Advertisement

Endocrine

pp 1–10 | Cite as

Effects of growth hormone on hepatic insulin sensitivity and glucose effectiveness in healthy older adults

  • Lala Forrest
  • Caroline Sedmak
  • Shanaz Sikder
  • Shivraj Grewal
  • S. Mitchell Harman
  • Marc R. Blackman
  • Ranganath MuniyappaEmail author
Original Article

Abstract

Purpose

Growth hormone (GH) replacement decreases insulin sensitivity in healthy individuals. However, the effects of GH on organ-specific insulin sensitivity and glucose effectiveness are not well characterized. The purpose of this study was to evaluate the effects of GH administration for 26 weeks on muscle and hepatic insulin sensitivity and glucose effectiveness in healthy older individuals.

Methods

This report is from a 26-week randomized, double-blind, placebo-controlled parallel-group trial in healthy, ambulatory, community-dwelling older women and men. We compared surrogate indices of insulin sensitivity [quantitative insulin-sensitivity check index (QUICKI), muscle insulin sensitivity index (MISI), hepatic insulin resistance index (HIRI)] and glucose effectiveness [oral glucose effectiveness index (oGE)] derived from oral glucose tolerance tests (OGTTs) in subjects before and after 26 weeks of administration of GH (n = 17) or placebo (n = 15) as an exploratory outcome.

Results

GH administration for 26 weeks significantly increased fasting insulin concentrations and HIRI but did not significantly change MISI or oGE compared to placebo.

Conclusions

GH administration for 26 weeks in healthy older subjects impairs insulin sensitivity in the liver but not skeletal muscle and does not alter glucose effectiveness.

Keywords

Growth hormone Insulin resistance Glucose effectiveness Aging 

Notes

Funding

This work was supported in part by the Intramural Research Programs of the National Institute on Aging (NIA), Baltimore, Maryland and the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Washington, DC, National Institutes of Health Research Grants RO-1 AG11005 (to MRB), and the Research Service, Veterans Affairs Medical Center, Washington DC.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of The Institutional Review Board of the Johns Hopkins Bayview Medical Center and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    S. Fieffe, I. Morange, P. Petrossians, P. Chanson, V. Rohmer, C. Cortet, F. Borson-Chazot, T. Brue, B. Delemer; French Acromegaly, R, Diabetes in acromegaly, prevalence, risk factors, and evolution: data from the French Acromegaly Registry. Eur. J. Endocrinol. 164(6), 877–884 (2011).  https://doi.org/10.1530/EJE-10-1050 CrossRefGoogle Scholar
  2. 2.
    O. Alexopoulou, M. Bex, P. Kamenicky, A.B. Mvoula, P. Chanson, D. Maiter, Prevalence and risk factors of impaired glucose tolerance and diabetes mellitus at diagnosis of acromegaly: a study in 148 patients. Pituitary 17(1), 81–89 (2014).  https://doi.org/10.1007/s11102-013-0471-7 CrossRefGoogle Scholar
  3. 3.
    N. Moller, O. Schmitz, J.O. Joorgensen, J. Astrup, J.F. Bak, S.E. Christensen, K.G. Alberti, J. Weeke, Basal- and insulin-stimulated substrate metabolism in patients with active acromegaly before and after adenomectomy. J. Clin. Endocrinol. Metab. 74(5), 1012–1019 (1992).  https://doi.org/10.1210/jcem.74.5.1569148 Google Scholar
  4. 4.
    N. Moller, J.O. Jorgensen, Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocr. Rev. 30(2), 152–177 (2009).  https://doi.org/10.1210/er.2008-0027 CrossRefGoogle Scholar
  5. 5.
    I. Hansen, E. Tsalikian, B. Beaufrere, J. Gerich, M. Haymond, R. Rizza, Insulin resistance in acromegaly: defects in both hepatic and extrahepatic insulin action. Am. J. Physiol. 250(3 Pt 1), E269–E273 (1986).  https://doi.org/10.1152/ajpendo.1986.250.3.E269 Google Scholar
  6. 6.
    S. Kasayama, M. Otsuki, M. Takagi, H. Saito, S. Sumitani, H. Kouhara, M. Koga, Y. Saitoh, T. Ohnishi, N. Arita, Impaired beta-cell function in the presence of reduced insulin sensitivity determines glucose tolerance status in acromegalic patients. Clin. Endocrinol. 52(5), 549–555 (2000)CrossRefGoogle Scholar
  7. 7.
    Y. Kinoshita, H. Fujii, A. Takeshita, M. Taguchi, M. Miyakawa, K. Oyama, S. Yamada, Y. Takeuchi, Impaired glucose metabolism in Japanese patients with acromegaly is restored after successful pituitary surgery if pancreatic {beta}-cell function is preserved. Eur. J. Endocrinol. 164(4), 467–473 (2011).  https://doi.org/10.1530/EJE-10-1096 CrossRefGoogle Scholar
  8. 8.
    C.E. Higham, S. Rowles, D. Russell-Jones, A.M. Umpleby, P.J. Trainer, Pegvisomant improves insulin sensitivity and reduces overnight free fatty acid concentrations in patients with acromegaly. J. Clin. Endocrinol. Metab. 94(7), 2459–2463 (2009).  https://doi.org/10.1210/jc.2008-2086 CrossRefGoogle Scholar
  9. 9.
    E.O. List, L. Sackmann-Sala, D.E. Berryman, K. Funk, B. Kelder, E.S. Gosney, S. Okada, J. Ding, D. Cruz-Topete, J.J. Kopchick, Endocrine parameters and phenotypes of the growth hormone receptor gene disrupted (GHR-/-) mouse. Endocr. Rev. 32(3), 356–386 (2011).  https://doi.org/10.1210/er.2010-0009 CrossRefGoogle Scholar
  10. 10.
    J. Guevara-Aguirre, P. Balasubramanian, M. Guevara-Aguirre, M. Wei, F. Madia, C.W. Cheng, D. Hwang, A. Martin-Montalvo, J. Saavedra, S. Ingles, R. de Cabo, P. Cohen, V.D. Longo, Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci. Transl. Med. 3(70), 70ra13 (2011).  https://doi.org/10.1126/scitranslmed.3001845 CrossRefGoogle Scholar
  11. 11.
    R.A. Rizza, L.J. Mandarino, J.E. Gerich, Effects of growth hormone on insulin action in man. Mechanisms of insulin resistance, impaired suppression of glucose production, and impaired stimulation of glucose utilization. Diabetes 31(8 Pt 1), 663–669 (1982)CrossRefGoogle Scholar
  12. 12.
    K.C. Corbit, J.P. Camporez, J.L. Tran, C.G. Wilson, D.A. Lowe, S.M. Nordstrom, K. Ganeshan, R.J. Perry, G.I. Shulman, M.J. Jurczak, E.J. Weiss, Adipocyte JAK2 mediates growth hormone-induced hepatic insulin resistance. JCI Insight 2(3), e91001 (2017).  https://doi.org/10.1172/jci.insight.91001 CrossRefGoogle Scholar
  13. 13.
    F.P. Dominici, D.P. Argentino, M.C. Munoz, J.G. Miquet, A.I. Sotelo, D. Turyn, Influence of the crosstalk between growth hormone and insulin signalling on the modulation of insulin sensitivity. Growth Horm. IGF Res. 15(5), 324–336 (2005).  https://doi.org/10.1016/j.ghir.2005.07.001 CrossRefGoogle Scholar
  14. 14.
    N. Moller, P.C. Butler, M.A. Antsiferov, K.G. Alberti, Effects of growth hormone on insulin sensitivity and forearm metabolism in normal man. Diabetologia 32(2), 105–110 (1989)CrossRefGoogle Scholar
  15. 15.
    P.M. Piatti, L.D. Monti, A. Caumo, M. Conti, F. Magni, M. Galli-Kienle, E. Fochesato, A. Pizzini, L. Baldi, G. Valsecchi, A.E. Pontiroli, Mediation of the hepatic effects of growth hormone by its lipolytic activity. J. Clin. Endocrinol. Metab. 84(5), 1658–1663 (1999).  https://doi.org/10.1210/jcem.84.5.5685 CrossRefGoogle Scholar
  16. 16.
    L. Orskov, O. Schmitz, J.O. Jorgensen, J. Arnfred, N. Abildgaard, J.S. Christiansen, K.G. Alberti, H. Orskov, Influence of growth hormone on glucose-induced glucose uptake in normal men as assessed by the hyperglycemic clamp technique. J. Clin. Endocrinol. Metab. 68(2), 276–282 (1989).  https://doi.org/10.1210/jcem-68-2-276 CrossRefGoogle Scholar
  17. 17.
    A. Thankamony, P.H. Tossavainen, A. Sleigh, C. Acerini, D. Elleri, R.N. Dalton, N.C. Jackson, A.M. Umpleby, R.M. Williams, D.B. Dunger, Short-term administration of pegvisomant improves hepatic insulin sensitivity and reduces soleus muscle intramyocellular lipid content in young adults with type 1 diabetes. J. Clin. Endocrinol. Metab. 99(2), 639–647 (2014).  https://doi.org/10.1210/jc.2013-3264 CrossRefGoogle Scholar
  18. 18.
    J. Svensson, J. Fowelin, K. Landin, B.A. Bengtsson, J.O. Johansson, Effects of seven years of GH-replacement therapy on insulin sensitivity in GH-deficient adults. J. Clin. Endocrinol. Metab. 87(5), 2121–2127 (2002).  https://doi.org/10.1210/jcem.87.5.8482 CrossRefGoogle Scholar
  19. 19.
    A.M. Rosenfalck, S. Maghsoudi, S. Fisker, J.O. Jorgensen, J.S. Christiansen, J. Hilsted, A.A. Volund, S. Madsbad, The effect of 30 months of low-dose replacement therapy with recombinant human growth hormone (rhGH) on insulin and C-peptide kinetics, insulin secretion, insulin sensitivity, glucose effectiveness, and body composition in GH-deficient adults. J. Clin. Endocrinol. Metab. 85(11), 4173–4181 (2000).  https://doi.org/10.1210/jcem.85.11.6930 CrossRefGoogle Scholar
  20. 20.
    T. Munzer, S.M. Harman, J.D. Sorkin, M.R. Blackman, Growth hormone and sex steroid effects on serum glucose, insulin, and lipid concentrations in healthy older women and men. J. Clin. Endocrinol. Metab. 94(10), 3833–3841 (2009).  https://doi.org/10.1210/jc.2009-1275 CrossRefGoogle Scholar
  21. 21.
    M.R. Blackman, J.D. Sorkin, T. Munzer, M.F. Bellantoni, J. Busby-Whitehead, T.E. Stevens, J. Jayme, K.G. O’Connor, C. Christmas, J.D. Tobin, K.J. Stewart, E. Cottrell, C. St Clair, K.M. Pabst, S.M. Harman, Growth hormone and sex steroid administration in healthy aged women and men: a randomized controlled trial. JAMA 288(18), 2282–2292 (2002)CrossRefGoogle Scholar
  22. 22.
    T. Munzer, S.M. Harman, P. Hees, E. Shapiro, C. Christmas, M.F. Bellantoni, T.E. Stevens, K.G. O’Connor, K.M. Pabst, C. St Clair, J.D. Sorkin, M.R. Blackman, Effects of GH and/or sex steroid administration on abdominal subcutaneous and visceral fat in healthy aged women and men. J. Clin. Endocrinol. Metab. 86(8), 3604–3610 (2001).  https://doi.org/10.1210/jcem.86.8.7773 CrossRefGoogle Scholar
  23. 23.
    American Diabetes Associations, Standards of medical care in diabetes-2017 abridged for primary care providers. Clin. Diabetes. 35(1), 5–26 (2017).  https://doi.org/10.2337/cd16-0067 CrossRefGoogle Scholar
  24. 24.
    T. Munzer, C.J. Rosen, S.M. Harman, K.M. Pabst, C. St Clair, J.D. Sorkin, M.R. Blackman, Effects of GH and/or sex steroids on circulating IGF-I and IGFBPs in healthy, aged women and men. Am. J. Physiol. Endocrinol. Metab. 290(5), E1006–E1013 (2006).  https://doi.org/10.1152/ajpendo.00166.2005 CrossRefGoogle Scholar
  25. 25.
    M.A. Abdul-Ghani, M. Matsuda, B. Balas, R.A. DeFronzo, Muscle and liver insulin resistance indexes derived from the oral glucose tolerance test. Diabetes Care 30(1), 89–94 (2007).  https://doi.org/10.2337/dc06-1519 CrossRefGoogle Scholar
  26. 26.
    S. Nagasaka, I. Kusaka, K. Yamashita, Y. Funase, K. Yamauchi, M. Katakura, S. Ishibashi, T. Aizawa, Index of glucose effectiveness derived from oral glucose tolerance test. Acta Diabetol. 49(Suppl 1), S195–S204 (2012).  https://doi.org/10.1007/s00592-012-0417-y CrossRefGoogle Scholar
  27. 27.
    R. Weiss, S.N. Magge, N. Santoro, C. Giannini, R. Boston, T. Holder, M. Shaw, E. Duran, K.J. Hershkop, S. Caprio, Glucose effectiveness in obese children: relation to degree of obesity and dysglycemia. Diabetes Care 38(4), 689–695 (2015).  https://doi.org/10.2337/dc14-2183 Google Scholar
  28. 28.
    R. Muniyappa, S. Lee, H. Chen, M.J. Quon, Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. Am. J. Physiol. Endocrinol. Metab. 294(1), E15–E26 (2008).  https://doi.org/10.1152/ajpendo.00645.2007 CrossRefGoogle Scholar
  29. 29.
    A. Kotronen, M. Lewitt, K. Hall, K. Brismar, H. Yki-Jarvinen, Insulin-like growth factor binding protein 1 as a novel specific marker of hepatic insulin sensitivity. J. Clin. Endocrinol. Metab. 93(12), 4867–4872 (2008).  https://doi.org/10.1210/jc.2008-1245 CrossRefGoogle Scholar
  30. 30.
    J.L. Kuk, T.J. Saunders, L.E. Davidson, R. Ross, Age-related changes in total and regional fat distribution. Ageing Res. Rev. 8(4), 339–348 (2009).  https://doi.org/10.1016/j.arr.2009.06.001 CrossRefGoogle Scholar
  31. 31.
    E.B. Geer, W. Shen, Gender differences in insulin resistance, body composition, and energy balance. Gend. Med. 6(Suppl 1), 60–75 (2009).  https://doi.org/10.1016/j.genm.2009.02.002 CrossRefGoogle Scholar
  32. 32.
    M. Krotkiewski, P. Bjorntorp, L. Sjostrom, U. Smith, Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution. J. Clin. Invest. 72(3), 1150–1162 (1983).  https://doi.org/10.1172/JCI111040 CrossRefGoogle Scholar
  33. 33.
    R. Basu, C. Dalla Man, M. Campioni, A. Basu, G. Klee, G. Toffolo, C. Cobelli, R.A. Rizza, Effects of age and sex on postprandial glucose metabolism: differences in glucose turnover, insulin secretion, insulin action, and hepatic insulin extraction. Diabetes 55(7), 2001–2014 (2006).  https://doi.org/10.2337/db05-1692 CrossRefGoogle Scholar
  34. 34.
    J.O. Clausen, K. Borch-Johnsen, H. Ibsen, R.N. Bergman, P. Hougaard, K. Winther, O. Pedersen, Insulin sensitivity index, acute insulin response, and glucose effectiveness in a population-based sample of 380 young healthy Caucasians. Analysis of the impact of gender, body fat, physical fitness, and life-style factors. J. Clin. Invest. 98(5), 1195–1209 (1996).  https://doi.org/10.1172/JCI118903 CrossRefGoogle Scholar
  35. 35.
    J.W. Kolaczynski, J.F. Caro, Insulin-like growth factor-1 therapy in diabetes: physiologic basis, clinical benefits, and risks. Ann. Intern. Med. 120(1), 47–55 (1994)CrossRefGoogle Scholar
  36. 36.
    T. Pratipanawatr, W. Pratipanawatr, C. Rosen, R. Berria, M. Bajaj, K. Cusi, L. Mandarino, S. Kashyap, R. Belfort, R.A. DeFronzo, Effect of IGF-I on FFA and glucose metabolism in control and type 2 diabetic subjects. Am. J. Physiol. Endocrinol. Metab. 282(6), E1360–E1368 (2002).  https://doi.org/10.1152/ajpendo.00335.2001 CrossRefGoogle Scholar
  37. 37.
    G. Paolisso, M.R. Tagliamonte, M.R. Rizzo, C. Carella, A. Gambardella, M. Barbieri, M. Varricchio, Low plasma insulin-like growth factor-1 concentrations predict worsening of insulin-mediated glucose uptake in older people. J. Am. Geriatr. Soc. 47(11), 1312–1318 (1999)CrossRefGoogle Scholar
  38. 38.
    J.E. Henriksen, K. Levin, P. Thye-Ronn, F. Alford, O. Hother-Nielsen, J.J. Holst, H. Beck-Nielsen, Glucose-mediated glucose disposal in insulin-resistant normoglycemic relatives of type 2 diabetic patients. Diabetes 49(7), 1209–1218 (2000)CrossRefGoogle Scholar
  39. 39.
    S. Kehlenbrink, S. Koppaka, M. Martin, R. Relwani, M.H. Cui, J.H. Hwang, Y. Li, R. Basu, M. Hawkins, P. Kishore, Elevated NEFA levels impair glucose effectiveness by increasing net hepatic glycogenolysis. Diabetologia 55(11), 3021–3028 (2012).  https://doi.org/10.1007/s00125-012-2662-6 CrossRefGoogle Scholar
  40. 40.
    F. Giorgino, L. Laviola, J.W. Eriksson, Regional differences of insulin action in adipose tissue: insights from in vivo and in vitro studies. Acta Physiol. Scand. 183(1), 13–30 (2005).  https://doi.org/10.1111/j.1365-201X.2004.01385.x CrossRefGoogle Scholar
  41. 41.
    A. Garg, A. Misra, Hepatic steatosis, insulin resistance, and adipose tissue disorders. J. Clin. Endocrinol. Metab. 87(7), 3019–3022 (2002).  https://doi.org/10.1210/jcem.87.7.8736 CrossRefGoogle Scholar
  42. 42.
    T. McLaughlin, C. Lamendola, A. Liu, F. Abbasi, Preferential fat deposition in subcutaneous versus visceral depots is associated with insulin sensitivity. J. Clin. Endocrinol. Metab. 96(11), E1756–E1760 (2011).  https://doi.org/10.1210/jc.2011-0615 CrossRefGoogle Scholar
  43. 43.
    N. Jessen, C.B. Djurhuus, J.O. Jorgensen, L.S. Jensen, N. Moller, S. Lund, O. Schmitz, Evidence against a role for insulin-signaling proteins PI 3-kinase and Akt in insulin resistance in human skeletal muscle induced by short-term GH infusion. Am. J. Physiol. Endocrinol. Metab. 288(1), E194–E199 (2005).  https://doi.org/10.1152/ajpendo.00149.2004 CrossRefGoogle Scholar
  44. 44.
    M.S. Raben, Growth hormone. 1. Physiologic aspects. N. Engl. J. Med. 266, 31–35 (1962).  https://doi.org/10.1056/NEJM196201042660109 CrossRefGoogle Scholar
  45. 45.
    S. Nielsen, N. Moller, J.S. Christiansen, J.O. Jorgensen, Pharmacological antilipolysis restores insulin sensitivity during growth hormone exposure. Diabetes 50(10), 2301–2308 (2001)CrossRefGoogle Scholar
  46. 46.
    M. Segerlantz, M. Bramnert, P. Manhem, E. Laurila, L.C. Groop, Inhibition of the rise in FFA by Acipimox partially prevents GH-induced insulin resistance in GH-deficient adults. J. Clin. Endocrinol. Metab. 86(12), 5813–5818 (2001).  https://doi.org/10.1210/jcem.86.12.8096 CrossRefGoogle Scholar
  47. 47.
    M.H. Pedersen, M.V. Svart, J. Lebeck, M. Bidlingmaier, H. Stodkilde-Jorgensen, S.B. Pedersen, N. Moller, N. Jessen, J.O.L. Jorgensen, Substrate metabolism and insulin sensitivity during fasting in obese human subjects: impact of GH blockade. J. Clin. Endocrinol. Metab. 102(4), 1340–1349 (2017).  https://doi.org/10.1210/jc.2016-3835 CrossRefGoogle Scholar
  48. 48.
    R.J. Perry, J.P. Camporez, R. Kursawe, P.M. Titchenell, D. Zhang, C.J. Perry, M.J. Jurczak, A. Abudukadier, M.S. Han, X.M. Zhang, H.B. Ruan, X. Yang, S. Caprio, S.M. Kaech, H.S. Sul, M.J. Birnbaum, R.J. Davis, G.W. Cline, K.F. Petersen, G.I. Shulman, Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 160(4), 745–758 (2015).  https://doi.org/10.1016/j.cell.2015.01.012 CrossRefGoogle Scholar
  49. 49.
    S.B. Wheatcroft, M.T. Kearney, IGF-dependent and IGF-independent actions of IGF-binding protein-1 and -2: implications for metabolic homeostasis. Trends Endocrinol. Metab.: TEM 20(4), 153–162 (2009).  https://doi.org/10.1016/j.tem.2009.01.002 CrossRefGoogle Scholar
  50. 50.
    J.H. Goedecke, L.K. Micklesfield, The effect of exercise on obesity, body fat distribution and risk for type 2 diabetes. Med. Sport. Sci. 60, 82–93 (2014).  https://doi.org/10.1159/000357338 CrossRefGoogle Scholar
  51. 51.
    M.C. Moore, A.D. Cherrington, D.H. Wasserman, Regulation of hepatic and peripheral glucose disposal. Best. Pract. Res. Clin. Endocrinol. Metab. 17(3), 343–364 (2003)CrossRefGoogle Scholar
  52. 52.
    T. Laursen, C.H. Gravholt, L. Heickendorff, J. Drustrup, A.M. Kappelgaard, J.O. Jorgensen, J.S. Christiansen, Long-term effects of continuous subcutaneous infusion versus daily subcutaneous injections of growth hormone (GH) on the insulin-like growth factor system, insulin sensitivity, body composition, and bone and lipoprotein metabolism in GH-deficient adults. J. Clin. Endocrinol. Metab. 86(3), 1222–1228 (2001).  https://doi.org/10.1210/jcem.86.3.7323 Google Scholar
  53. 53.
    J. Vangipurapu, A. Stancakova, T. Kuulasmaa, J. Paananen, J. Kuusisto, E.-R.S. Group, E. Ferrannini, M. Laakso, A novel surrogate index for hepatic insulin resistance. Diabetologia 54(3), 540–543 (2011).  https://doi.org/10.1007/s00125-010-1966-7 CrossRefGoogle Scholar
  54. 54.
    J.P. Bastard, M. Faraj, A.D. Karelis, J. Lavasseur, D. Garrel, D. Prud’homme, R. Rabasa-Lhoret, Muscle and liver insulin resistance indexes derived from the oral glucose tolerance test: response to Abdul-Ghani et al. Diabetes Care 30(7), e84 (2007). author reply e84  https://doi.org/10.2337/dc07-0622.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Clinical Endocrine Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUSA
  2. 2.Endocrinology Section, Department of MedicinePhoenix VA Health Care SystemPhoenixUSA
  3. 3.Research ServiceVeterans Affairs Medical CenterWashingtonUSA
  4. 4.Department of MedicineGeorgetown University School of MedicineWashingtonUSA
  5. 5.Department of MedicineGeorge Washington University School of MedicineWashingtonUSA

Personalised recommendations