, Volume 57, Issue 1, pp 125–137 | Cite as

Circulating microRNA-1a is a biomarker of Graves’ disease patients with atrial fibrillation

  • Fang Wang
  • Sheng-jie Zhang
  • Xuan Yao
  • Dong-mei Tian
  • Ke-qin Zhang
  • Dun-min She
  • Fei-fan Guo
  • Qi-wei Zhai
  • Hao Ying
  • Ying XueEmail author
Original Article



It has been increasingly suggested that specific microRNAs expression profiles in the circulation and atrial tissue are associated with the susceptibility to atrial fibrillation. Nonetheless, the role of circulating microRNAs in Graves’ disease patients with atrial fibrillation has not yet been well described. The objective of the study was to identify the role of circulating microRNAs as specific biomarkers for the diagnosis of Graves’ disease with atrial fibrillation.


The expression profiles of eight serum microRNAs, which are found to be critical in the pathogenesis of atrial fibrillation, were determined in patients with Graves’ disease with or without atrial fibrillation. MicroRNA expression analysis was performed by real-time PCR in normal control subjects (NC; n = 17), patients with Graves’ disease without atrial fibrillation (GD; n = 29), patients with Graves’ disease with atrial fibrillation (GD + AF; n = 14), and euthyroid patients with atrial fibrillation (AF; n = 22).


Three of the eight serum microRNAs,i.e., miR-1a, miR-26a, and miR-133, had significantly different expression profiles among the four groups. Spearman’s correlation analysis showed that the relative expression level of miR-1a was positively correlated with free triiodothyronine (FT3) and free thyroxine (FT4), and negatively related to thyroid stimulating hormone. Spearman’s correlations analysis also revealed that the level of miR-1a was negatively correlated with a critical echocardiographic parameter (left atrial diameter), which was dramatically increased in GD + AF group compared to GD group. Furthermore, the receiver-operating characteristic curve analysis indicated that, among the eight microRNAs, miR-1a had the largest area under the receiver-operating characteristic curves not only for discriminating between individuals with and without Graves’ disease, but also for predicting the presence of atrial fibrillation in patients with Graves’ disease.


Our findings showed that the levels of serum miR-1a were significantly decreased in GD + AF group compared with GD group, suggesting that serum miR-1a might serve as a novel biomarker for diagnosis of atrial fibrillation in patients with Graves’ disease.


Graves’ disease Thyroid hormone Atrial fibrillation MicroRNA 



This study was supported by the National Natural Science Foundation of China (81400834), Young Talents Training Project of Tongji University (2013KJ092), and a grant of People’s Hospital of Shanghai Putuo District (RYK15-08).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of ethic committees of our hospital and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

12020_2017_1331_MOESM1_ESM.docx (16 kb)
Supplementary Table 1
12020_2017_1331_MOESM2_ESM.docx (14 kb)
Supplementary Table 2
12020_2017_1331_MOESM3_ESM.docx (19 kb)
Supplementary Table 3


  1. 1.
    M. den Hoed, M. Eijgelsheim, T. Esko, B.J. Brundel, D.S. Peal, D.M. Evans, I.M. Nolte, A.V. Segre, H. Holm, R.E. Handsaker, H.J. Westra, T. Johnson, A. Isaacs, J. Yang, A. Lundby, J.H. Zhao, Y.J. Kim, M.J. Go, P. Almgren, M. Bochud, G. Boucher, M.C. Cornelis, D. Gudbjartsson, D. Hadley, P. van der Harst, C. Hayward, M. den Heijer, W. Igl, A.U. Jackson, Z. Kutalik, J. Luan, J.P. Kemp, K. Kristiansson, C. Ladenvall, M. Lorentzon, M.E. Montasser, O.T. Njajou, P.F. O’Reilly, S. Padmanabhan, B. St Pourcain, T. Rankinen, P. Salo, T. Tanaka, N.J. Timpson, V. Vitart, L. Waite, W. Wheeler, W. Zhang, H.H. Draisma, M.F. Feitosa, K.F. Kerr, P.A. Lind, E. Mihailov, N.C. Onland-Moret, C. Song, M.N. Weedon, W. Xie, L. Yengo, D. Absher, C.M. Albert, A. Alonso, D.E. Arking, P.I. de Bakker, B. Balkau, C. Barlassina, P. Benaglio, J.C. Bis, N. Bouatia-Naji, S. Brage, S.J. Chanock, P.S. Chines, M. Chung, D. Darbar, C. Dina, M. Dorr, P. Elliott, S.B. Felix, K. Fischer, C. Fuchsberger, E.J. de Geus, P. Goyette, V. Gudnason, T.B. Harris, A.L. Hartikainen, A.S. Havulinna, S.R. Heckbert, A.A. Hicks, A. Hofman, S. Holewijn, F. Hoogstra-Berends, J.J. Hottenga, M.K. Jensen, A. Johansson, J. Junttila, S. Kaab, B. Kanon, S. Ketkar, K.T. Khaw, J.W. Knowles, A.S. Kooner, J.A. Kors, M. Kumari, L. Milani, P. Laiho, E.G. Lakatta, C. Langenberg, M. Leusink, Y. Liu, R.N. Luben, K.L. Lunetta, S.N. Lynch, M.R. Markus, P. Marques-Vidal, I. Mateo Leach, W.L. McArdle, S.A. McCarroll, S.E. Medland, K.A. Miller, G.W. Montgomery, A.C. Morrison, M. Muller-Nurasyid, P. Navarro, M. Nelis, J.R. O’Connell, C.J. O’Donnell, K.K. Ong, A.B. Newman, A. Peters, O. Polasek, A. Pouta, P.P. Pramstaller, B.M. Psaty, D.C. Rao, S.M. Ring, E.J. Rossin, D. Rudan, S. Sanna, R.A. Scott, J.S. Sehmi, S. Sharp, J.T. Shin, A.B. Singleton, A.V. Smith, N. Soranzo, T.D. Spector, C. Stewart, H.M. Stringham, K.V. Tarasov, A.G. Uitterlinden, L. Vandenput, S.J. Hwang, J.B. Whitfield, C. Wijmenga, S.H. Wild, G. Willemsen, J.F. Wilson, J.C. Witteman, A. Wong, Q. Wong, Y. Jamshidi, P. Zitting, J.M. Boer, D.I. Boomsma, I.B. Borecki, C.M. van Duijn, U. Ekelund, N.G. Forouhi, P. Froguel, A. Hingorani, E. Ingelsson, M. Kivimaki, R.A. Kronmal, D. Kuh, L. Lind, N.G. Martin, B.A. Oostra, N.L. Pedersen, T. Quertermous, J.I. Rotter, Y.T. van der Schouw, W.M. Verschuren, M. Walker, D. Albanes, D.O. Arnar, T.L. Assimes, S. Bandinelli, M. Boehnke, R.A. de Boer, C. Bouchard, W.L. Caulfield, J.C. Chambers, G. Curhan, D. Cusi, J. Eriksson, L. Ferrucci, W.H. van Gilst, N. Glorioso, J. de Graaf, L. Groop, U. Gyllensten, W.C. Hsueh, F.B. Hu, H.V. Huikuri, D.J. Hunter, C. Iribarren, B. Isomaa, M.R. Jarvelin, A. Jula, M. Kahonen, L.A. Kiemeney, M.M. van der Klauw, J.S. Kooner, P. Kraft, L. Iacoviello, T. Lehtimaki, M.L. Lokki, B.D. Mitchell, G. Navis, M.S. Nieminen, C. Ohlsson, N.R. Poulter, L. Qi, O.T. Raitakari, E.B. Rimm, J.D. Rioux, F. Rizzi, I. Rudan, V. Salomaa, P.S. Sever, D.C. Shields, A.R. Shuldiner, J. Sinisalo, A.V. Stanton, R.P. Stolk, D.P. Strachan, J.C. Tardif, U. Thorsteinsdottir, J. Tuomilehto, D.J. van Veldhuisen, J. Virtamo, J. Viikari, P. Vollenweider, G. Waeber, E. Widen, Y.S. Cho, J.V. Olsen, P.M. Visscher, C. Willer, L. Franke, B.C. Global, C.A. Consortium, J. Erdmann, J.R. Thompson, P.G. Consortium, A. Pfeufer, Q.G. Consortium, N. Sotoodehnia, Q.-I. Consortium, C. Newton-Cheh, C.-A. Consortium, P.T. Ellinor, B.H. Stricker, A. Metspalu, M. Perola, J.S. Beckmann, G.D. Smith, K. Stefansson, N.J. Wareham, P.B. Munroe, O.C. Sibon, D.J. Milan, H. Snieder, N.J. Samani, R.J. Loos, Identification of heart rate-associated loci and their effects on cardiac conduction and rhythm disorders. Nat. Genet. 45(6), 621–631 (2013)CrossRefGoogle Scholar
  2. 2.
    C.T. Sawin, A. Geller, P.A. Wolf, A.J. Belanger, E. Baker, P. Bacharach, P.W. Wilson, E.J. Benjamin, R.B. D’Agostino, Low serum thyrotropin concentrations as a risk factor for atrial fibrillation in older persons. N. Engl. J. Med. 331(19), 1249–1252 (1994)CrossRefGoogle Scholar
  3. 3.
    J. Heeringa, E.H. Hoogendoorn, W.M. van der Deure, A. Hofman, R.P. Peeters, W.C. Hop, M. den Heijer, T.J. Visser, J.C. Witteman, High-normal thyroid function and risk of atrial fibrillation: the Rotterdam study. Arch. Intern. Med. 168(20), 2219–2224 (2008)CrossRefGoogle Scholar
  4. 4.
    M.D. Gammage, J.V. Parle, R.L. Holder, L.M. Roberts, F.D. Hobbs, S. Wilson, M.C. Sheppard, J.A. Franklyn, Association between serum free thyroxine concentration and atrial fibrillation. Arch. Intern. Med. 167(9), 928–934 (2007)CrossRefGoogle Scholar
  5. 5.
    X. Luo, B. Yang, S. Nattel, MicroRNAs and atrial fibrillation: mechanisms and translational potential. Nat. Rev. Cardiol. 12(2), 80–90 (2015)CrossRefGoogle Scholar
  6. 6.
    G. Santulli, G. Iaccarino, N. De Luca, B. Trimarco, G. Condorelli, Atrial fibrillation and microRNAs. Front. Physiol. 5, 15 (2014)PubMedCentralCrossRefGoogle Scholar
  7. 7.
    R. Liu, X. Ma, L. Xu, D. Wang, X. Jiang, W. Zhu, B. Cui, G. Ning, D. Lin, S. Wang, Differential microRNA expression in peripheral blood mononuclear cells from Graves’ disease patients. J. Clin. Endocrinol. Metab. 97(6), E968–E972 (2012)CrossRefGoogle Scholar
  8. 8.
    R.M. O’Connell, D.S. Rao, A.A. Chaudhuri, D. Baltimore, Physiological and pathological roles for microRNAs in the immune system. Nat. Rev. Immunol. 10(2), 111–122 (2010)CrossRefGoogle Scholar
  9. 9.
    M. Hulsmans, P. Sinnaeve, B. Van der Schueren, C. Mathieu, S. Janssens, P. Holvoet, Decreased miR-181a expression in monocytes of obese patients is associated with the occurrence of metabolic syndrome and coronary artery disease. J. Clin. Endocrinol. Metab. 97(7), E1213–E1218 (2012)CrossRefGoogle Scholar
  10. 10.
    D.P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2), 281–297 (2004)Google Scholar
  11. 11.
    S. Fichtlscherer, S. De Rosa, H. Fox, T. Schwietz, A. Fischer, C. Liebetrau, M. Weber, C.W. Hamm, T. Roxe, M. Muller-Ardogan, A. Bonauer, A.M. Zeiher, S. Dimmeler, Circulating microRNAs in patients with coronary artery disease. Circ. Res. 107(5), 677–684 (2010)CrossRefGoogle Scholar
  12. 12.
    M. Karakas, C. Schulte, S. Appelbaum, F. Ojeda, K.J. Lackner, T. Munzel, R.B. Schnabel, S. Blankenberg, T. Zeller Circulating microRNAs strongly predict cardiovascular death in patients with coronary artery disease-results from the large AtheroGene study. Eur. Heart. J. 38(7), 516–523 (2017)Google Scholar
  13. 13.
    M.A. Cortez, C. Bueso-Ramos, J. Ferdin, G. Lopez-Berestein, A.K. Sood, G.A. Calin, MicroRNAs in body fluids--the mix of hormones and biomarkers. Nat. Rev. Clin. Oncol. 8(8), 467–477 (2011)PubMedCentralCrossRefGoogle Scholar
  14. 14.
    P.S. Mitchell, R.K. Parkin, E.M. Kroh, B.R. Fritz, S.K. Wyman, E.L. Pogosova-Agadjanyan, A. Peterson, J. Noteboom, K.C. O’Briant, A. Allen, D.W. Lin, N. Urban, C.W. Drescher, B.S. Knudsen, D.L. Stirewalt, R. Gentleman, R.L. Vessella, P.S. Nelson, D.B. Martin, M. Tewari, Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. U. S. A. 105(30), 10513–10518 (2008)PubMedCentralCrossRefGoogle Scholar
  15. 15.
    Y. Zhao, J.F. Ransom, A. Li, V. Vedantham, M. von Drehle, A.N. Muth, T. Tsuchihashi, M.T. McManus, R.J. Schwartz, D. Srivastava, Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129(2), 303–317 (2007)CrossRefGoogle Scholar
  16. 16.
    O. Adam, B. Lohfelm, T. Thum, S.K. Gupta, S.L. Puhl, H.J. Schafers, M. Bohm, U. Laufs, Role of miR-21 in the pathogenesis of atrial fibrosis. Basic. Res. Cardiol. 107(5), 278 (2012)CrossRefGoogle Scholar
  17. 17.
    Z. Girmatsion, P. Biliczki, A. Bonauer, G. Wimmer-Greinecker, M. Scherer, A. Moritz, A. Bukowska, A. Goette, S. Nattel, S.H. Hohnloser, J.R. Ehrlich, Changes in microRNA-1 expression and IK1 up-regulation in human atrial fibrillation. Heart. Rhythm. 6(12), 1802–1809 (2009)CrossRefGoogle Scholar
  18. 18.
    X. Luo, Z. Pan, H. Shan, J. Xiao, X. Sun, N. Wang, H. Lin, L. Xiao, A. Maguy, X.Y. Qi, Y. Li, X. Gao, D. Dong, Y. Zhang, Y. Bai, J. Ai, L. Sun, H. Lu, X.Y. Luo, Z. Wang, Y. Lu, B. Yang, S. Nattel, MicroRNA-26 governs profibrillatory inward-rectifier potassium current changes in atrial fibrillation. J. Clin. Invest. 123(5), 1939–1951 (2013)PubMedCentralCrossRefGoogle Scholar
  19. 19.
    K. Dawson, R. Wakili, B. Ordog, S. Clauss, Y. Chen, Y. Iwasaki, N. Voigt, X.Y. Qi, M.F. Sinner, D. Dobrev, S. Kaab, S. Nattel, MicroRNA29: a mechanistic contributor and potential biomarker in atrial fibrillation. Circulation. 127(14), 1466–1475 (2013). 1475e1461-1428CrossRefGoogle Scholar
  20. 20.
    R.F. Duisters, A.J. Tijsen, B. Schroen, J.J. Leenders, V. Lentink, I. van der Made, V. Herias, R.E. van Leeuwen, M.W. Schellings, P. Barenbrug, J.G. Maessen, S. Heymans, Y.M. Pinto, E.E. Creemers, miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ. Res. 104(2), 170–178 (2009). 176p following 178CrossRefGoogle Scholar
  21. 21.
    N. Cooley, M.J. Cowley, R.C. Lin, S. Marasco, C. Wong, D.M. Kaye, A.M. Dart, E.A. Woodcock, Influence of atrial fibrillation on microRNA expression profiles in left and right atria from patients with valvular heart disease. Physiol. Genomics. 44(3), 211–219 (2012)CrossRefGoogle Scholar
  22. 22.
    Y. Lu, Y. Zhang, N. Wang, Z. Pan, X. Gao, F. Zhang, Y. Zhang, H. Shan, X. Luo, Y. Bai, L. Sun, W. Song, C. Xu, Z. Wang, B. Yang, MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation. Circulation. 122(23), 2378–2387 (2010)CrossRefGoogle Scholar
  23. 23.
    T.Y. Ling, X.L. Wang, Q. Chai, T.W. Lau, C.M. Koestler, S.J. Park, R.C. Daly, K.L. Greason, J. Jen, L.Q. Wu, W.F. Shen, W.K. Shen, Y.M. Cha, H.C. Lee, Regulation of the SK3 channel by microRNA-499--potential role in atrial fibrillation. Heart. Rhythm. 10(7), 1001–1009 (2013)PubMedCentralCrossRefGoogle Scholar
  24. 24.
    C. Bernecker, L. Lenz, M.S. Ostapczuk, S. Schinner, H. Willenberg, M. Ehlers, S. Vordenbaumen, J. Feldkamp, M. Schott, MicroRNAs miR-146a1, miR-155_2, and miR-200a1 are regulated in autoimmune thyroid diseases. Thyroid. 22(12), 1294–1295 (2012)CrossRefGoogle Scholar
  25. 25.
    European Heart Rhythm, A., European Association for Cardio-Thoracic, S., A.J. Camm, P. Kirchhof, G.Y. Lip, U. Schotten, I. Savelieva, S. Ernst, I.C. Van Gelder, N. Al-Attar, G. Hindricks, B. Prendergast, H. Heidbuchel, O. Alfieri, A. Angelini, D. Atar, P. Colonna, R. De Caterina, J. De Sutter, A. Goette, B. Gorenek, M. Heldal, S.H. Hohloser, P. Kolh, J.Y. Le Heuzey, P. Ponikowski, F.H. Rutten, Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Eur. Heart. J. 31(19), 2369–2429 (2010)CrossRefGoogle Scholar
  26. 26.
    N. Hakimzadeh, A.Y. Nossent, A.M. van der Laan, S.H. Schirmer, M.W. de Ronde, S.J. Pinto-Sietsma, N. van Royen, P.H. Quax, I.E. Hoefer, J.J. Piek, Circulating MicroRNAs Characterizing Patients with Insufficient Coronary Collateral Artery Function. PLoS ONE 10(9), e0137035 (2015)PubMedCentralCrossRefGoogle Scholar
  27. 27.
    N.S. Lai, D.G. Wu, X.G. Fang, Y.C. Lin, S.S. Chen, Z.B. Li, S.S. Xu, Serum microRNA-210 as a potential noninvasive biomarker for the diagnosis and prognosis of glioma. Br. J. Cancer. 112(7), 1241–1246 (2015)PubMedCentralCrossRefGoogle Scholar
  28. 28.
    M. Xiang, Y. Zeng, R. Yang, H. Xu, Z. Chen, J. Zhong, H. Xie, Y. Xu, X. Zeng, U6 is not a suitable endogenous control for the quantification of circulating microRNAs. Biochem. Biophys. Res. Commun. 454(1), 210–214 (2014)CrossRefGoogle Scholar
  29. 29.
    X. Zhang, S. Shao, H. Geng, Y. Yu, C. Wang, Z. Liu, C. Yu, X. Jiang, Y. Deng, L. Gao, J. Zhao, Expression profiles of six circulating microRNAs critical to atherosclerosis in patients with subclinical hypothyroidism: a clinical study. J. Clin. Endocrinol. Metab. 99(5), E766–E774 (2014)CrossRefGoogle Scholar
  30. 30.
    H. Wang, W. Peng, X. Ouyang, W. Li, Y. Dai, Circulating microRNAs as candidate biomarkers in patients with systemic lupus erythematosus. Transl. Res. 160(3), 198–206 (2012)CrossRefGoogle Scholar
  31. 31.
    Y. Shao, H. Ren, C. Lv, X. Ma, C. Wu, Q. Wang, Changes of serum Mir-217 and the correlation with the severity in type 2 diabetes patients with different stages of diabetic kidney disease. Endocrine 55(1), 130–138 (2017)CrossRefGoogle Scholar
  32. 32.
    L. Jiang, J. Huang, Y. Chen, Y. Yang, R. Li, Y. Li, X. Chen, D. Yang, Identification of several circulating microRNAs from a genome-wide circulating microRNA expression profile as potential biomarkers for impaired glucose metabolism in polycystic ovarian syndrome. Endocrine 53(1), 280–290 (2016)CrossRefGoogle Scholar
  33. 33.
    M. Pelloni, G. Coltrinari, D. Paoli, F. Pallotti, F. Lombardo, A. Lenzi, L. Gandini Differential expression of miRNAs in the seminal plasma and serum of testicular cancer patients. Endocrine (2016). [Epub ahead of print]. doi: 10.1007/s12020-016-1150-z CrossRefGoogle Scholar
  34. 34.
    L. Shen, F. Huang, L. Ye, W. Zhu, X. Zhang, S. Wang, W. Wang, G. Ning, Circulating microRNA predicts insensitivity to glucocorticoid therapy in Graves’ ophthalmopathy. Endocrine 49(2), 445–456 (2015)CrossRefGoogle Scholar
  35. 35.
    D.D. McManus, K. Tanriverdi, H. Lin, N. Esa, M. Kinno, D. Mandapati, S. Tam, O.N. Okike, P.T. Ellinor, J.F. Keaney Jr., J.K. Donahue, E.J. Benjamin, J.E. Freedman, Plasma microRNAs are associated with atrial fibrillation and change after catheter ablation (the miRhythm study). Heart. Rhythm. 12(1), 3–10 (2015)CrossRefGoogle Scholar
  36. 36.
    Z. Liu, C. Zhou, Y. Liu, S. Wang, P. Ye, X. Miao, J. Xia, The expression levels of plasma micoRNAs in atrial fibrillation patients. PLoS ONE 7(9), e44906 (2012)PubMedCentralCrossRefGoogle Scholar
  37. 37.
    Y. Goren, E. Meiri, C. Hogan, H. Mitchell, D. Lebanony, N. Salman, J.E. Schliamser, O. Amir, Relation of reduced expression of MiR-150 in platelets to atrial fibrillation in patients with chronic systolic heart failure. Am. J. Cardiol. 113(6), 976–981 (2014)CrossRefGoogle Scholar
  38. 38.
    T. Liu, S. Zhong, F. Rao, Y. Xue, Z. Qi, S. Wu, Catheter ablation restores decreased plasma miR-409-3p and miR-432 in atrial fibrillation patients. Europace. 18(1), 92–99 (2016)CrossRefGoogle Scholar
  39. 39.
    S. Fazio, E.A. Palmieri, G. Lombardi, B. Biondi, Effects of thyroid hormone on the cardiovascular system. Recent. Prog. Horm. Res. 59, 31–50 (2004)CrossRefGoogle Scholar
  40. 40.
    W.H. Dillmann, Biochemical basis of thyroid hormone action in the heart. Am. J. Med. 88(6), 626–630 (1990)CrossRefGoogle Scholar
  41. 41.
    M. Lagos-Quintana, R. Rauhut, A. Yalcin, J. Meyer, W. Lendeckel, T. Tuschl, Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12(9), 735–739 (2002)CrossRefGoogle Scholar
  42. 42.
    P.K. Rao, Y. Toyama, H.R. Chiang, S. Gupta, M. Bauer, R. Medvid, F. Reinhardt, R. Liao, M. Krieger, R. Jaenisch, H.F. Lodish, R. Blelloch, Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. Circ. Res. 105(6), 585–594 (2009)PubMedCentralCrossRefGoogle Scholar
  43. 43.
    D. Terentyev, A.E. Belevych, R. Terentyeva, M.M. Martin, G.E. Malana, D.E. Kuhn, M. Abdellatif, D.S. Feldman, T.S. Elton, S. Gyorke, miR-1 overexpression enhances Ca(2+) release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56alpha and causing CaMKII-dependent hyperphosphorylation of RyR2. Circ. Res. 104(4), 514–521 (2009)PubMedCentralCrossRefGoogle Scholar
  44. 44.
    Y. Lu, S. Hou, D. Huang, X. Luo, J. Zhang, J. Chen, W. Xu, Expression profile analysis of circulating microRNAs and their effects on ion channels in Chinese atrial fibrillation patients. Int. J. Clin. Exp. Med. 8(1), 845–853 (2015)PubMedCentralPubMedGoogle Scholar
  45. 45.
    B. Yang, H. Lin, J. Xiao, Y. Lu, X. Luo, B. Li, Y. Zhang, C. Xu, Y. Bai, H. Wang, G. Chen, Z. Wang, The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat. Med. 13(4), 486–491 (2007)CrossRefGoogle Scholar
  46. 46.
    X. Jia, S. Zheng, X. Xie, Y. Zhang, W. Wang, Z. Wang, Y. Zhang, J. Wang, M. Gao, Y. Hou, MicroRNA-1 accelerates the shortening of atrial effective refractory period by regulating KCNE1 and KCNB2 expression: an atrial tachypacing rabbit model. PLoS ONE 8(12), e85639 (2013)PubMedCentralCrossRefGoogle Scholar
  47. 47.
    F. Stillitano, G. Lonardo, G. Giunti, M. Del Lungo, R. Coppini, V. Spinelli, L. Sartiani, C. Poggesi, A. Mugelli, E. Cerbai, Chronic atrial fibrillation alters the functional properties of If in the human atrium. J. Cardiovasc. Electrophysiol. 24(12), 1391–1400 (2013)CrossRefGoogle Scholar
  48. 48.
    H.D. Yu, S. Xia, C.Q. Zha, S.B. Deng, J.L. Du, Q. She, Spironolactone Regulates HCN Protein Expression Through Micro-RNA-1 in Rats With Myocardial Infarction. J. Cardiovasc. Pharmacol. 65(6), 587–592 (2015)PubMedCentralCrossRefGoogle Scholar
  49. 49.
    Y.D. Li, Y.F. Hong, Y. Yusufuaji, B.P. Tang, X.H. Zhou, G.J. Xu, J.X. Li, L. Sun, J.H. Zhang, Q. Xin, J. Xiong, Y.T. Ji, Y. Zhang, Altered expression of hyperpolarization-activated cyclic nucleotide-gated channels and microRNA-1 and -133 in patients with age-associated atrial fibrillation. Mol. Med. Rep. 12(3), 3243–3248 (2015)PubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Fang Wang
    • 1
  • Sheng-jie Zhang
    • 2
  • Xuan Yao
    • 2
  • Dong-mei Tian
    • 1
  • Ke-qin Zhang
    • 3
  • Dun-min She
    • 3
  • Fei-fan Guo
    • 4
  • Qi-wei Zhai
    • 4
  • Hao Ying
    • 2
  • Ying Xue
    • 3
    Email author
  1. 1.Department of EndocrinologyPeople’s Hospital of Shanghai Putuo DistrictShanghaiChina
  2. 2.Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological SciencesUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
  3. 3.Department of EndocrinologyTongji Hospital of Tongji University, Tongji University School of MedicineShanghaiChina
  4. 4.Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological SciencesUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina

Personalised recommendations