, Volume 57, Issue 1, pp 115–124 | Cite as

The relationship of 19 functional polymorphisms in iodothyronine deiodinase and psychological well-being in hypothyroid patients

  • Yoon Young Cho
  • Hye Jeong Kim
  • Hye Won Jang
  • Tae Hyuk Kim
  • Chang-Seok Ki
  • Sun Wook Kim
  • Jae Hoon ChungEmail author
Original Article



Levothyroxine supplementation is insufficient for the management of one tenth of patients with hypothyroidism. Iodothyronine deiodinases have been suggested to play a role in residual hypothyroid symptoms of these patients by controlling local thyroid hormone homeostasis. Previous research has suggested a relationship between commonly inherited variations in type 2 iodothyronine deiodinase and impaired well-being. We evaluated the prevalence of iodothyronine deiodinase genotypes and their association with psychological well-being in the Korean hypothyroid population.


A prospective observational study. We enrolled 196 hypothyroid subjects (136 chronic autoimmune thyroiditis and 60 thyroid cancer) and assessed baseline well-being using six validated questionnaires. Genotyping was conducted for 19 single nucleotide polymorphisms in type 1, 2, and 3 iodothyronine deiodinase using Sequenom MassARRAY matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in all patients.


Frequencies of iodothyronine deiodinase genotypes and well-being scores were not different in hypothyroid subjects according to their disease types. Minor genotypes of a few iodothyronine deiodinase 1 variants (rs11206244, rs2294512, and rs4926616) were associated with reduced psychological well-being. However, iodothyronine deiodinase 2 and 3 variants had no effect on baseline well-being.


Minor variations in iodothyronine deiodinase 1 were associated with decreased well-being in the Korean hypothyroid population, whereas iodothyronine deiodinase 2 and 3 were not. Due to controversial results among different ethnicities, further studies to clarify the effects of iodothyronine deiodinase polymorphisms on psychological well-being are warranted in hypothyroid individuals.


Iodothyronine deiodinase Polymorphism Hypothyroidism Psychological well-being 



We thank Ponnusamy Saravanan for use of the Thyroid Symptom Questionnaire.


This study was funded by the Korean Foundation for Cancer Research (grant number CB-2011-03-02).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

The study was approved by the institutional research committee and informed consent was obtained from all individual participants included in the study.


  1. 1.
    M.P. Vanderpump, The epidemiology of thyroid disease. Br. Med. Bull. 99, 39–51 (2011). doi: 10.1093/bmb/ldr030 CrossRefPubMedGoogle Scholar
  2. 2.
    G.H. Seo, J.H. Chung, Incidence and prevalence of overt hypothyroidism and causative diseases in Korea as determined using claims data provided by the health insurance review and assessment service. Endocrinol. Metab. 30, 288–296 (2015). doi: 10.3803/EnM.2015.30.3.288 CrossRefGoogle Scholar
  3. 3.
    J. Jonklaas, A.C. Bianco, A.J. Bauer, K.D. Burman, A.R. Cappola, F.S. Celi, D.S. Cooper, B.W. Kim, R.P. Peeters, M.S. Rosenthal, A.M. Sawka, Guidelines for the treatment of hypothyroidism: prepared by the american thyroid association task force on thyroid hormone replacement. Thyroid. 24, 1670–1751 (2014). doi: 10.1089/thy.2014.0028 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    W.M. Wiersinga, L. Duntas, V. Fadeyev, B. Nygaard, M.P. Vanderpump, 2012 ETA guidelines: the use of L-T4+L-T3 in the treatment of hypothyroidism. Eur. Thyroid. J. 1, 55–71 (2012). doi: 10.1159/000339444 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    G.J. Canaris, N.R. Manowitz, G. Mayor, E.C. Ridgway, The Colorado thyroid disease prevalence study. Arch. Intern. Med. 160, 526–534 (2000)CrossRefGoogle Scholar
  6. 6.
    B. Gereben, E.A. McAninch, M.O. Ribeiro, A.C. Bianco, Scope and limitations of iodothyronine deiodinases in hypothyroidism. Nat. Rev. Endocrinol. 11, 642–652 (2015). doi: 10.1038/nrendo.2015.155 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    L.E. Braverman, S.H. Ingbar, K. Sterling, Conversion of thyroxine (T4) to triiodothyronine (T3) in athyreotic human subjects. J. Clin. Invest. 49, 855–864 (1970). doi: 10.1172/jci106304 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    R. Bunevicius, G. Kazanavicius, R. Zalinkevicius, A.J. Prange Jr., Effects of thyroxine as compared with thyroxine plus triiodothyronine in patients with hypothyroidism. N. Engl. J. Med. 340, 424–429 (1999). doi: 10.1056/nejm199902113400603 CrossRefPubMedGoogle Scholar
  9. 9.
    B. Nygaard, E.W. Jensen, J. Kvetny, A. Jarlov, J. Faber, Effect of combination therapy with thyroxine (T4) and 3,5,3’-triiodothyronine versus T4 monotherapy in patients with hypothyroidism, a double-blind, randomised cross-over study. Eur. J. Endocrinol. 161, 895–902 (2009). doi: 10.1530/eje-09-0542 CrossRefPubMedGoogle Scholar
  10. 10.
    P. Saravanan, D.J. Simmons, R. Greenwood, T.J. Peters, C.M. Dayan, Partial substitution of thyroxine (T4) with tri-iodothyronine in patients on T4 replacement therapy: results of a large community-based randomized controlled trial. J. Clin. Endocrinol. Metab. 90, 805–812 (2005). doi: 10.1210/jc.2004-1672 CrossRefPubMedGoogle Scholar
  11. 11.
    M. Valizadeh, M.R. Seyyed-Majidi, H. Hajibeigloo, S. Momtazi, N. Musavinasab, M.R. Hayatbakhsh, Efficacy of combined levothyroxine and liothyronine as compared with levothyroxine monotherapy in primary hypothyroidism: a randomized controlled trial. Endocr. Res. 34, 80–89 (2009). doi: 10.1080/07435800903156340 CrossRefPubMedGoogle Scholar
  12. 12.
    V. Panicker, P. Saravanan, B. Vaidya, J. Evans, A.T. Hattersley, T.M. Frayling, C.M. Dayan, Common variation in the DIO2 gene predicts baseline psychological well-being and response to combination thyroxine plus triiodothyronine therapy in hypothyroid patients. J. Clin. Endocrinol. Metab. 94, 1623–1629 (2009). doi: 10.1210/jc.2008-1301 CrossRefPubMedGoogle Scholar
  13. 13.
    R.A. Philibert, S.R. Beach, T.D. Gunter, A.A. Todorov, G.H. Brody, M. Vijayendran, L. Elliott, N. Hollenbeck, D. Russell, C. Cutrona, The relationship of deiodinase 1 genotype and thyroid function to lifetime history of major depression in three independent populations. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 156B, 593–599 (2011). doi: 10.1002/ajmg.b.31200 CrossRefPubMedGoogle Scholar
  14. 14.
    B.R. Haugen, E.K. Alexander, K.C. Bible, G.M. Doherty, S.J. Mandel, Y.E. Nikiforov, F. Pacini, G.W. Randolph, A.M. Sawka, M. Schlumberger, K.G. Schuff, S.I. Sherman, J.A. Sosa, D.L. Steward, R.M. Tuttle, L. Wartofsky, 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the american thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 26, 1–133 (2016). doi: 10.1089/thy.2015.0020 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    H. Jung, C.S. Ki, J.W. Kim, E.S. Kang, Frequencies of 10 autosomal minor histocompatibility antigens in Korean population and estimated disparities in unrelated hematopoietic stem cell transplantation. Tissue. Antigens. 79, 42–49 (2012). doi: 10.1111/j.1399-0039.2011.01810.x CrossRefPubMedGoogle Scholar
  16. 16.
    J.E. Ware Jr., C.D. Sherbourne, The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med. Care. 30, 473–483 (1992)CrossRefGoogle Scholar
  17. 17.
    Y.S. Rhee, D.O. Shin, K.M. Lee, H.J. Yu, J.W. Kim, S.O. Kim, R. Lee, Y.O. Lee, N.S. Kim, Y.H. Yun, Korean version of the caregiver quality of life index-cancer (CQOLC-K). Qual. Life. Res. 14, 899–904 (2005)CrossRefGoogle Scholar
  18. 18.
    J.E. Ware Jr., B. Gandek, M. Kosinski, N.K. Aaronson, G. Apolone, J. Brazier, M. Bullinger, S. Kaasa, A. Leplege, L. Prieto, M. Sullivan, K. Thunedborg, The equivalence of SF-36 summary health scores estimated using standard and country-specific algorithms in 10 countries: results from the IQOLA Project. International Quality of Life Assessment. J. Clin. Epidemiol. 51, 1167–1170 (1998)CrossRefGoogle Scholar
  19. 19.
    A.S. Zigmond, R.P. Snaith, The hospital anxiety and depression scale. Acta. Psychiatr. Scand. 67, 361–370 (1983)CrossRefGoogle Scholar
  20. 20.
    S.M. Oh, K.J. Min, D.B. Park, A study on the standardization of the hospital anxiety and depression scale for Koreans: a comparison of normal, depressed and anxious groups. J. Korean Neuropsychiatr. Assoc. 38, 289–296 (1999)Google Scholar
  21. 21.
    T.R. Mendoza, X.S. Wang, C.S. Cleeland, M. Morrissey, B.A. Johnson, J.K. Wendt, S.L. Huber, The rapid assessment of fatigue severity in cancer patients: use of the brief fatigue inventory. Cancer. 85, 1186–1196 (1999)CrossRefGoogle Scholar
  22. 22.
    Y.H. Yun, X.S. Wang, J.S. Lee, J.W. Roh, C.G. Lee, W.S. Lee, K.S. Lee, S.M. Bang, T.R. Mendoza, C.S. Cleeland, Validation study of the korean version of the brief fatigue inventory. J. Pain. Symptom. Manage. 29, 165–172 (2005). doi: 10.1016/j.jpainsymman.2004.04.013 CrossRefPubMedGoogle Scholar
  23. 23.
    P. Saravanan, W.F. Chau, N. Roberts, K. Vedhara, R. Greenwood, C.M. Dayan, Psychological well-being in patients on ‘adequate’ doses of l-thyroxine: results of a large, controlled community-based questionnaire study. Clin. Endocrinol. 57, 577–585 (2002)CrossRefGoogle Scholar
  24. 24.
    V.A. Galton, E.T. Wood, E.A. StGermain, C.A. Withrow, G. Aldrich, G.M. StGermain, A.S. Clark, D.L. St Germain, Thyroid hormone homeostasis and action in the type 2 deiodinase-deficient rodent brain during development. Endocrinology. 148, 3080–3088 (2007). doi: 10.1210/en.2006-1727 CrossRefPubMedGoogle Scholar
  25. 25.
    M. Bauer, A. Heinz, P.C. Whybrow, Thyroid hormones, serotonin and mood: of synergy and significance in the adult brain. Mol. Psychiatry. 7, 140–156 (2002). doi: 10.1038/ CrossRefPubMedGoogle Scholar
  26. 26.
    E.A. McAninch, S. Jo, N.Z. Preite, E. Farkas, P. Mohacsik, C. Fekete, P. Egri, B. Gereben, Y. Li, Y. Deng, M.E. Patti, C. Zevenbergen, R.P. Peeters, D.C. Mash, A.C. Bianco, Prevalent polymorphism in thyroid hormone-activating enzyme leaves a genetic fingerprint that underlies associated clinical syndromes. J. Clin. Endocrinol. Metab. 100, 920–933 (2015). doi: 10.1210/jc.2014-4092 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    M. Torlontano, C. Durante, I. Torrente, U. Crocetti, G. Augello, G. Ronga, T. Montesano, L. Travascio, A. Verrienti, R. Bruno, S. Santini, P. D’Arcangelo, B. Dallapiccola, S. Filetti, V. Trischitta, Type 2 deiodinase polymorphism (threonine 92 alanine) predicts L-thyroxine dose to achieve target thyrotropin levels in thyroidectomized patients. J. Clin. Endocrinol. Metab. 93, 910–913 (2008). doi: 10.1210/jc.2007-1067 CrossRefPubMedGoogle Scholar
  28. 28.
    M.G. Castagna, M. Dentice, S. Cantara, R. Ambrosio, F. Maino, T. Porcelli, C. Marzocchi, C. Garbi, F. Pacini, D. Salvatore, DIO2 Thr92Ala reduces deiodinase-2 activity and serum-T3 levels in thyroid-deficient patients. J. Clin. Endocrinol. Metab. (2017). doi: 10.1210/jc.2016-2587 CrossRefGoogle Scholar
  29. 29.
    H.J. Wouters, H.C. van Loon, M.M. van der Klauw, M.F. Elderson, S.N. Slagter, A.M. Kobold, I.P. Kema, T.P. Links, J.V. van Vliet-Ostaptchouk, B.H. Wolffenbuttel, No effect of the Thr92Ala polymorphism of deiodinase-2 on thyroid hormone parameters, health-related quality of life, and cognitive functioning in a large population-based cohort study. Thyroid. 27, 147–155 (2017). doi: 10.1089/thy.2016.0199 CrossRefPubMedGoogle Scholar
  30. 30.
    W.M. van der Deure, P.S. Hansen, R.P. Peeters, A.G. Uitterlinden, M. Fenger, K.O. Kyvik, L. Hegedus, T.J. Visser, The effect of genetic variation in the type 1 deiodinase gene on the interindividual variation in serum thyroid hormone levels: an investigation in healthy Danish twins. Clin. Endocrinol. 70, 954–960 (2009). doi: 10.1111/j.1365-2265.2008.03420.x CrossRefGoogle Scholar
  31. 31.
    J.M. Dora, W.E. Machado, J. Rheinheimer, D. Crispim, A.L. Maia, Association of the type 2 deiodinase Thr92Ala polymorphism with type 2 diabetes: case-control study and meta-analysis. Eur. J. Endocrinol. 163, 427–434 (2010). doi: 10.1530/eje-10-0419 CrossRefPubMedGoogle Scholar
  32. 32.
    B.C. Appelhof, R.P. Peeters, W.M. Wiersinga, T.J. Visser, E.M. Wekking, J. Huyser, A.H. Schene, J.G. Tijssen, W.J. Hoogendijk, E. Fliers, Polymorphisms in type 2 deiodinase are not associated with well-being, neurocognitive functioning, and preference for combined thyroxine/3,5,3’-triiodothyronine therapy. J. Clin. Endocrinol. Metab. 90, 6296–6299 (2005). doi: 10.1210/jc.2005-0451 CrossRefPubMedGoogle Scholar
  33. 33.
    R. Cooper-Kazaz, W.M. van der Deure, M. Medici, T.J. Visser, A. Alkelai, B. Glaser, R.P. Peeters, B. Lerer, Preliminary evidence that a functional polymorphism in type 1 deiodinase is associated with enhanced potentiation of the antidepressant effect of sertraline by triiodothyronine. J. Affect. Disord. 116, 113–116 (2009). doi: 10.1016/j.jad.2008.10.019 CrossRefPubMedGoogle Scholar
  34. 34.
    E. Galecka, M. Talarowska, M. Maes, K.P. Su, P. Gorski, J. Szemraj, Polymorphisms of iodothyronine deiodinases (DIO1, DIO3) genes are not associated with recurrent depressive disorder. Pharmacol. Rep. 68, 913–917 (2016). doi: 10.1016/j.pharep.2016.04.019 CrossRefPubMedGoogle Scholar
  35. 35.
    V. Panicker, C. Cluett, B. Shields, A. Murray, K.S. Parnell, J.R. Perry, M.N. Weedon, A. Singleton, D. Hernandez, J. Evans, C. Durant, L. Ferrucci, D. Melzer, P. Saravanan, T.J. Visser, G. Ceresini, A.T. Hattersley, B. Vaidya, C.M. Dayan, T.M. Frayling, A common variation in deiodinase 1 gene DIO1 is associated with the relative levels of free thyroxine and triiodothyronine. J. Clin. Endocrinol. Metab. 93, 3075–3081 (2008). doi: 10.1210/jc.2008-0397 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    R. Peeters, C. Fekete, C. Goncalves, G. Legradi, H.M. Tu, J.W. Harney, A.C. Bianco, R.M. Lechan, P.R. Larsen, Regional physiological adaptation of the central nervous system deiodinases to iodine deficiency. Am. J. Physiol. Endocrinol. Metab. 281, E54–E61 (2001)CrossRefGoogle Scholar
  37. 37.
    F.A. Verburg, J.W. Smit, I. Grelle, T.J. Visser, R.P. Peeters, C. Reiners, Changes within the thyroid axis after long-term TSH-suppressive levothyroxine therapy. Clin. Endocrinol. 76, 577–581 (2012). doi: 10.1111/j.1365-2265.2011.04262.x CrossRefGoogle Scholar
  38. 38.
    B. He, J. Li, G. Wang, W. Ju, Y. Lu, Y. Shi, L. He, N. Zhong, Association of genetic polymorphisms in the type II deiodinase gene with bipolar disorder in a subset of Chinese population. Prog. Neuropsychopharmacol. Biol. Psychiatry. 33, 986–990 (2009). doi: 10.1016/j.pnpbp.2009.05.003 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Yoon Young Cho
    • 1
    • 2
  • Hye Jeong Kim
    • 3
  • Hye Won Jang
    • 4
  • Tae Hyuk Kim
    • 5
  • Chang-Seok Ki
    • 6
  • Sun Wook Kim
    • 5
  • Jae Hoon Chung
    • 5
    Email author
  1. 1.Division of Endocrinology and Metabolism, Department of MedicineGyeongsang National University School of MedicineJinjuKorea
  2. 2.Institute of Health SciencesGyeongsang National University School of MedicineJinjuKorea
  3. 3.Division of Endocrinology and Metabolism, Department of Internal MedicineSoonchunhyang University Hospital, Soonchunhyang University College of MedicineSeoulKorea
  4. 4.Department of Medical EducationSungkyunkwan University School of MedicineSeoulKorea
  5. 5.Division of Endocrinology and Metabolism, Department of Medicine, Thyroid Center, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulKorea
  6. 6.Department of Laboratory Medicine and Genetics, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulKorea

Personalised recommendations