303 (2015)CrossRefGoogle Scholar
  23. 23.
    S.S. Rasmussen, C. Glümer, A. Sandbaek, T. Lauritzen, K. Borch-Johnsen, Determinants of progression from impaired fasting glucose and impaired glucose tolerance to diabetes in a high-risk screened population: 3 year follow-up in the ADDITION study, Denmark. Diabetologia51, 249–257 (2008)CrossRefGoogle Scholar
  24. 24.
    S. Engberg, D. Vistisen, C. Lau, C. Glümer, T. Jørgensen, O. Pedersen et al., Progression to impaired glucose regulation and diabetes in the population-based Inter99 study. Diabetes Care 32, 606–611 (2009)CrossRefGoogle Scholar
  25. 25.
    J.B. Meigs, D.C. Muller, D.M. Nathan, D.R. Blake, R. Andres, Baltimore longitudinal study of aging. The natural history of progression from normal glucose tolerance to type 2 diabetes in the Baltimore Longitudinal Study of Aging. Diabetes 52, 1475–1484 (2003)CrossRefGoogle Scholar
  26. 26.
    E. Selvin, M.W. Steffes, H. Zhu, K. Matsushita, L. Wagenknecht, J. Pankow, J. Coresh, F.L. Brancati, Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N. Engl. J. Med. 362, 800–811 (2010)CrossRefGoogle Scholar
  27. 27.
    S.H. Choi, T.H. Kim, S. Lim, K.S. Park, H.C. Jang, N.H. Cho, Hemoglobin A1c as a diagnostic tool for diabetes screening and new-onset diabetes prediction: a 6-year community-based prospective study. Diabetes Care 34, 944–949 (2011)CrossRefGoogle Scholar
  28. 28.
    S.K. Park, J.Y. Jung, W.J. Choi, Y.H. Kim, H.S. Kim, W.T. Ham, H. Shin, J.H. Ryoo, Elevated fasting serum insulin level predicts future development of hypertension. Int. J. Cardiol. 172, 450–455 (2014)CrossRefGoogle Scholar
  29. 29.
    K.C. Sung, S. Lim, R.S. Rosenson, Hyperinsulinemia and homeostasis model assessment of insulin resistance as predictors of hypertension: a 5-year follow-up study of Korean sample. Am. J. Hypertens. 24, 1041–1045 (2011)CrossRefGoogle Scholar
  30. 30.
    G. Arcaro, A. Cretti, S. Balzano, A. Lechi, M. Muggeo, E. Bonora et al., Insulin causes endothelial dysfunction in humans: sites and mechanisms. Circulation105, 5765–5782 (2002)CrossRefGoogle Scholar
  31. 31.
    P.A. Kern, G.B. Di Gregorio, T. Lu, N. Rassouli, G. Ranganathan, Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression. Diabetes 52, 1779–1785 (2003)CrossRefGoogle Scholar
  32. 32.
    P.A. Kern, S. Ranganathan, C. Li, L. Wood, G. Ranganathan, Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am. J. Physiol. Endoscrinol. 280, E745–E751 (2001)CrossRefGoogle Scholar
  33. 33.
    G. Lembo, R. Napoli, B. Capaldo, V. Redina, G. Iaccarino, M. Volpe et al., Abnormal sympathetic overactivity evoked by insulin in the skeletal muscle of patients with essential hypertension. J. Clin. Invest. 90, 24–29 (1992)CrossRefGoogle Scholar
  34. 34.
    T.V. Fiorentino, F. Sesti, F. Andreozzi, E. Pedace, A. Sciacqua, M.L. Hribal, F. Perticone, G. Sesti, One-hour post-load hyperglycemia combined with HbA1c identifies pre-diabetic individuals with a higher cardio-metabolic risk burden. Atherosclerosis 253, 61–69 (2016)CrossRefGoogle Scholar
  35. 35.
    G. Sesti, M.L. Hribal, T.V. Fiorentino, A. Sciacqua, F. Perticone, Elevated 1h postload plasma glucose levels identify adults with normal glucose tolerance but increased risk of non-alcoholic fatty liver disease. BMJ Open. Diabetes Res. Care 2, e000016 (2014)CrossRefGoogle Scholar
  36. 36.
    E. Succurro, M.A. Marini, F. Arturi, A. Grembiale, M. Lugarà, F. Andreozzi, A. Sciacqua, R. Lauro, M.L. Hribal, F. Perticone, G. Sesti, Elevated one-hour post-load plasma glucose levels identifies subjects with normal glucose tolerance but early carotid atherosclerosis. Atherosclerosis 207, 245–249 (2009)CrossRefGoogle Scholar
  37. 37.
    A. Sciacqua, R. Maio, S. Miceli, A. Pascale, G. Carullo, N. Grillo, F. Arturi, G. Sesti, F. Perticone, Association between one-hour post-load plasma glucose levels and vascular stiffness in essential hypertension. PLoS. One 7, 44470 (2012)CrossRefGoogle Scholar
  38. 38.
    W.C. Knowler, E. Barrett-Connor, S.E. Fowler, R.F. Hamman, J.M. Lachin, E.A. Walker, D.M. Nathan; Diabetes Prevention Program Research Group, Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 346, 393–403 (2002)CrossRefGoogle Scholar
  39. 39.
    J. Tuomilehto, J. Lindstrom, J.G. Eriksson, T.T. Valle, H. Hamalainen, P. Ilanne-Parikka, S. Keinanen-Kiukaanniemi, M. Laakso, A. Louheranta, M. Rastas, V. Salminen, M. Uusitupa; Finnish Diabetes Prevention Study Group, Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 344, 1343–1350 (2001)CrossRefGoogle Scholar
  40. 40.
    C.A. Emdin, S.G. Anderson, M. Woodward, K. Rahimi, Usual blood pressure and risk of new-onset diabetes: evidence from 4.1 million adults and a meta-analysis of prospective studies. J. Am. Coll. Cardiol. 66, 552–1562 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ju Young Jung
    • 1
  • Chang-Mo Oh
    • 2
  • Jae-Hong Ryoo
    • 3
  • Joong-Myung Choi
    • 2
  • Young-Jun Choi
    • 4
  • Woo Taek Ham
    • 5
  • Sung Keun Park
    • 6
    Email author
  1. 1.Total healthcare center, Kangbuk Samsung HospitalSungkyunkwan University School of MedicineSeoulRepublic of Korea
  2. 2.Departments of Preventive Medicine, School of MedicineKyung Hee UniversitySeoulRepublic of Korea
  3. 3.Departments of Occupational and Environmental Medicine, College of MedicineKyung Hee UniversitySeoulRepublic of Korea
  4. 4.Department of Dermatology, Kangbuk Samsung HospitalSungkyunkwan University School of MedicineSeoulRepublic of Korea
  5. 5.Department of Social Physical EducationSangji Youngseo CollegeWonjuRepublic of Korea
  6. 6.Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung HospitalSungkyunkwan University School of MedicineSeoulRepublic of Korea

Personalised recommendations