, Volume 59, Issue 3, pp 602–613 | Cite as

The phosphodiesterase 5 inhibitor tadalafil regulates lipidic homeostasis in human skeletal muscle cell metabolism

  • F. Marampon
  • C. Antinozzi
  • C. Corinaldesi
  • G. B. Vannelli
  • E. Sarchielli
  • S. Migliaccio
  • L. Di Luigi
  • A. Lenzi
  • C. CrescioliEmail author
Original Article



Tadalafil seems to ameliorate insulin resistance and glucose homeostasis in humans. We have previously reported that tadalafil targets human skeletal muscle cells with an insulin (I)-like effect. We aim to evaluate in human fetal skeletal muscle cells after tadalafil or I: (i) expression profile of I-regulated genes dedicated to cellular energy control, glycolitic activity or microtubule formation/vesicle transport, as GLUT4, PPARγ, HK2, IRS-1, KIF1C, and KIFAP3; (ii) GLUT4, Flotillin-1, and Caveolin-1 localization, all proteins involved in energy-dependent cell trafficking; (iii) activation of I-targeted paths, as IRS-1, PKB/AKT, mTOR, P70/S6K. Free fatty acids intracellular level was measured. Sildenafil or a cGMP synthetic analog were used for comparison; PDE5 and PDE11 gene expression was evaluated in human fetal skeletal muscle cells.


RTq-PCR, PCR, western blot, free fatty acid assay commercial kit, and lipid stain non-fluorescent assay were used.


Tadalafil upregulated I-targeted investigated genes with the same temporal pattern as I (GLUT4, PPARγ, and IRS-1 at 3 h; HK2, KIF1C, KIFAP3 at 12 h), re-localized GLUT4 in cell sites positively immune-decorated for Caveolin-1 and Flotillin-1, suggesting the involvement of lipid rafts, induced specific residue phosphorylation of IRS-1/AKT/mTOR complex in association with free fatty acid de novo synthesis. Sildenafil or GMP analog did not affect GLUT4 trafficking or free fatty acid levels.


In human fetal skeletal muscle cells tadalafil likely favors energy storage by modulating lipid homeostasis via IRS-1-mediated mechanisms, involving activation of I-targeted genes and intracellular cascade related to metabolic control. Those data provide some biomolecular evidences explaining, in part, tadalafil-induced favorable control of human metabolism shown by clinical studies.


PDE5i Tadalafil Insulin Skeletal muscle Metabolism 



This report was supported by ELI Lilly ICOS Corporation, Indianapolis, USA.


This study was funded by ELI LILLY (Ex NCR H6D-IT-V015).

Compliance with ethical standards

Conflict of interest

Crescioli C declares that she has received research grants from Company ELI LILLY. All the other authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Supplementary material

12020_2017_1378_MOESM1_ESM.pdf (997 kb)
Supplementary Information
12020_2017_1378_MOESM2_ESM.pdf (136 kb)
Supplementary Information
12020_2017_1378_MOESM3_ESM.pdf (315 kb)
Supplementary Information


  1. 1.
    C.C. Carson, T.F. Lue, Phosphodiesterase type 5 inhibitors for erectile dysfunction. BJU Int. 96, 257–280 (2005)CrossRefGoogle Scholar
  2. 2.
    J.H. Hong, Y.S. Kwon, I.Y. Kim, Pharmacodynamics, pharmacokinetics and clinical efficacy of phosphodiesterase-5 inhibitors. Exp. Opin. Drug Metab. Toxicol. 13, 183–192 (2017)CrossRefGoogle Scholar
  3. 3.
    M. Dell’Agli, G.V. Galli, E. Dal Cero, F. Belluti, R. Matera, E. Zironi, G. Pagliuca, E. Bosisio, Potent inhibition of human phosphodiesterase-5 by icariin derivatives. J. Nat. Prod. 71, 1513–1517 (2008)CrossRefGoogle Scholar
  4. 4.
    A. Basu, R.E. Ryder, New treatment options for erectile dysfunction in patients with diabetes mellitus. Drugs 64, 2667–2688 (2004)CrossRefGoogle Scholar
  5. 5.
    S.H. Francis, J.D. Corbin, PDE5 inhibitors: targeting erectile dysfunction in diabetics. Curr. Opin. Pharmacol. 11, 683–688 (2011)CrossRefGoogle Scholar
  6. 6.
    Y.P. Balhara, S. Sarkar, R. Gupta, Phosphodiesterase-5 inhibitors for erectile dysfunction in patients with diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials. Indian J. Endocrinol. Metab. 19, 451–461 (2015)CrossRefGoogle Scholar
  7. 7.
    D. Hatzichristou, M. Gambla, E. Rubio-Aurioles, J. Buvat, G.B. Brock, G. Spera, L. Rose, D. Lording, S. Liang, Efficacy of tadalafil once daily in men with diabetes mellitus and erectile dysfunction. Diabet. Med. 25, 138–46 (2008)CrossRefGoogle Scholar
  8. 8.
    A. Aversa, Systemic and metabolic effects of PDE5-inhibitor drugs. World J. Diabetes 1, 3–7 (2010)CrossRefGoogle Scholar
  9. 9.
    C.E. Ramirez, H. Nian, C. Yu, J.L. Gamboa, J.M. Luther, N.J. Brown, C.A. Shibao, Treatment with Sildenafil Improves Insulin Sensitivity in Prediabetes: A Randomized, Controlled Trial. J. Clin. Endocrinol. Metab. 100, 4533–4540 (2015)CrossRefGoogle Scholar
  10. 10.
    L. Fu, F. Li, A. Bruckbauer, Q. Cao, X. Cui, R. Wu, H. Shi, B. Xue, M.B. Zemel, Interaction between leucine and phosphodiesterase 5 inhibition in modulating insulin sensitivity and lipid metabolism. Diabetes Metab. Syndr. Obes. 8, 227–239 (2015)PubMedPubMedCentralGoogle Scholar
  11. 11.
    J.E. Ho, P. Arora, G.A. Walford, A. Ghorbani, D.P. Guanaga, B.P. Dhakal, D.I. Nathan, E.S. Buys, J.C. Florez, C. Newton-Cheh, G.D. Lewis, T.J. Wang, Effect of phosphodiesterase inhibition on insulin resistance in obese individuals. J. Am. Heart Assoc. (2014). doi: 10.1161/JAHA.114.001001
  12. 12.
    L. Di Luigi, C. Baldari, P. Sgrò, G.P. Emerenziani, M.C. Gallotta, S. Bianchini, F. Romanelli, F. Pigozzi, A. Lenzi, L. Guidetti, The type 5 phosphodiesterase inhibitor tadalafil influences salivary cortisol, testosterone, and dehydroepiandrosterone sulphate responses to maximal exercise in healthy men. J. Clin. Endocrinol. Metab. (2008). doi: 10.1210/jc.2008-0847 CrossRefGoogle Scholar
  13. 13.
    L. Di Luigi, C. Baldari, F. Pigozzi, G.P. Emerenziani, M.C. Gallotta, F. Iellamo, E. Ciminelli, P. Sgrò, F. Romanelli, A. Lenzi, L. Guidetti, The long-acting phosphodiesterase inhibitor tadalafil does not influence athletes’ VO2max, aerobic, and anaerobic thresholds in normoxia. Int. J. Sports Med. 29, 110–115 (2008)CrossRefGoogle Scholar
  14. 14.
    H. Duplain, R. Burcelin, C. Sartori, S. Cook, M. Egli, M. Lepori, P. Vollenweider, T. Pedrazzini, P. Nicod, B. Thorens, U. Scherrer, Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase. Circulation 104, 342–345 (2001)CrossRefGoogle Scholar
  15. 15.
    M. Sheffield-Moore, J.E. Wiktorowicz, K.V. Soman, C.P. Danesi, M.P. Kinsky, E.L. Dillon, K.M. Randolph, S.L. Casperson, D.C. Gore, A.M. Horstman, J.P. Lynch, B.M. Doucet, J.A. Mettler, J.W. Ryder, L.L. Ploutz-Snyder, J.W. Hsu, F. Jahoor, K. Jennings, G.R. White, S.D. McCammon, W.J. Durham, Sildenafil increases muscle protein synthesis and reduces muscle fatigue. Clin. Transl. Sci. 6, 463–468 (2013)CrossRefGoogle Scholar
  16. 16.
    S. Sabatini, P. Sgrò, G. Duranti, R. Ceci, L. Di Luigi, Tadalafil alters energy metabolism in C2C12 skeletal muscle cells. Acta Biochim. Pol. 58, 237–241 (2011)CrossRefGoogle Scholar
  17. 17.
    C. Crescioli, N. Sturli, M. Sottili, P. Bonini, A. Lenzi, L. Di Luigi, Insulin-like effect of the phosphodiesterase type 5 inhibitor tadalafil onto male human skeletal muscle cells. J. Endocrinol. Invest. (2013). doi: 10.3275/9034
  18. 18.
    E. Milani, S. Nikfar, R. Khorasani, M.J. Zamani, M. Abdollahi, Reduction of diabetes-induced oxidative stress by phosphodiesterase inhibitors in rats. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 140, 251–255 (2005)CrossRefGoogle Scholar
  19. 19.
    L. Di Luigi, F. Romanelli, P. Sgrò., A. Lenzi, Andrological aspects of physical exercise and sport medicine. Endocrine 42, 278–284 (2012)CrossRefGoogle Scholar
  20. 20.
    L. Di Luigi, Supplements and the endocrine system in athletes. Clin. Sports Med. 27, 131–151 (2008)CrossRefGoogle Scholar
  21. 21.
    C. Baldari, L. Di Luigi, G.P. Emerenziani, M.C. Gallotta, P. Sgrò, L. Guidetti, Is explosive performance influenced by androgen concentrations in young male soccer players? Br. J. Sports Med. 43, 191–194 (2009)CrossRefGoogle Scholar
  22. 22.
    R.A. De Fronzo, E. Jacot, E. Jequier, E. Maeder, J. Wahren, J.P. Felber, The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 30, 1000–1007 (1981)CrossRefGoogle Scholar
  23. 23.
    C. Crescioli, M. Sottili, P. Bonini, L. Cosmi, P. Chiarugi, P. Romagnani, G.B. Vannelli, M. Colletti, A.M. Isidori, M. Serio, A. Lenzi, L. Di Luigi, Inflammatory response in human skeletal muscle cells: CXCL10 as a potential therapeutic target. Eur. J. Cell Biol. 91, 139–149 (2012)CrossRefGoogle Scholar
  24. 24.
    C. Antinozzi, C. Corinaldesi, C. Giordano, A. Pisano, B. Cerbelli, S. Migliaccio, L. Di Luigi, K. Stefanantoni, G.B. Vannelli, S. Minisola, G. Valesini, V. Riccieri, A. Lenzi, C. Crescioli, Potential role for the VDR agonist elocalcitol in metabolic control: Evidences in human skeletal muscle cells. J. Steroid Biochem. Mol. Biol. 167, 169–181 (2017)CrossRefGoogle Scholar
  25. 25.
    Z.W. Yu, J. Burén, S. Enerbäck, E. Nilsson, L. Samuelsson, J.W. Eriksson, Insulin can enhance GLUT4 gene expression in 3T3-F442A cells and this effect is mimicked by vanadate but counteracted by cAMP and high glucose--potential implications for insulin resistance. Biochim. Biophys. Acta 1535, 174–185 (2001)CrossRefGoogle Scholar
  26. 26.
    J. Rieusset, F. Andreelli, D. Auboeuf, M. Roques, P. Vallier, J.P. Riou, J. Auwerx, M. Laville, H. Vidal, Insulin acutely regulates the expression of the peroxisome proliferator-activated receptor-gamma in human adipocytes. Diabetes 48, 699–705 (1999)CrossRefGoogle Scholar
  27. 27.
    H. Osawa, C. Sutherland, R.B. Robey, R.L. Printz, D.K. Granner, Analysis of the signaling pathway involved in the regulation of hexokinase II gene transcription by insulin. J. Biol. Chem. 271, 16690–16694 (1996)CrossRefGoogle Scholar
  28. 28.
    S. Rome, K. Clément, R. Rabasa-Lhoret, E. Loizon, C. Poitou, G.S. Barsh, J.P. Riou, M. Laville, H. Vidal, Microarray profiling of human skeletal muscle reveals that insulin regulates approximately 800 genes during a hyperinsulinemic clamp. J. Biol. Chem. 278, 18063–18068 (2003)CrossRefGoogle Scholar
  29. 29.
    K.A. Cho, P.B. Kang, PLIN2 inhibits insulin-induced glucose uptake in myoblasts through the activation of the NLRP3 inflammasome. Int. J. Mol. Med. 36, 839–844 (2015)CrossRefGoogle Scholar
  30. 30.
    P. Gallina, M. Paganini, L. Lombardini, R. Saccardi, M. Marini, M.T. De Cristofaro, P. Pinzani, F. Salvianti, C. Crescioli, A. Di Rita., S. Bucciantini, C. Mechi, E. Sarchielli, M. Moretti, S. Piacentini, G. Gritti, A. Bosi, S. Sorbi, G. Orlandini, G.B. Vannelli, N. Di Lorenzo, Development of human striatal anlagen after transplantation in a patient with Huntington’s disease. Exp. Neurol. 213, 241–244 (2008)CrossRefGoogle Scholar
  31. 31.
    A. Aversa, M. Caprio, A. Antelmi, A. Armani, M. Brama, E.A. Greco, D. Francomano, M. Calanchini, G. Spera, L. Di Luigi, G.M. Rosano, A. Lenzi, S. Migliaccio, A. Fabbri, Exposure to phosphodiesterase type 5 inhibitors stimulates aromatase expression in human adipocytes in vitro. J. Sex. Med. 8, 696–704 (2011)CrossRefGoogle Scholar
  32. 32.
    S. Marchiani, L. Bonaccorsi, P. Ferruzzi, C. Crescioli, M. Muratori, L. Adorini, G. Forti, M. Maggi, E. Baldi, The vitamin D analogue BXL-628 inhibits growth factor-stimulated proliferation and invasion of DU145 prostate cancer cells. J. Cancer Res. Clin. Oncol. 132, 408–416 (2006)CrossRefGoogle Scholar
  33. 33.
    G.L. Gravina, F. Marampon, P. Muzi, A. Mancini, M. Piccolella, P. Negri-Cesi, M. Motta, A. Lenzi, E. Di Cesare, V. Tombolini, E.A. Jannini, C. Festuccia, PXD101 potentiates hormonal therapy and prevents the onset of castration-resistant phenotype modulating androgen receptor, HSP90, and CRM1 in preclinical models of prostate cancer. Endocr. Relat. Cancer. (2013). doi: 10.1530/ERC-12-0240 CrossRefGoogle Scholar
  34. 34.
    L. Di Luigi, M. Sottili, C. Antinozzi, G.B. Vannelli, F. Romanelli, V. Riccieri, G. Valesini, A. Lenzi, C. Crescioli, The vitamin D receptor agonist BXL-01-0029 as a potential new pharmacological tool for the treatment of inflammatory myopathies. PLoS One. (2013). doi: 10.1371/journal.pone.0077745 CrossRefGoogle Scholar
  35. 35.
    E.J. Henriksen, B.B. Dokken, Role of glycogen synthase kinase-3 in insulin resistance and type 2 diabetes. Curr Drug Targets 7, 1435–1441 (2006)CrossRefGoogle Scholar
  36. 36.
    S. Uckert, P. Hedlund, K.E. Andersson, M.C. Truss, U. Jonas, C.G. Stief, Update on phosphodiesterase (PDE) isoenzymes as pharmacologic targets in urology: present and future. Eur Urol. 50, 1194–1207 (2006)CrossRefGoogle Scholar
  37. 37.
    J.E. Ayala, D.P. Bracy, B.M. Julien, J.N. Rottman, P.T. Fueger, D.H. Wasserman, Chronic treatment with sildenafil improves energy balance and insulin action in high fat-fed conscious mice. Diabetes 56, 1025–1033 (2007)CrossRefGoogle Scholar
  38. 38.
    L. Fu, F. Li, A. Bruckbauer, Q. Cao, X. Cui, R. Wu, H. Shi, B. Xue, M.B. Zemel, Interaction between leucine and phosphodiesterase 5 inhibition in modulating insulin sensitivity and lipid metabolism. Diabetes Metab. Syndr. Obes. (2015). doi: 10.2147/DMSO.S82338
  39. 39.
    P.A. Jansson, G. Murdolo, L. Sjögren, B. Nyström, M. Sjöstrand, L. Strindberg, P. Lönnroth, Tadalafil increases muscle capillary recruitment and forearm glucose uptake in women with type 2 diabetes. Diabetologia 53, 2205–2208 (2010)CrossRefGoogle Scholar
  40. 40.
    L. Sjögren, J. Olausson, L. Strindberg, R. Mobini, P. Fogelstrand, L. Mattsson Hultén, P.A. Jansson, Postprandial effects of the phosphodiesterase-5 inhibitor tadalafil in people with well-controlled Type 2 diabetes mellitus: a randomized controlled trial. Diabet. Med. 33, 1299–1301 (2016)CrossRefGoogle Scholar
  41. 41.
    G. Murdolo, M. Sjöstrand, L. Strindberg, P. Lönnroth, P.A. Jansson, The selective phosphodiesterase-5 inhibitor tadalafil induces microvascular and metabolic effects in type 2 diabetic postmenopausal females. J. Clin. Endocrinol. Metab. 98, 245–254 (2013)CrossRefGoogle Scholar
  42. 42.
    C. McMahon, Efficacy and safety of daily tadalafil in men with erectile dysfunction previously unresponsive to on-demand tadalafil. J. Sex Med. 1, 292–300 (2004)CrossRefGoogle Scholar
  43. 43.
    B.E. Sansbury, B.G. Hill, Regulation of obesity and insulin resistance by nitric oxide. Free Radic. Biol. Med. 73, 383–399 (2014)CrossRefGoogle Scholar
  44. 44.
    U. Förstermann, T. Münzel, Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 113, 1708–1714 (2006)CrossRefGoogle Scholar
  45. 45.
    J.M. Richey, The vascular endothelium, a benign restrictive barrier? NO! Role of nitric oxide in regulating insulin action. Diabetes. (2013). doi: 10.2337/db13-1395 CrossRefGoogle Scholar
  46. 46.
    M. Kanzaki, J.E. Pessin, Insulin signaling: GLUT4 vesicles exit via the exocyst. Curr. Biol. 15, 574–576 (2003)CrossRefGoogle Scholar
  47. 47.
    J.B. Helms, C. Zurzolo, Lipids as targeting signals: lipid rafts and intracellular trafficking. Traffic 5, 247–54 (2004)CrossRefGoogle Scholar
  48. 48.
    L.H. Chamberlain, G.W. Gould, The vesicle- and target-SNARE proteins that mediate Glut4 vesicle fusion are localized in detergent-insoluble lipid rafts present on distinct intracellular membranes. J. Biol. Chem. 277, 49750–49754 (2002)CrossRefGoogle Scholar
  49. 49.
    A. Ros-Baro, C. Lopez-Iglesias, S. Peiro, D. Bellido, M. Palacin, A. Zorzano, M. Camps, Lipid rafts are required for GLUT4 internalization in adipose cells. Proc. Natl Acad. Sci. USA. 98, 12050–12055 (2001)CrossRefGoogle Scholar
  50. 50.
    K. Fecchi, D. Volonte, M.P. Hezel, K. Schmeck, F. Galbiati, Spatial and temporal regulation of GLUT4 translocation by flotillin-1 and caveolin-3 in skeletal muscle cells. FASEB J. 20, 705–707 (2006)CrossRefGoogle Scholar
  51. 51.
    E. González-Muñoz, C. López-Iglesias, M. Calvo, M. Palacín, A. Zorzano, M. Camps, Caveolin-1 loss of function accelerates glucose transporter 4 and insulin receptor degradation in 3T3-L1 adipocytes. Endocrinology 150, 3493–3502 (2009)CrossRefGoogle Scholar
  52. 52.
    Y. Hoon Son, S.J. Lee, K.B. Lee, J.H. Lee, E.M. Jeong, S.C. Chung, S.C. Park, I.G. Kim, Dexamethasone downregulates caveolin-1 causing muscle atrophy via inhibited insulin signaling. J. Endocrinol. 225, 27–37 (2005)CrossRefGoogle Scholar
  53. 53.
    Y.S. Oh, L.Y. Khil, K.A. Cho, S.J. Ryu, M.K. Ha, G.J. Cheon, T.S. Lee, J.W. Yoon, H.S. Jun, S.C. Park, A potential role for skeletal muscle caveolin-1 as an insulin sensitivity modulator in ageing-dependent non-obese type 2 diabetes: studies in a new mouse model. Diabetologia 51, 1025–1034 (2008)CrossRefGoogle Scholar
  54. 54.
    M. Laplante, D.M. Sabatini, mTOR signaling in growth control and disease. Cell 149, 274–293 (2012)CrossRefGoogle Scholar
  55. 55.
    D.A. Altomare, A.R. Khaled, Homeostasis and the importance for a balance between AKT/mTOR activity and intracellular signaling. Curr. Med. Chem. 9, 3748–3762 (2012)CrossRefGoogle Scholar
  56. 56.
    N. Takei, H. Nawa, mTOR signaling and its roles in normal and abnormal brain development. Front. Mol. Neurosci. (2014). doi: 10.3389/fnmol.2014.00028
  57. 57.
    M. Gao, J. Liang, Y. Lu, H. Guo, P. German, S. Bai, E. Jonasch, X. Yang, G.B. Mills, Z. Ding, Site-specific activation of AKT protects cells from death induced by glucose deprivation. Oncogene. 33, 745–755 (2014)CrossRefGoogle Scholar
  58. 58.
    S.F. Moore, R.W. Hunter, I. Hers, mTORC2 protein complex-mediated Akt (Protein Kinase B) Serine 473 Phosphorylation is not required for Akt1 activity in human platelets. J. Biol. Chem. 286, 24553–24560 (2011)CrossRefGoogle Scholar
  59. 59.
    L. Vadlakonda, A. Dash, M. Pasupuleti, K. Anil Kumar, P. Reddanna, The Paradox of Akt-mTOR Interactions. Front. Oncol. (2013). doi: 10.3389/fonc.2013.00165
  60. 60.
    C.A. Moody, R.S. Scott, N. Amirghahari, C.O. Nathan, L.S. Young, C.W. Dawson, J.W. Sixbey, Modulation of the cell growth regulator mTOR by Epstein-Barr virus-encoded LMP2A. J. Virol. 79, 5499–5506 (2005)CrossRefGoogle Scholar
  61. 61.
    C. Gao, C. Hölscher, Y. Liu, L. Li, GSK3: a key target for the development of novel treatments for type 2 diabetes mellitus and Alzheimer disease. Rev. Neurosci. 23, 1–11 (2011)CrossRefGoogle Scholar
  62. 62.
    M. Laplante, D.M. Sabatini, mTOR signaling at a glance. J. Cell. Sci. (2009). doi: 10.1242/jcs.051011 CrossRefGoogle Scholar
  63. 63.
    T. Porstmann, C.R. Santos, B. Griffiths, M. Cully, M. Wu, S. Leevers, J.R. Griffiths, Y.L. Chung, A. Schulze, SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 8, 224–236 (2008)CrossRefGoogle Scholar
  64. 64.
    J.E. Kim, J. Chen, Regulation of peroxisome proliferator-activated receptor-gamma activity by mammalian target of rapamycin and amino acids in adipogenesis. Diabetes 53, 2748–2756 (2004)CrossRefGoogle Scholar
  65. 65.
    C. Fernández-Hernando, K.J. Moore, MicroRNA modulation of cholesterol homeostasis. Arterioscler. Thromb. Vasc. Biol. 31, 2378–2382 (2011)CrossRefGoogle Scholar
  66. 66.
    M.A. Bouhlel, B. Staels, G. Chinetti-Gbaguidi, Peroxisome proliferator-activated receptors--from active regulators of macrophage biology to pharmacological targets in the treatment of cardiovascular disease. J. Intern. Med. 263, 28–42 (2008)PubMedGoogle Scholar
  67. 67.
    L. Luo, M. Liu, Adipose tissue in control of metabolism. J. Endocrinol. 231, R77–R99 (2016)CrossRefGoogle Scholar
  68. 68.
    M. Coelho, T. Oliveira, R. Fernandes, Biochemistry of adipose tissue: an endocrine organ. Arch. Med. Sci. 9, 191–200 (2013)CrossRefGoogle Scholar
  69. 69.
    L.J. van Loon, B.H. Goodpaster, Increased intramuscular lipid storage in the insulin-resistant and endurance-trained state. Pflugers Arch. 451, 606–616 (2006)CrossRefGoogle Scholar
  70. 70.
    B.H. Goodpaster, J. He, S. Watkins, D.E. Kelley, Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J. Clin. Endocrinol. Metab. 86, 5755–5761 (2001)CrossRefGoogle Scholar
  71. 71.
    A.P. Russell, Lipotoxicity: the obese and endurance-trained paradox. Int. J. Obes. Relat. Metab. Disord. 28, S66–S71 (2004)CrossRefGoogle Scholar
  72. 72.
    Z. Guo, L. Zhou, M.D. Jensen, Acute hyperinsulinemia inhibits intramyocellular triglyceride synthesis in high-fat-fed obese rats. J. Lipid Res. 47, 2640–2646 (2006)CrossRefGoogle Scholar
  73. 73.
    Y. Li, S. Xu, X. Zhang, Z. Yi, S. Cichello, Skeletal intramyocellular lipid metabolism and insulin resistance. Biophys. Rep. 1, 90–98 (2015)CrossRefGoogle Scholar
  74. 74.
    M.E. Young, B. Leighton, Fuel oxidation in skeletal muscle is increased by nitric oxide/cGMP--evidence for involvement of cGMP-dependent protein kinase. FEBS Lett. 424, 79–83 (1998)CrossRefGoogle Scholar
  75. 75.
    M.E. Young, G.K. Radda, B. Leighton, Nitric oxide stimulates glucose transport and metabolism in rat skeletal muscle in vitro. Biochem. J. 322, 223–228 (1997)CrossRefGoogle Scholar
  76. 76.
    Y. Higaki, M.F. Hirshman, N. Fujii, L.J. Goodyear, Nitric oxide increases glucose uptake through a mechanism that is distinct from the insulin and contraction pathways in rat skeletal muscle. Diabetes 50, 241–247 (2001)CrossRefGoogle Scholar
  77. 77.
    K. Loughney, J. Taylor, V.A. Florio, 3′,5′-cyclic nucleotide phosphodiesterase 11A: localization in human tissues. Int. J. Impot. Res. 17, 320–325 (2005)CrossRefGoogle Scholar
  78. 78.
    G. Kakik, N.S. Tuzun, S. Durdagi, Investigation of PDE5/PDE6 and PDE5/PDE11 selective potent tadalafil-like PDE5 inhibitors using combination of molecular modeling approaches, molecular fingerprint-based virtual screening protocols and structure-based pharmacophore development. J. Enzyme Inhib. Med. Chem. 32, 311–330 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • F. Marampon
    • 1
  • C. Antinozzi
    • 1
  • C. Corinaldesi
    • 1
    • 2
  • G. B. Vannelli
    • 3
  • E. Sarchielli
    • 3
  • S. Migliaccio
    • 1
  • L. Di Luigi
    • 1
  • A. Lenzi
    • 4
  • C. Crescioli
    • 1
    Email author
  1. 1.Department of Movement, Human and Health SciencesUniversità di Roma “Foro Italico”RomeItaly
  2. 2.Leeds Institute of Rheumatic and Musculoskeletal MedicineUniversity of LeedsLeedsUK
  3. 3.Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
  4. 4.Department of Experimental Medicine“Sapienza” University of RomeRomeItaly

Personalised recommendations