Advertisement

Endocrine

, Volume 59, Issue 3, pp 520–528 | Cite as

Characterization of the serum and salivary cortisol response to the intravenous 250 µg ACTH1-24 stimulation test

  • Brendan J. Nolan
  • Jane Sorbello
  • Nigel Brown
  • Goce Dimeski
  • Warrick J. InderEmail author
Original Article

Abstract

Purpose

The ACTH1–24 stimulation test is commonly used to assess the hypothalamic-pituitary-adrenal (HPA) axis. Given variations in CBG concentration and binding affinity, serum total cortisol may misclassify some patients. Salivary cortisol correlates well with serum free cortisol but is easier to measure and widely available in commercial laboratories. The aim of this study was to investigate the utility of measuring salivary cortisol during the ACTH1–24 stimulation test.

Design and methods

Case–control study in a clinical research facility. Eighty-seven patients with suspected cortisol deficiency, twenty-four healthy controls, and ten healthy women on the oral contraceptive (OC) underwent an intravenous 250 µg ACTH1–24 stimulation test. Concordance of ACTH1–24 stimulated serum and salivary cortisol was evaluated.

Results

There was a significant difference in serum cortisol between the healthy volunteers and the women on the OC (P < 0.001) but no difference in salivary cortisol. The lower limit of the reference interval for salivary cortisol at 60 min was 26 nmol/L. 27/89 (30%) of tests with suspected HPA axis disorder failed the 60 min serum cortisol cut-off of 500 nmol/L. Of these, 24/27 (89%) had a salivary cortisol of <26 nmol/L. In contrast, 12/19 (63%) tests and 5/43 (12%) tests where the 60 min serum cortisol was 500–599 and ≥600 nmol/L, respectively had a salivary cortisol of <26 nmol/L.

Conclusions

Salivary cortisol provides additional diagnostic value during the 250 µg ACTH1–24 stimulation test in patients with proven or suspected alterations in CBG and potentially those with a borderline 60 min serum cortisol 500–599 nmol/L.

Keywords

Salivary cortisol ACTH1–24 stimulation test Oral contraceptive Adrenal insufficiency 

Notes

Funding

This study was funded by a grant from the Study Education Research Committee, Pathology Queensland, Brisbane, Australia.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    I. Bancos, S. Hahner, J. Tomlinson, W. Arlt, Diagnosis and management of adrenal insufficiency. Lancet Diabetes Endocrinol. 3, 216–226 (2015)CrossRefGoogle Scholar
  2. 2.
    J.B. Wood, A.W. Frankland, V.H. James, J. Landon, A rapid test of adrenocortical function. Lancet 1, 243–245 (1965)CrossRefGoogle Scholar
  3. 3.
    N.S. Ospina, A. Al Nofal, I. Bancos, A. Javed, K. Benkhadra, E. Kapoor, A.N. Lteif, N. Natt, M.H. Murad, ACTH stimulation tests for the diagnosis of adrenal insufficiency: systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 101, 427–434 (2016)CrossRefGoogle Scholar
  4. 4.
    D.M. Keenan, F. Roelfsema, J.D. Veldhuis, Endogenous ACTH concentration-dependent drive of pulsatile cortisol secretion in the human. Am. J. Physiol. Endocrinol. Metab. 287, E652–661 (2004)CrossRefGoogle Scholar
  5. 5.
    L. Gagliardi, J.T. Ho, D.J. Torpy, Corticosteroid-binding globulin: the clinical significance of altered levels and heritable mutations. Mol. Cell. Endocrinol. 316, 24–34 (2010)CrossRefGoogle Scholar
  6. 6.
    Y.J. Bae, J. Kratzsch, Corticosteroid-binding globulin: modulating mechanisms of bioavailability of cortisol and its clinical implications. Best. Pract. Res. Clin. Endocrinol. Metab. 29, 761–772 (2015)CrossRefGoogle Scholar
  7. 7.
    W.J. Inder, G. Dimeski, A. Russell, Measurement of salivary cortisol in 2012—laboratory techniques and clinical indications. Clin. Endocrinol. 77, 645–651 (2012)CrossRefGoogle Scholar
  8. 8.
    S. Soule, VanZyl Smit, C. Parolis, G. Attenborough, S. Peter, D. Kinvig, S. Kinvig, T. Coetzer, E.: The low dose ACTH stimulation test is less sensitive than the overnight metyrapone test for the diagnosis of secondary hypoadrenalism. Clin. Endocrinol. 53, 221–227 (2000)CrossRefGoogle Scholar
  9. 9.
    B.C. McWhinney, G. Ward, P.E. Hickman, Improved HPLC method for simultaneous analysis of cortisol, 11-deoxycortisol, prednisolone, methylprednisolone, and dexamethasone in serum and urine. Clin. Chem. 42, 979–981 (1996)PubMedGoogle Scholar
  10. 10.
    H.Y. Cho, J.H. Kim, S.W. Kim, C.S. Shin, K.S. Park, S.W. Kim, H.C. Jang, S.Y. Kim, Different cut-off values of the insulin tolerance test, the high-dose short synacthen test (250 mug) and the low-dose short Synacthen test (1 mug) in assessing central adrenal insufficiency. Clin. Endocrinol. 81, 77–84 (2014)CrossRefGoogle Scholar
  11. 11.
    P.M. Clark, I. Neylon, P.R. Raggatt, M.C. Sheppard, P.M. Stewart, Defining the normal cortisol response to the short Synacthen test: implications for the investigation of hypothalamic-pituitary disorders. Clin. Endocrinol. 49, 287–292 (1998)CrossRefGoogle Scholar
  12. 12.
    E. Endert, A. Ouwehand, E. Fliers, M.F. Prummel, W.M. Wiersinga, Establishment of reference values for endocrine tests. Part IV: adrenal insufficiency. Neth. J. Med. 63, 435–443 (2005)PubMedGoogle Scholar
  13. 13.
    J. Gonzalbez, C. Villabona, J. Ramon, M.A. Navarro, O. Gimenez, W. Ricart, J. Soler, Establishment of reference values for standard dose short synacthen test (250 microgram), low dose short synacthen test (1 microgram) and insulin tolerance test for assessment of the hypothalamo-pituitary-adrenal axis in normal subjects. Clin. Endocrinol. 53, 199–204 (2000)CrossRefGoogle Scholar
  14. 14.
    Z. Karaca, A. Lale, F. Tanriverdi, M. Kula, K. Unluhizarci, F. Kelestimur, The comparison of low and standard dose ACTH and glucagon stimulation tests in the evaluation of hypothalamo-pituitary-adrenal axis in healthy adults. Pituitary 14, 134–140 (2011)CrossRefGoogle Scholar
  15. 15.
    N. El-Farhan, A. Pickett, D. Ducroq, C. Bailey, K. Mitchem, N. Morgan, A. Armston, L. Jones, C. Evans, D.A. Rees, Method-specific serum cortisol responses to the adrenocorticotrophin test: comparison of gas chromatography-mass spectrometry and five automated immunoassays. Clin. Endocrinol. 78, 673–680 (2013)CrossRefGoogle Scholar
  16. 16.
    M.P. Cornes, H.L. Ashby, Y. Khalid, H.N. Buch, C. Ford, R. Gama, Salivary cortisol and cortisone responses to tetracosactrin (synacthen). Ann. Clin. Biochem. 52, 606–610 (2015)CrossRefGoogle Scholar
  17. 17.
    M. Fleseriu, I.A. Hashim, N. Karavitaki, S. Melmed, M.H. Murad, R. Salvatori, M.H. Samuels, Hormonal replacement in hypopituitarism in adults: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 101, 3888–3921 (2016)CrossRefGoogle Scholar
  18. 18.
    S.J. Hurel, C.J. Thompson, M.J. Watson, M.M. Harris, P.H. Baylis, P. Kendall-Taylor, The short synacthen and insulin stress tests in the assessment of the hypothalamic-pituitary-adrenal axis. Clin. Endocrinol. 44, 141–146 (1996)CrossRefGoogle Scholar
  19. 19.
    A. Chitale, P. Musonda, A.M. McGregor, K.K. Dhatariya, Determining the utility of the 60 min cortisol measurement in the short synacthen test. Clin. Endocrinol. 79, 14–19 (2013)CrossRefGoogle Scholar
  20. 20.
    M. Duskova, K. Simunkova, J. Vitku, L. Sosvorova, H. Jandikova, H. Pospisilova, M. Sramkova, M. Kosak, M. Krsek, V. Hana, M. Zanova, D. Springer, L. Starka, A comparison of salivary steroid levels during diagnostic tests for adrenal insufficiency. Prague Med. Rep. 117, 18–33 (2016)CrossRefGoogle Scholar
  21. 21.
    R.I. Dorin, C.R. Qualls, L.M. Crapo, Diagnosis of adrenal insufficiency. Ann. Intern. Med. 139, 194–204 (2003)CrossRefGoogle Scholar
  22. 22.
    R. Kazlauskaite, A.T. Evans, C.V. Villabona, T.A. Abdu, B. Ambrosi, A.B. Atkinson, C.H. Choi, R.N. Clayton, C.H. Courtney, E.N. Gonc, M. Maghnie, S.R. Rose, S.G. Soule, K. Tordjman, Corticotropin tests for hypothalamic-pituitary-adrenal insufficiency: a meta-analysis. J. Clin. Endocrinol. Metab. 93, 4245–4253 (2008)CrossRefGoogle Scholar
  23. 23.
    M.G. Burt, B.L. Mangelsdorf, A. Rogers, J.T. Ho, J.G. Lewis, W.J. Inder, M.P. Doogue, Free and total plasma cortisol measured by immunoassay and mass spectrometry following ACTH(1-24) stimulation in the assessment of pituitary patients. J. Clin. Endocrinol. Metab. 98, 1883–1890 (2013)CrossRefGoogle Scholar
  24. 24.
    Y. Marcus-Perlman, K. Tordjman, Y. Greenman, R. Limor, G. Shenkerman, E. Osher, N. Stern, Low-dose ACTH (1 microg) salivary test: a potential alternative to the classical blood test. Clin. Endocrinol. 64, 215–218 (2006)CrossRefGoogle Scholar
  25. 25.
    K. Simunkova, L. Starka, M. Hill, L. Kriz, R. Hampl, K. Vondra, Comparison of total and salivary cortisol in a low-dose ACTH (synacthen) test: influence of three-month oral contraceptives administration to healthy women. Physiol. Res. 57(Suppl 1), S193–S199 (2008)PubMedGoogle Scholar
  26. 26.
    M. Klose, M. Lange, A.K. Rasmussen, N.E. Skakkebaek, L. Hilsted, E. Haug, M. Andersen, U. Feldt-Rasmussen, Factors influencing the adrenocorticotropin test: role of contemporary cortisol assays, body composition, and oral contraceptive agents. J. Clin. Endocrinol. Metab. 92, 1326–1333 (2007)CrossRefGoogle Scholar
  27. 27.
    K. Simunkova, R. Hampl, M. Hill, J. Doucha, L. Starka, K. Vondra, Salivary cortisol in low dose (1 microg) ACTH test in healthy women: comparison with serum cortisol. Physiol. Res. 56, 449–453 (2007)PubMedGoogle Scholar
  28. 28.
    I.Y.F. Mak, B.Y.T. Au Yeung, Y.W. Ng, C.H. Choi, H.Y.P. Iu, C.C. Shek, S.C. Tiu, Salivary cortisol and cortisone after low-dose corticotropin stimulation in the diagnosis of adrenal insufficiency. JES 1, 96–108 (2017)PubMedGoogle Scholar
  29. 29.
    L.N. Contreras, A.L. Arregger, G.G. Persi, N.S. Gonzalez, E.M. Cardoso, A new less-invasive and more informative low-dose ACTH test: salivary steroids in response to intramuscular corticotrophin. Clin. Endocrinol. 61, 675–682 (2004)CrossRefGoogle Scholar
  30. 30.
    T. Deutschbein, N. Unger, K. Mann, S. Petersenn, Diagnosis of secondary adrenal insufficiency in patients with hypothalamic-pituitary disease: comparison between serum and salivary cortisol during the high-dose short synacthen test. Eur. J. Endocrinol. 160, 9–16 (2009)CrossRefGoogle Scholar
  31. 31.
    I. Perogamvros, L.J. Owen, B.G. Keevil, G. Brabant, P.J. Trainer, Measurement of salivary cortisol with liquid chromatography-tandem mass spectrometry in patients undergoing dynamic endocrine testing. Clin. Endocrinol. 72, 17–21 (2010)CrossRefGoogle Scholar
  32. 32.
    B.M. Arafah, F.J. Nishiyama, H. Tlaygeh, R. Hejal, Measurement of salivary cortisol concentration in the assessment of adrenal function in critically ill subjects: a surrogate marker of the circulating free cortisol. J. Clin. Endocrinol. Metab. 92, 2965–2971 (2007)CrossRefGoogle Scholar
  33. 33.
    H. Raff, S. Brock, J.W. Findling, Cosyntropin-stimulated salivary cortisol in hospitalized patients with hypoproteinemia. Endocrine 34, 68–74 (2008)CrossRefGoogle Scholar
  34. 34.
    A. Galbois, M. Rudler, J. Massard, Y. Fulla, A. Bennani, D. Bonnefont-Rousselot, V. Thibault, S. Reignier, A. Bourrier, T. Poynard, D. Thabut, Assessment of adrenal function in cirrhotic patients: salivary cortisol should be preferred. J. Hepatol. 52, 839–845 (2010)CrossRefGoogle Scholar
  35. 35.
    T. Tan, L. Chang, A. Woodward, B. McWhinney, J. Galligan, G.A. Macdonald, J. Cohen, B. Venkatesh, Characterising adrenal function using directly measured plasma free cortisol in stable severe liver disease. J. Hepatol. 53, 841–848 (2010)CrossRefGoogle Scholar
  36. 36.
    G. Elbuken, F. Tanriverdi, Z. Karaca, M. Kula, S. Gokahmetoglu, K. Unluhizarci, F. Kelestimur, Comparison of salivary and calculated free cortisol levels during low and standard dose of ACTH stimulation tests in healthy volunteers. Endocrine 48, 439–443 (2015)CrossRefGoogle Scholar
  37. 37.
    I. Perogamvros, B.G. Keevil, D.W. Ray, P.J. Trainer, Salivary cortisone is a potential biomarker for serum free cortisol. J. Clin. Endocrinol. Metab. 95, 4951–4958 (2010)CrossRefGoogle Scholar
  38. 38.
    H. Raff, Update on late-night salivary cortisol for the diagnosis of Cushing’s syndrome: methodological considerations. Endocrine 44, 346–349 (2013)CrossRefGoogle Scholar
  39. 39.
    R. Limor, K. Tordjman, Y. Marcus, Y. Greenman, E. Osher, Y. Sofer, N. Stern, Serum free cortisol as an ancillary tool in the interpretation of the low-dose 1-mug ACTH test. Clin. Endocrinol. 75, 294–300 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Diabetes and EndocrinologyPrincess Alexandra HospitalWoolloongabbaAustralia
  2. 2.Faculty of MedicineUniversity of QueenslandBrisbaneAustralia
  3. 3.Department of Chemical PathologyPathology QueenslandBrisbaneAustralia

Personalised recommendations