Advertisement

Endocrine

, Volume 59, Issue 3, pp 466–480 | Cite as

Regulation, signalling and functions of hormonal peptides in pulmonary vascular remodelling during hypoxia

  • Priya Gaur
  • Supriya Saini
  • Praveen VatsEmail author
  • Bhuvnesh Kumar
Review

Abstract

Hypoxic state affects organism primarily by decreasing the amount of oxygen reaching the cells and tissues. To adjust with changing environment organism undergoes mechanisms which are necessary for acclimatization to hypoxic stress. Pulmonary vascular remodelling is one such mechanism controlled by hormonal peptides present in blood circulation for acclimatization. Activation of peptides regulates constriction and relaxation of blood vessels of pulmonary and systemic circulation. Thus, understanding of vascular tone maintenance and hypoxic pulmonary vasoconstriction like pathophysiological condition during hypoxia is of prime importance. Endothelin-1 (ET-1), atrial natriuretic peptide (ANP), and renin angiotensin system (RAS) function, their receptor functioning and signalling during hypoxia in different body parts point them as disease markers. In vivo and in vitro studies have helped understanding the mechanism of hormonal peptides for better acclimatization to hypoxic stress and interventions for better management of vascular remodelling in different models like cell, rat, and human is discussed in this review.

Keywords

Hypoxia Pulmonary vascular remodelling Endothelin-1 Atrial natriuretic peptide Angiotensin II Arginine vasopressin 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    J.A. Dempsey, W.G. Reddan, M.L. Birnbaum, H.V. Forster, J.S. Thoden, R.F. Grover, J. Rankin, Effects of acute through life-long hypoxic exposure on exercise pulmonary gas exchange. Respir. Physiol. 13(1), 62–89 (1971)PubMedCrossRefGoogle Scholar
  2. 2.
    R. Ashack, M.O. Farber, M.H. Weinberger, G.L. Robertson, N.S. Fineberg, F. Manfredi, Renal and hormonal responses to acute hypoxia in normal individuals. J. Lab. Clin. Med. 106(1), 12–16 (1985)PubMedGoogle Scholar
  3. 3.
    F.H. Al-Hashem, The effect of high altitude on blood hormones in male Westar rats in South western Saudi Arabia. Am. J. Environ. Sci. 6(3), 268–274 (2010)CrossRefGoogle Scholar
  4. 4.
    N. Mason, The physiology of high altitude: an introduction to the cardio-respiratory changes occurring on ascent to altitude. Curr. Anaesth. Crit. Care 11(1), 34–41 (2000)CrossRefGoogle Scholar
  5. 5.
    E.R. Swenson, T.B. Duncan, S.V. Goldberg, G. Ramirez, S. Ahmad, R.B. Schoene, Diuretic effect of acute hypoxia in humans: relationship to hypoxic ventilatory responsiveness and renal hormones. J. Appl. Physiol. 78(2), 377–383 (1995)PubMedCrossRefGoogle Scholar
  6. 6.
    P. Ariyaratnam, M. Loubani, A.H. Morice, Hypoxic pulmonary vasoconstriction in humans. BioMed. Res. Int. 2013, 623684 (2013).  https://doi.org/10.1155/2013/623684 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    P.I. Aaronson, T.P. Robertson, G.A. Knock, S. Becker, T.H. Lewis, V. Snetkov, J.P. Ward, Hypoxic pulmonary vasoconstriction: mechanisms and controversies. J. Physiol. 570(Pt 1), 53–58 (2006).  https://doi.org/10.1113/jphysiol.2005.098855 PubMedCrossRefGoogle Scholar
  8. 8.
    K.R. Stenmark, K.A. Fagan, M.G. Frid, Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ. Res. 99(7), 675–691 (2006).  https://doi.org/10.1161/01.RES.0000243584.45145.3f PubMedCrossRefGoogle Scholar
  9. 9.
    A. Hussain, M.S. Suleiman, S.J. George, M. Loubani, A. Morice, Hypoxic pulmonary vasoconstriction in humans: tale or myth. Open. Cardiovasc. Med. J. 11, 1–13 (2017).  https://doi.org/10.2174/1874192401711010001 PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    A.B. Lumb, P. Slinger, Hypoxic pulmonary vasoconstriction: physiology and anesthetic implications. Anesthesiology 122(4), 932–946 (2015).  https://doi.org/10.1097/ALN.0000000000000569 PubMedCrossRefGoogle Scholar
  11. 11.
    M. Yanagisawa, H. Kurihara, S. Kimura, Y. Tomobe, M. Kobayashi, Y. Mitsui, Y. Yazaki, K. Goto, T. Masaki, A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332(6163), 411–415 (1988).  https://doi.org/10.1038/332411a0 PubMedCrossRefGoogle Scholar
  12. 12.
    D. Xu, N. Emoto, A. Giaid, C. Slaughter, S. Kaw, D. deWit, M. Yanagisawa, ECE-1: a membrane-bound metalloprotease that catalyzes the proteolytic activation of big endothelin-1. Cell 78(3), 473–485 (1994)PubMedCrossRefGoogle Scholar
  13. 13.
    T.J. Opgenorth, J.R. Wu-Wong, K. Shiosaki, Endothelin-converting enzymes. FASEB J. 6(9), 2653–2659 (1992)PubMedCrossRefGoogle Scholar
  14. 14.
    T. Sakurai, M. Yanagisawa, Y. Takuwa, H. Miyazaki, S. Kimura, K. Goto, T. Masaki, Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature 348(6303), 732–735 (1990).  https://doi.org/10.1038/348732a0 PubMedCrossRefGoogle Scholar
  15. 15.
    V.J. Harrison, R. Corder, E.E. Anggard, J.R. Vane, Evidence for vesicles that transport endothelin-1 in bovine aortic endothelial cells. J. Cardiovasc. Pharmacol. 22(Suppl 8), S57–S60 (1993)PubMedCrossRefGoogle Scholar
  16. 16.
    M.J. Boscoe, A.T. Goodwin, M. Amrani, M.H. Yacoub, Endothelins and the lung. Int. J. Biochem. Cell. Biol. 32(1), 41–62 (2000)PubMedCrossRefGoogle Scholar
  17. 17.
    Y. Miyoshi, Y. Nakaya, T. Wakatsuki, S. Nakaya, K. Fujino, K. Saito, I. Inoue, Endothelin blocks ATP-sensitive K+ channels and depolarizes smooth muscle cells of porcine coronary artery. Circ. Res. 70(3), 612–616 (1992)PubMedCrossRefGoogle Scholar
  18. 18.
    M.J. Kuchan, J.A. Frangos, Shear stress regulates endothelin-1 release via protein kinase C and cGMP in cultured endothelial cells. Am. J. Physiol. 264(1 Pt 2), H150–H156 (1993)PubMedGoogle Scholar
  19. 19.
    K. Sato, Y. Morio, K.G. Morris, D.M. Rodman, I.F. McMurtry, Mechanism of hypoxic pulmonary vasoconstriction involves ET(A) receptor-mediated inhibition of K(ATP) channel. Am. J. Physiol. Lung Cell. Mol. Physiol. 278(3), L434–L442 (2000)PubMedCrossRefGoogle Scholar
  20. 20.
    M.J. Horgan, J.M. Pinheiro, A.B. Malik, Mechanism of endothelin-1-induced pulmonary vasoconstriction. Circ. Res. 69(1), 157–164 (1991)PubMedCrossRefGoogle Scholar
  21. 21.
    K. Nakanishi, F. Tajima, Y. Nakata, H. Osada, S. Tachibana, T. Kawai, C. Torikata, T. Suga, K. Takishima, T. Aurues, T. Ikeda, Expression of endothelin-1 in rats developing hypobaric hypoxia-induced pulmonary hypertension. Lab. Invest. 79(11), 1347–1357 (1999)PubMedGoogle Scholar
  22. 22.
    D.J. Stewart, R.D. Levy, P. Cernacek, D. Langleben, Increased plasma endothelin-1 in pulmonary hypertension: marker or mediator of disease? Ann. Intern. Med. 114(6), 464–469 (1991)PubMedCrossRefGoogle Scholar
  23. 23.
    S. Oparil, S.J. Chen, Q.C. Meng, T.S. Elton, M. Yano, Y.F. Chen, Endothelin-A receptor antagonist prevents acute hypoxia-induced pulmonary hypertension in the rat. Am. J. Physiol. 268(1 Pt 1), L95–L100 (1995)PubMedGoogle Scholar
  24. 24.
    V.S. DiCarlo, S.J. Chen, Q.C. Meng, J. Durand, M. Yano, Y.F. Chen, S. Oparil, ETA-receptor antagonist prevents and reverses chronic hypoxia-induced pulmonary hypertension in rat. Am. J. Physiol. 269(5 Pt 1), L690–L697 (1995)PubMedGoogle Scholar
  25. 25.
    S.T. Bonvallet, M.R. Zamora, K. Hasunuma, K. Sato, N. Hanasato, D. Anderson, K. Sato, T.J. Stelzner, BQ123, an ETA-receptor antagonist, attenuates hypoxic pulmonary hypertension in rats. Am. J. Physiol. 266(4 Pt 2), H1327–H1331 (1994)PubMedGoogle Scholar
  26. 26.
    W. Johnson, A. Nohria, L. Garrett, J.C. Fang, J. Igo, M. Katai, P. Ganz, M.A. Creager, Contribution of endothelin to pulmonary vascular tone under normoxic and hypoxic conditions. Am. J. Physiol. Heart Circ. Physiol. 283(2), H568–H575 (2002).  https://doi.org/10.1152/ajpheart.00099.2001 PubMedCrossRefGoogle Scholar
  27. 27.
    I. Pham, G. Wuerzner, J.P. Richalet, S. Peyrard, M. Azizi, Endothelin receptors blockade blunts hypoxia-induced increase in PAP in humans. Eur. J. Clin. Invest. 40(3), 195–202 (2010).  https://doi.org/10.1111/j.1365-2362.2010.02254.x PubMedCrossRefGoogle Scholar
  28. 28.
    P.A. Modesti, S. Vanni, M. Morabito, A. Modesti, M. Marchetta, T. Gamberi, F. Sofi, G. Savia, G. Mancia, G.F. Gensini, G. Parati, Role of endothelin-1 in exposure to high altitude: acute mountain sickness and endothelin-1 (ACME-1) study. Circulation 114(13), 1410–1416 (2006).  https://doi.org/10.1161/CIRCULATIONAHA.105.605527 PubMedCrossRefGoogle Scholar
  29. 29.
    R.D. Seheult, K. Ruh, G.P. Foster, J.D. Anholm, Prophylactic bosentan does not improve exercise capacity or lower pulmonary artery systolic pressure at high altitude. Respir. Physiol. Neurobiol. 165(2–3), 123–130 (2009).  https://doi.org/10.1016/j.resp.2008.10.005 PubMedCrossRefGoogle Scholar
  30. 30.
    R. Naeije, S. Huez, M. Lamotte, K. Retailleau, S. Neupane, D. Abramowicz, V. Faoro, Pulmonary artery pressure limits exercise capacity at high altitude. Eur. Respir. J. 36(5), 1049–1055 (2010).  https://doi.org/10.1183/09031936.00024410 PubMedCrossRefGoogle Scholar
  31. 31.
    D. Kylhammar, G. Radegran, The principal pathways involved in the in vivo modulation of hypoxic pulmonary vasoconstriction, pulmonary arterial remodelling and pulmonary hypertension. Acta Physiol. 219(4), 728–756 (2017).  https://doi.org/10.1111/apha.12749 CrossRefGoogle Scholar
  32. 32.
    V.V. Kuzkov, M.Y. Kirov, M.A. Sovershaev, V.N. Kuklin, E.V. Suborov, K. Waerhaug, L.J. Bjertnaes, Extravascular lung water determined with single transpulmonary thermodilution correlates with the severity of sepsis-induced acute lung injury. Crit. Care. Med. 34(6), 1647–1653 (2006).  https://doi.org/10.1097/01.CCM.0000218817.24208.2E PubMedCrossRefGoogle Scholar
  33. 33.
    I. Kosmidou, D. Karmpaliotis, A.J. Kirtane, H.V. Barron, C.M. Gibson, Vascular endothelial growth factors in pulmonary edema: an update. J. Thromb. Thrombolysis 25(3), 259–264 (2008).  https://doi.org/10.1007/s11239-007-0062-4 PubMedCrossRefGoogle Scholar
  34. 34.
    A.P. Comellas, A. Briva, Role of endothelin-1 in acute lung injury. Transl. Res. 153(6), 263–271 (2009).  https://doi.org/10.1016/j.trsl.2009.02.007 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    I. Pham, G. Wuerzner, J.P. Richalet, S. Peyrard, M. Azizi, Bosentan effects in hypoxic pulmonary vasoconstriction: preliminary study in subjects with or without high altitude pulmonary edema-history. Pulm. Circ. 2(1), 28–33 (2012).  https://doi.org/10.4103/2045-8932.94824 PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    C. Sartori, L. Vollenweider, B.M. Loffler, A. Delabays, P. Nicod, P. Bartsch, U. Scherrer, Exaggerated endothelin release in high-altitude pulmonary edema. Circulation 99(20), 2665–2668 (1999)PubMedCrossRefGoogle Scholar
  37. 37.
    S.W. Allen, B.A. Chatfield, S.A. Koppenhafer, M.S. Schaffer, R.R. Wolfe, S.H. Abman, Circulating immunoreactive endothelin-1 in children with pulmonary hypertension. Association with acute hypoxic pulmonary vasoreactivity. Am. Rev. Respir. Dis. 148(2), 519–522 (1993).  https://doi.org/10.1164/ajrccm/148.2.519 PubMedCrossRefGoogle Scholar
  38. 38.
    M.P. Schneider, E.I. Boesen, D.M. Pollock, Contrasting actions of endothelin ET(A) and ET(B) receptors in cardiovascular disease. Annu. Rev. Pharmacol. Toxicol. 47, 731–759 (2007).  https://doi.org/10.1146/annurev.pharmtox.47.120505.105134 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    B.K. Kramer, M. Bucher, P. Sandner, K.P. Ittner, G.A. Riegger, T. Ritthaler, A. Kurtz, Effects of hypoxia on growth factor expression in the rat kidney in vivo. Kidney Int. 51(2), 444–447 (1997)PubMedCrossRefGoogle Scholar
  40. 40.
    K.U. Eckardt, W.M. Bernhardt, A. Weidemann, C. Warnecke, C. Rosenberger, M.S. Wiesener, C. Willam, Role of hypoxia in the pathogenesis of renal disease. Kidney Int. Suppl. 99, S46–S51 (2005).  https://doi.org/10.1111/j.1523-1755.2005.09909.x CrossRefGoogle Scholar
  41. 41.
    D.E. Kohan, E. Padilla, Osmolar regulation of endothelin-1 production by rat inner medullary collecting duct. J. Clin. Invest. 91(3), 1235–1240 (1993).  https://doi.org/10.1172/JCI116286 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    V.H. Haase, Mechanisms of hypoxia responses in renal tissue. J. Am. Soc. Nephrol. 24(4), 537–541 (2013).  https://doi.org/10.1681/ASN.2012080855 PubMedCrossRefGoogle Scholar
  43. 43.
    A. Nir, A.L. Clavell, D. Heublein, L.L. Aarhus, J.C. Burnett Jr., Acute hypoxia and endogenous renal endothelin. J. Am. Soc. Nephrol. 4(11), 1920–1924 (1994)PubMedGoogle Scholar
  44. 44.
    J.B. Heimlich, J.S. Speed, C.J. Bloom, P.M. O’Connor, J.S. Pollock, D.M. Pollock, ET-1 increases reactive oxygen species following hypoxia and high-salt diet in the mouse glomerulus. Acta Physiol. 213(3), 722–730 (2015).  https://doi.org/10.1111/apha.12397 CrossRefGoogle Scholar
  45. 45.
    B. Kisch, Electron microscopy of the atrium of the heart. I. Guinea pig. Exp. Med. Surg. 14(2–3), 99–112 (1956)PubMedGoogle Scholar
  46. 46.
    K. Kangawa, H. Matsuo, Purification and complete amino acid sequence of alpha-human atrial natriuretic polypeptide (alpha-hANP). Biochem. Biophys. Res. Commun. 118(1), 131–139 (1984)PubMedCrossRefGoogle Scholar
  47. 47.
    Y. Saito, Roles of atrial natriuretic peptide and its therapeutic use. J. Cardiol. 56(3), 262–270 (2010)PubMedCrossRefGoogle Scholar
  48. 48.
    K.S. Misono, J.S. Philo, T. Arakawa, C.M. Ogata, Y. Qiu, H. Ogawa, H.S. Young, Structure, signaling mechanism and regulation of the natriuretic peptide receptor guanylate cyclase. FEBS J. 278(11), 1818–1829 (2011).  https://doi.org/10.1111/j.1742-4658.2011.08083.x PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    L.R. Potter, Natriuretic peptide metabolism, clearance and degradation. FEBS J. 278(11), 1808–1817 (2011).  https://doi.org/10.1111/j.1742-4658.2011.08082.x PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    O. Arjamaa, M. Nikinmaa, Hypoxia regulates the natriuretic peptide system. Int. J. Physiol. Pathophysiol. Pharmacol. 3(3), 191–201 (2011)PubMedPubMedCentralGoogle Scholar
  51. 51.
    R.J. Winter, L. Zhao, T. Krausz, J.M. Hughes, Neutral endopeptidase 24.11 inhibition reduces pulmonary vascular remodeling in rats exposed to chronic hypoxia. Am. Rev. Respir. Dis. 144(6), 1342–1346 (1991).  https://doi.org/10.1164/ajrccm/144.6.1342 PubMedCrossRefGoogle Scholar
  52. 52.
    N.B. Standen, J.M. Quayle, K+ channel modulation in arterial smooth muscle. Acta Physiol. Scand. 164(4), 549–557 (1998).  https://doi.org/10.1046/j.1365-201X.1998.00433.x PubMedCrossRefGoogle Scholar
  53. 53.
    M. Kuhn, Structure, regulation, and function of mammalian membrane guanylyl cyclase receptors, with a focus on guanylyl cyclase-A. Circ. Res. 93(8), 700–709 (2003).  https://doi.org/10.1161/01.RES.0000094745.28948.4D PubMedCrossRefGoogle Scholar
  54. 54.
    Y.F. Chen, Atrial natriuretic peptide in hypoxia. Peptides 26(6), 1068–1077 (2005).  https://doi.org/10.1016/j.peptides.2004.08.030 PubMedCrossRefGoogle Scholar
  55. 55.
    O. Pauvert, S. Bonnet, E. Rousseau, R. Marthan, J.P. Savineau, Sildenafil alters calcium signaling and vascular tone in pulmonary arteries from chronically hypoxic rats. Am. J. Physiol. Lung Cell. Mol. Physiol. 287(3), L577–L583 (2004).  https://doi.org/10.1152/ajplung.00449.2003 PubMedCrossRefGoogle Scholar
  56. 56.
    M. Gomberg-Maitland, V. McLaughlin, M. Gulati, S. Rich, Efficacy and safety of sildenafil added to treprostinil in pulmonary hypertension. Am. J. Cardiol. 96(9), 1334–1336 (2005).  https://doi.org/10.1016/j.amjcard.2005.06.083 PubMedCrossRefGoogle Scholar
  57. 57.
    H.H. Leuchte, M. Schwaiblmair, R.A. Baumgartner, C.F. Neurohr, T. Kolbe, J. Behr, Hemodynamic response to sildenafil, nitric oxide, and iloprost in primary pulmonary hypertension. Chest 125(2), 580–586 (2004)PubMedCrossRefGoogle Scholar
  58. 58.
    D. Wang, S. Oparil, J.A. Feng, P. Li, G. Perry, L.B. Chen, M. Dai, S.W. John, Y.F. Chen, Effects of pressure overload on extracellular matrix expression in the heart of the atrial natriuretic peptide-null mouse. Hypertension 42(1), 88–95 (2003).  https://doi.org/10.1161/01.HYP.0000074905.22908.A6 PubMedCrossRefGoogle Scholar
  59. 59.
    Y.S. Chun, J.Y. Hyun, Y.G. Kwak, I.S. Kim, C.H. Kim, E. Choi, M.S. Kim, J.W. Park, Hypoxic activation of the atrial natriuretic peptide gene promoter through direct and indirect actions of hypoxia-inducible factor-1. Biochem. J. 370(Pt 1), 149–157 (2003).  https://doi.org/10.1042/BJ20021087 PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Q.L. Zhang, B.R. Cui, H.Y. Li, P. Li, L. Hong, L.P. Liu, D.Z. Ding, X. Cui, MAPK and PI3K pathways regulate hypoxia-induced atrial natriuretic peptide secretion by controlling HIF-1 alpha expression in beating rabbit atria. Biochem. Biophys. Res. Commun. 438(3), 507–512 (2013).  https://doi.org/10.1016/j.bbrc.2013.07.106 PubMedCrossRefGoogle Scholar
  61. 61.
    W. Forssmann, M. Meyer, K. Forssmann, The renal urodilatin system: clinical implications. Cardiovasc. Res. 51(3), 450–462 (2001)PubMedCrossRefGoogle Scholar
  62. 62.
    B. Haditsch, A. Roessler, P. Krisper, H. Frisch, H.G. Hinghofer-Szalkay, N. Goswami, Volume regulation and renal function at high altitude across gender. PLoS. One 10(3), e0118730 (2015).  https://doi.org/10.1371/journal.pone.0118730 PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    R.G. Westendorp, A.N. Roos, H.G. van der Hoeven, M.Y. Tjiong, R. Simons, M. Frolich, J.H. Souverijn, A.E. Meinders, Atrial natriuretic peptide improves pulmonary gas exchange in subjects exposed to hypoxia. Am. Rev. Respir. Dis. 148(2), 304–309 (1993).  https://doi.org/10.1164/ajrccm/148.2.304 PubMedCrossRefGoogle Scholar
  64. 64.
    T.J. Tunny, J. van Gelder, R.D. Gordon, S.A. Klemm, S.M. Hamlet, W.L. Finn, G.M. Carney, C. Brand-Maher, Effects of altitude on atrial natriuretic peptide: the Bicentennial Mount Everest expedition. Clin. Exp. Pharmacol. Physiol. 16(4), 287–291 (1989)PubMedCrossRefGoogle Scholar
  65. 65.
    A. Kawashima, K. Kubo, K. Hirai, S. Yoshikawa, Y. Matsuzawa, T. Kobayashi, Plasma levels of atrial natriuretic peptide under acute hypoxia in normal subjects. Respir. Physiol. 76(1), 79–91 (1989)PubMedCrossRefGoogle Scholar
  66. 66.
    R.I. Cargill, B.J. Lipworth, Acute effects of ANP and BNP on hypoxic pulmonary vasoconstriction in humans. Br. J. Clin. Pharmacol. 40(6), 585–590 (1995)PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    M.C. Chappell, Biochemical evaluation of the renin-angiotensin system: the good, bad, and absolute? Am. J. Physiol. Heart Circ. Physiol. 310(2), H137–H152 (2016).  https://doi.org/10.1152/ajpheart.00618.2015 PubMedCrossRefGoogle Scholar
  68. 68.
    L.C. Roksnoer, K. Verdonk, A.H. van den Meiracker, E.J. Hoorn, R. Zietse, A.H. Danser, Urinary markers of intrarenal renin-angiotensin system activity in vivo. Curr. Hypertens. Rep. 15(2), 81–88 (2013).  https://doi.org/10.1007/s11906-012-0326-z PubMedCrossRefGoogle Scholar
  69. 69.
    K.E. Bernstein, F.S. Ong, W.L. Blackwell, K.H. Shah, J.F. Giani, R.A. Gonzalez-Villalobos, X.Z. Shen, S. Fuchs, R.M. Touyz, A modern understanding of the traditional and nontraditional biological functions of angiotensin-converting enzyme. Pharmacol. Rev. 65(1), 1–46 (2013).  https://doi.org/10.1124/pr.112.006809 PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    J.T. August, D.H. Nelson, G.W. Thorn, Aldosterone. N. Engl. J. Med. 259(19), 917–923 (1958).  https://doi.org/10.1056/NEJM195811062591907. contdPubMedCrossRefGoogle Scholar
  71. 71.
    P.K. Mehta, K.K. Griendling, Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am. J. Physiol. Cell. Physiol. 292(1), C82–C97 (2007).  https://doi.org/10.1152/ajpcell.00287.2006 PubMedCrossRefGoogle Scholar
  72. 72.
    E. Kaschina, T. Unger, Angiotensin AT1/AT2 receptors: regulation, signalling and function. Blood Press. 12(2), 70–88 (2003)PubMedCrossRefGoogle Scholar
  73. 73.
    Y. Imai, K. Kuba, T. Ohto-Nakanishi, J.M. Penninger, Angiotensin-converting enzyme 2 (ACE2) in disease pathogenesis. Circ. J. 74(3), 405–410 (2010)PubMedCrossRefGoogle Scholar
  74. 74.
    K.B. Brosnihan, L.A. Neves, M.C. Chappell, Does the angiotensin-converting enzyme (ACE)/ACE2 balance contribute to the fate of angiotensin peptides in programmed hypertension? Hypertension 46(5), 1097–1099 (2005).  https://doi.org/10.1161/01.HYP.0000185149.56516.0a PubMedCrossRefGoogle Scholar
  75. 75.
    S. Wakahara, T. Konoshita, S. Mizuno, M. Motomura, C. Aoyama, Y. Makino, N. Kato, I. Koni, I. Miyamori, Synergistic expression of angiotensin-converting enzyme (ACE) and ACE2 in human renal tissue and confounding effects of hypertension on the ACE to ACE2 ratio. Endocrinology 148(5), 2453–2457 (2007).  https://doi.org/10.1210/en.2006-1287 PubMedCrossRefGoogle Scholar
  76. 76.
    C.N. Bradford, D.R. Ely, M.K. Raizada, Targeting the vasoprotective axis of the renin-angiotensin system: a novel strategic approach to pulmonary hypertensive therapy. Curr. Hypertens. Rep. 12(4), 212–219 (2010).  https://doi.org/10.1007/s11906-010-0122-6 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    R. Zhang, Y. Wu, M. Zhao, C. Liu, L. Zhou, S. Shen, S. Liao, K. Yang, Q. Li, H. Wan, Role of HIF-1alpha in the regulation ACE and ACE2 expression in hypoxic human pulmonary artery smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 297(4), L631–L640 (2009).  https://doi.org/10.1152/ajplung.90415.2008 PubMedCrossRefGoogle Scholar
  78. 78.
    L.J. Mullins, B.R. Conway, R.I. Menzies, L. Denby, J.J. Mullins, Renal disease pathophysiology and treatment: contributions from the rat. Dis. Model. Mech. 9(12), 1419–1433 (2016).  https://doi.org/10.1242/dmm.027276 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    J. Loeffler, J. Stockigt, W. Ganong, Effect of alpha-and beta-adrenergic blocking agents on the increase in renin secretion produced by stimulation of the renal nerves. Neuroendocrinology 10(3), 129–138 (1972)PubMedCrossRefGoogle Scholar
  80. 80.
    M. Nangaku, T. Fujita, Activation of the renin-angiotensin system and chronic hypoxia of the kidney. Hypertens. Res. 31(2), 175–184 (2008).  https://doi.org/10.1291/hypres.31.175 PubMedCrossRefGoogle Scholar
  81. 81.
    H. Matsui, T. Shimosawa, K. Itakura, X. Guanqun, K. Ando, T. Fujita, Adrenomedullin can protect against pulmonary vascular remodeling induced by hypoxia. Circulation 109(18), 2246–2251 (2004).  https://doi.org/10.1161/01.CIR.0000127950.13380.FD PubMedCrossRefGoogle Scholar
  82. 82.
    C. Ruster, G. Wolf, Renin-angiotensin-aldosterone system and progression of renal disease. J. Am. Soc. Nephrol. 17(11), 2985–2991 (2006).  https://doi.org/10.1681/ASN.2006040356 PubMedCrossRefGoogle Scholar
  83. 83.
    S. Srivastava, S. Dwivedi, Significance of renin angiotensin aldosterone system (RAAS) pathway in high altitude pulmonary edema (HAPE) susceptibility. J. Clin. Mol. Endocrinol 1(3), 1–4 (2016).Google Scholar
  84. 84.
    E.C. Fletcher, N. Orolinova, M. Bader, Blood pressure response to chronic episodic hypoxia: the renin-angiotensin system. J. Appl. Physiol. 92(2), 627–633 (2002).  https://doi.org/10.1152/japplphysiol.000152.2001 PubMedCrossRefGoogle Scholar
  85. 85.
    I. Hubloue, B. Rondelet, F. Kerbaul, D. Biarent, G.M. Milani, M. Staroukine, P. Bergmann, R. Naeije, M. Leeman, Endogenous angiotensin II in the regulation of hypoxic pulmonary vasoconstriction in anaesthetized dogs. Crit. Care 8(4), R163–R171 (2004).  https://doi.org/10.1186/cc2860 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    K. Manotham, B. Ongvilawan, P. Urusopone, S. Chetsurakarn, J. Tanamai, P. Limkuansuwan, K. Tungsanga, S. Eiam-Ong, Angiotensin II receptor blocker partially ameliorated intrarenal hypoxia in chronic kidney disease patients: a pre-/post-study. Intern. Med. J. 42(4), e33–e37 (2012)PubMedCrossRefGoogle Scholar
  87. 87.
    N.J. Marcus, Y.L. Li, C.E. Bird, H.D. Schultz, B.J. Morgan, Chronic intermittent hypoxia augments chemoreflex control of sympathetic activity: role of the angiotensin II type 1 receptor. Respir. Physiol. Neurobiol. 171(1), 36–45 (2010).  https://doi.org/10.1016/j.resp.2010.02.003 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    M.C. Lansang, S.Y. Osei, D.A. Price, N.D. Fisher, N.K. Hollenberg, Renal hemodynamic and hormonal responses to the angiotensin II antagonist candesartan. Hypertension 36(5), 834–838 (2000)PubMedCrossRefGoogle Scholar
  89. 89.
    N.R. Prabhakar, G.K. Kumar, Mechanisms of sympathetic activation and blood pressure elevation by intermittent hypoxia. Respir. Physiol. Neurobiol. 174(1–2), 156–161 (2010).  https://doi.org/10.1016/j.resp.2010.08.021 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    V. Pialoux, G.E. Foster, S.B. Ahmed, A.E. Beaudin, P.J. Hanly, M.J. Poulin, Losartan abolishes oxidative stress induced by intermittent hypoxia in humans. J. Physiol. 589(Pt 22), 5529–5537 (2011).  https://doi.org/10.1113/jphysiol.2011.218156 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    G.E. Foster, P.J. Hanly, S.B. Ahmed, A.E. Beaudin, V. Pialoux, M.J. Poulin, Intermittent hypoxia increases arterial blood pressure in humans through a renin-angiotensin system-dependent mechanism. Hypertension 56(3), 369–377 (2010).  https://doi.org/10.1161/HYPERTENSIONAHA.110.152108 PubMedCrossRefGoogle Scholar
  92. 92.
    R. Tamisier, J.L. Pepin, J. Remy, J.P. Baguet, J.A. Taylor, J.W. Weiss, P. Levy, 14 nights of intermittent hypoxia elevate daytime blood pressure and sympathetic activity in healthy humans. Eur. Respir. J. 37(1), 119–128 (2011).  https://doi.org/10.1183/09031936.00204209 PubMedCrossRefGoogle Scholar
  93. 93.
    G.S. Gilmartin, M. Lynch, R. Tamisier, J.W. Weiss, Chronic intermittent hypoxia in humans during 28 nights results in blood pressure elevation and increased muscle sympathetic nerve activity. Am. J. Physiol. Heart Circ. Physiol. 299(3), H925–H931 (2010).  https://doi.org/10.1152/ajpheart.00253.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    G. Bao, N. Metreveli, R. Li, A. Taylor, E.C. Fletcher, Blood pressure response to chronic episodic hypoxia: role of the sympathetic nervous system. J. Appl. Physiol. 83(1), 95–101 (1997)PubMedCrossRefGoogle Scholar
  95. 95.
    E.C. Fletcher, J. Lesske, J. Culman, C.C. Miller, T. Unger, Sympathetic denervation blocks blood pressure elevation in episodic hypoxia. Hypertension 20(5), 612–619 (1992)PubMedCrossRefGoogle Scholar
  96. 96.
    E.C. Fletcher, G. Bao, R. Li, Renin activity and blood pressure in response to chronic episodic hypoxia. Hypertension 34(2), 309–314 (1999)PubMedCrossRefGoogle Scholar
  97. 97.
    S.Y. Lam, P.S. Leung, A locally generated angiotensin system in rat carotid body. Regul. Pept. 107(1–3), 97–103 (2002)PubMedCrossRefGoogle Scholar
  98. 98.
    S.Y. Lam, Y. Liu, K.M. Ng, E.C. Liong, G.L. Tipoe, P.S. Leung, M.L. Fung, Upregulation of a local renin-angiotensin system in the rat carotid body during chronic intermittent hypoxia. Exp. Physiol. 99(1), 220–231 (2014).  https://doi.org/10.1113/expphysiol.2013.074591 PubMedCrossRefGoogle Scholar
  99. 99.
    M. Boone, P.M. Deen, Physiology and pathophysiology of the vasopressin-regulated renal water reabsorption. Pflug. Arch. 456(6), 1005–1024 (2008).  https://doi.org/10.1007/s00424-008-0498-1 CrossRefGoogle Scholar
  100. 100.
    M.E. Alfie, S. Alim, D. Mehta, E.G. Shesely, O.A. Carretero, An enhanced effect of arginine vasopressin in bradykinin B2 receptor null mutant mice. Hypertension 33(6), 1436–1440 (1999)PubMedCrossRefGoogle Scholar
  101. 101.
    C.W. Bourque, S.H. Oliet, D. Richard, Osmoreceptors, osmoreception, and osmoregulation. Front. Neuroendocrinol. 15(3), 231–274 (1994).  https://doi.org/10.1006/frne.1994.1010 PubMedCrossRefGoogle Scholar
  102. 102.
    M.A. Knepper, Molecular physiology of urinary concentrating mechanism: regulation of aquaporin water channels by vasopressin. Am. J. Physiol. 272(1 Pt 2), F3–F12 (1997)PubMedGoogle Scholar
  103. 103.
    C.M. Maresh, W.J. Kraemer, D.A. Judelson, J.L. VanHeest, L. Trad, J.M. Kulikowich, K.L. Goetz, A. Cymerman, A.J. Hamilton, Effects of high altitude and water deprivation on arginine vasopressin release in men. Am. J. Physiol. Endocrinol. Metab. 286(1), E20–E24 (2004).  https://doi.org/10.1152/ajpendo.00332.2003 PubMedCrossRefGoogle Scholar
  104. 104.
    G. Ramirez, D. Pineda, P.A. Bittle, H. Rabb, R. Rosen, D. Vesely, S. Sasaki, Partial renal resistance to arginine vasopressin as an adaptation to high altitude living. Aviat. Space Environ. Med. 69(1), 58–65 (1998)PubMedGoogle Scholar
  105. 105.
    A. Takamata, H. Nose, T. Kinoshita, M. Hirose, T. Itoh, T. Morimoto, Effect of acute hypoxia on vasopressin release and intravascular fluid during dynamic exercise in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279(1), R161–R168 (2000)PubMedCrossRefGoogle Scholar
  106. 106.
    F.D. Blume, S.J. Boyer, L.E. Braverman, A. Cohen, J. Dirkse, J.P. Mordes, Impaired osmoregulation at high altitude: studies on Mt Everest. Jama 252(4), 524–526 (1984)PubMedCrossRefGoogle Scholar
  107. 107.
    L. Ostergaard, A. Rudiger, S. Wellmann, E. Gammella, B. Beck-Schimmer, J. Struck, M. Maggiorini, M. Gassmann, Arginine-vasopressin marker copeptin is a sensitive plasma surrogate of hypoxic exposure. Hypoxia 2, 143–151 (2014).  https://doi.org/10.2147/HP.S57894 PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    R.L. Cosby, A.M. Sophocles, J.A. Durr, C.L. Perrinjaquet, B. Yee, R.W. Schrier, Elevated plasma atrial natriuretic factor and vasopressin in high-altitude pulmonary edema. Ann. Intern. Med. 109(10), 796–799 (1988)PubMedCrossRefGoogle Scholar
  109. 109.
    P. Bartsch, M. Maggiorini, W. Schobersberger, S. Shaw, W. Rascher, J. Girard, P. Weidmann, O. Oelz, Enhanced exercise-induced rise of aldosterone and vasopressin preceding mountain sickness. J. Appl. Physiol. 71(1), 136–143 (1991)PubMedCrossRefGoogle Scholar
  110. 110.
    O. Pak, A. Aldashev, D. Welsh, A. Peacock, The effects of hypoxia on the cells of the pulmonary vasculature. Eur. Respir. J. 30(2), 364–372 (2007).  https://doi.org/10.1183/09031936.00128706 PubMedCrossRefGoogle Scholar
  111. 111.
    C. Fonseca, D. Abraham, E.A. Renzoni, Endothelin in pulmonary fibrosis. Am. J. Respir. Cell. Mol. Biol. 44(1), 1–10 (2011).  https://doi.org/10.1165/rcmb.2009-0388TR PubMedCrossRefGoogle Scholar
  112. 112.
    N.J. Davie, E.V. Gerasimovskaya, S.E. Hofmeister, A.P. Richman, P.L. Jones, J.T. Reeves, K.R. Stenmark, Pulmonary artery adventitial fibroblasts cooperate with vasa vasorum endothelial cells to regulate vasa vasorum neovascularization: a process mediated by hypoxia and endothelin-1. Am. J. Pathol. 168(6), 1793–1807 (2006).  https://doi.org/10.2353/ajpath.2006.050754 PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    L.A. Shimoda, S.S. Laurie, HIF and pulmonary vascular responses to hypoxia. J. Appl. Physiol. 116(7), 867–874 (2014).  https://doi.org/10.1152/japplphysiol.00643.2013 PubMedCrossRefGoogle Scholar
  114. 114.
    P.M. Hassoun, V. Thappa, M.J. Landman, B.L. Fanburg, Endothelin 1: mitogenic activity on pulmonary artery smooth muscle cells and release from hypoxic endothelial cells. Proc. Soc. Exp. Biol. Med. Soc. Exp. Biol. Med. 199(2), 165–170 (1992)CrossRefGoogle Scholar
  115. 115.
    Y. Fan, L. Wang, C. Liu, H. Zhu, L. Zhou, Y. Wang, X. Wu, Q. Li, Local renin-angiotensin system regulates hypoxia-induced vascular endothelial growth factor synthesis in mesenchymal stem cells. Int. J. Clin. Exp. Pathol. 8(3), 2505–2514 (2015)PubMedPubMedCentralGoogle Scholar
  116. 116.
    Y. Zhang, J. Lv, H. Guo, X. Wei, W. Li, Z. Xu, Hypoxia-induced proliferation in mesenchymal stem cells and angiotensin II-mediated PI3K/AKT pathway. Cell. Biochem. Funct. 33(2), 51–58 (2015).  https://doi.org/10.1002/cbf.3080 PubMedCrossRefGoogle Scholar
  117. 117.
    N.W. Morrell, P.D. Upton, M.A. Higham, M.H. Yacoub, J.M. Polak, J. Wharton, Angiotensin II stimulates proliferation of human pulmonary artery smooth muscle cells via the AT1 receptor. Chest 114(1 Suppl), 90S–91S (1998)PubMedCrossRefGoogle Scholar
  118. 118.
    S. Krick, J. Hanze, B. Eul, R. Savai, U. Seay, F. Grimminger, J. Lohmeyer, W. Klepetko, W. Seeger, F. Rose, Hypoxia-driven proliferation of human pulmonary artery fibroblasts: cross-talk between HIF-1alpha and an autocrine angiotensin system. FASEB J. 19(7), 857–859 (2005).  https://doi.org/10.1096/fj.04-2890fje PubMedCrossRefGoogle Scholar
  119. 119.
    K.R. Stenmark, D. Bouchey, R. Nemenoff, E.C. Dempsey, M. Das, Hypoxia-induced pulmonary vascular remodeling: contribution of the adventitial fibroblasts. Physiol. Res. 49(5), 503–517 (2000)PubMedGoogle Scholar
  120. 120.
    M. Humbert, N.W. Morrell, S.L. Archer, K.R. Stenmark, M.R. MacLean, I.M. Lang, B.W. Christman, E.K. Weir, O. Eickelberg, N.F. Voelkel, M. Rabinovitch, Cellular and molecular pathobiology of pulmonary arterial hypertension. J. Am. Coll. Cardiol. 43(12 Suppl S), 13S–24S (2004).  https://doi.org/10.1016/j.jacc.2004.02.029 PubMedCrossRefGoogle Scholar
  121. 121.
    N.J. Davie, J.T. Crossno Jr., M.G. Frid, S.E. Hofmeister, J.T. Reeves, D.M. Hyde, T.C. Carpenter, J.A. Brunetti, I.K. McNiece, K.R. Stenmark, Hypoxia-induced pulmonary artery adventitial remodeling and neovascularization: contribution of progenitor cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 286(4), L668–L678 (2004).  https://doi.org/10.1152/ajplung.00108.2003 PubMedCrossRefGoogle Scholar
  122. 122.
    M. Vogler, S. Vogel, S. Krull, K. Farhat, P. Leisering, S. Lutz, C.M. Wuertz, D.M. Katschinski, A. Zieseniss, Hypoxia modulates fibroblastic architecture, adhesion and migration: a role for HIF-1alpha in cofilin regulation and cytoplasmic actin distribution. PLoS. One 8(7), e69128 (2013).  https://doi.org/10.1371/journal.pone.0069128 PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    D.M. Gilkes, S. Bajpai, P. Chaturvedi, D. Wirtz, G.L. Semenza, Hypoxia-inducible factor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts. J. Biol. Chem. 288(15), 10819–10829 (2013).  https://doi.org/10.1074/jbc.M112.442939 PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    S. Mizuno, H.J. Bogaard, N.F. Voelkel, Y. Umeda, M. Kadowaki, S. Ameshima, I. Miyamori, T. Ishizaki, Hypoxia regulates human lung fibroblast proliferation via p53-dependent and -independent pathways. Respir. Res. 10, 17 (2009).  https://doi.org/10.1186/1465-9921-10-17 PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Y. Horino, S. Takahashi, T. Miura, Y. Takahashi, Prolonged hypoxia accelerates the posttranscriptional process of collagen synthesis in cultured fibroblasts. Life Sci. 71(26), 3031–3045 (2002)PubMedCrossRefGoogle Scholar
  126. 126.
    L. Rosano, F. Spinella, A. Bagnato, Endothelin 1 in cancer: biological implications and therapeutic opportunities. Nat. Rev. Cancer 13(9), 637–651 (2013).  https://doi.org/10.1038/nrc3546 PubMedCrossRefGoogle Scholar
  127. 127.
    A. Bouallegue, G.B. Daou, A.K. Srivastava, Endothelin-1-induced signaling pathways in vascular smooth muscle cells. Curr. Vasc. Pharmacol. 5(1), 45–52 (2007)PubMedCrossRefGoogle Scholar
  128. 128.
    G.E. Morris, C.P. Nelson, N.B. Standen, R.A. Challiss, J.M. Willets, Endothelin signalling in arterial smooth muscle is tightly regulated by G protein-coupled receptor kinase 2. Cardiovasc. Res. 85(3), 424–433 (2010).  https://doi.org/10.1093/cvr/cvp310 PubMedCrossRefGoogle Scholar
  129. 129.
    M.B. Anand-Srivastava, Natriuretic peptide receptor-C signaling and regulation. Peptides 26(6), 1044–1059 (2005).  https://doi.org/10.1016/j.peptides.2004.09.023 PubMedCrossRefGoogle Scholar
  130. 130.
    N.E. Zois, E.D. Bartels, I. Hunter, B.S. Kousholt, L.H. Olsen, J.P. Goetze, Natriuretic peptides in cardiometabolic regulation and disease. Nat. Rev. Cardiol. 11(7), 403–412 (2014).  https://doi.org/10.1038/nrcardio.2014.64 PubMedCrossRefGoogle Scholar
  131. 131.
    K.N. Pandey, Guanylyl cyclase/natriuretic peptide receptor-A signaling antagonizes phosphoinositide hydrolysis, Ca(2+) release, and activation of protein kinase C. Front. Mol. Neurosci. 7, 75 (2014).  https://doi.org/10.3389/fnmol.2014.00075 PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    L.R. Potter, A.R. Yoder, D.R. Flora, L.K. Antos, D.M. Dickey, Natriuretic peptides: their structures, receptors, physiologic functions and therapeutic applications. Handb. Exp. Pharmacol. 191, 341–366 (2009).  https://doi.org/10.1007/978-3-540-68964-5_15 CrossRefGoogle Scholar
  133. 133.
    D.F. Guo, Y.L. Sun, P. Hamet, T. Inagami, The angiotensin II type 1 receptor and receptor-associated proteins. Cell. Res. 11(3), 165–180 (2001).  https://doi.org/10.1038/sj.cr.7290083 PubMedCrossRefGoogle Scholar
  134. 134.
    S. Higuchi, H. Ohtsu, H. Suzuki, H. Shirai, G.D. Frank, S. Eguchi, Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin. Sci. 112(8), 417–428 (2007).  https://doi.org/10.1042/CS20060342 PubMedCrossRefGoogle Scholar
  135. 135.
    S. AbdAlla, H. Lother, A.M. Abdel-tawab, U. Quitterer, The angiotensin II AT2 receptor is an AT1 receptor antagonist. J. Biol. Chem. 276(43), 39721–39726 (2001).  https://doi.org/10.1074/jbc.M105253200 PubMedCrossRefGoogle Scholar
  136. 136.
    L. Gendron, M.D. Payet, N. Gallo-Payet, The angiotensin type 2 receptor of angiotensin II and neuronal differentiation: from observations to mechanisms. J. Mol. Endocrinol. 31(3), 359–372 (2003)PubMedCrossRefGoogle Scholar
  137. 137.
    J.D. Stockand, Vasopressin regulation of renal sodium excretion. Kidney Int. 78(9), 849–856 (2010).  https://doi.org/10.1038/ki.2010.276 PubMedCrossRefGoogle Scholar
  138. 138.
    D.A. Ausiello, K.L. Skorecki, A.S. Verkman, J.V. Bonventre, Vasopressin signaling in kidney cells. Kidney Int. 31(2), 521–529 (1987)PubMedCrossRefGoogle Scholar
  139. 139.
    J.D. Stockand, New ideas about aldosterone signaling in epithelia. American journal of physiology. Ren. Physiol. 282(4), F559–F576 (2002).  https://doi.org/10.1152/ajprenal.00320.2001 CrossRefGoogle Scholar
  140. 140.
    M. Briet, E.L. Schiffrin, Aldosterone: effects on the kidney and cardiovascular system. Nat. Rev. Nephrol. 6(5), 261–273 (2010).  https://doi.org/10.1038/nrneph.2010.30 PubMedCrossRefGoogle Scholar
  141. 141.
    C. Grossmann, M. Gekle, New aspects of rapid aldosterone signaling. Mol. Cell. Endocrinol. 308(1–2), 53–62 (2009).  https://doi.org/10.1016/j.mce.2009.02.005 PubMedCrossRefGoogle Scholar
  142. 142.
    R. Dooley, B.J. Harvey, W. Thomas, Non-genomic actions of aldosterone: from receptors and signals to membrane targets. Mol. Cell. Endocrinol. 350(2), 223–234 (2012).  https://doi.org/10.1016/j.mce.2011.07.019 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Priya Gaur
    • 1
  • Supriya Saini
    • 1
  • Praveen Vats
    • 1
    Email author
  • Bhuvnesh Kumar
    • 1
  1. 1.Defence Institute of Physiology and Allied SciencesDelhiIndia

Personalised recommendations