, Volume 57, Issue 1, pp 138–147 | Cite as

Resection of tumors of the third ventricle involving the hypothalamus: effects on body mass index using a dedicated surgical approach

  • Pietro Mortini
  • Filippo GagliardiEmail author
  • Michele Bailo
  • Nicola Boari
  • Antonella Castellano
  • Andrea Falini
  • Marco Losa
Original Article


Resection of large lesions growing into the third ventricle is considered nowadays still a demanding surgery, due to the high risk of severe endocrine and neurological complications. Some neurosurgical approaches were considered in the past the procedures of choice to access the third ventricle, however they were burden by endocrine and neurological consequences, like memory loss and epilepsy. We report here the endocrine and functional results in a series of patients operated with a recently developed approach specifically tailored for the resection of large lesions growing into the third ventricle. Authors conducted a retrospective analysis on 10 patients, operated between 2011 and 2012, for the resection of large tumors growing into the third ventricle. Total resection was achieved in all patients. No perioperative deaths were recorded and all patients were alive after the follow-up. One year after surgery 8/10 patients had an excellent outcome with a Karnofsky Performance Status of 100 and a Glasgow Outcome score of 5, with 8 patients experiencing an improvement of the Body Mass Index. Modern neurosurgery allows a safe and effective treatment of large lesions growing into the third ventricle with a postoperative good functional status.


Intraventricular lesions Postoperative complications Third ventricle Translaminaterminalis approach 



A1 segment of the anterior cerebral artery


A2 segment of the anterior cerebral artery


anterior communicating artery


Body Mass Index


Combined Interhemispheric Sub-commissural Translaminaterminalis Approach


Diffusion Tensor Imaging




Glasgow Outcome Score


Interhemispheric Transcallosal Approach


Karnofsky Performance Status


Magnetic Resonance Angiography


Magnetic Resonance Imaging


Progression Free Survival


Standard Deviation


Trans-Cortical Approach


Trans-Lamina terminalis Approach


World Health Organization


Compliance with ethical standards

Conflict of interest

The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.


  1. 1.
    H.Z. Gokalp, N. Yuceer, E. Arasil et al., Tumours of the lateral ventricle. A retrospective review of 112 cases operated upon 1970-1997. Neurosurg. Rev. 21(2–3), 126–137 (1998)PubMedGoogle Scholar
  2. 2.
    G. Pendl, E. Ozturk, K. Haselsberger, Surgery of tumours of the lateral ventricle. Acta Neurochir. (Wien.) 116(2–4), 128–136 (1992)Google Scholar
  3. 3.
    J.M.S.D. Piepmeier, K.J. Sass, T.M. George. Lateral ventricular masses. (Churchill Livingstone, New York), 1993Google Scholar
  4. 4.
    R.C. Anderson, S. Ghatan, N.A. Feldstein, Surgical approaches to tumors of the lateral ventricle. Neurosurg. Clin. N. Am. 14(4), 509–525 (2003)PubMedGoogle Scholar
  5. 5.
    H.D.J. Jho, D. H., Endoscopic approaches for third ventricular tumors. Operat. Tech. Neurosurg 6(4), 192–199 (2003)Google Scholar
  6. 6.
    H. Kasowski, J.M. Piepmeier, Transcallosal approach for tumors of the lateral and third ventricles. Neurosurg. Focus 10(6), E3 (2001)PubMedGoogle Scholar
  7. 7.
    K. Yoshimoto, T. Shono, K. Matsukado, T. Sasaki, The transventricular preforniceal approach for exophytic chiasmatic/hypothalamic astrocytomas extending into the anterior third ventricle. Acta Neurochir. (Wien.) 155(4), 727–732 (2013)Google Scholar
  8. 8.
    A.J. Ulm, A. Russo, E. Albanese et al., Limitations of the transcallosal transchoroidal approach to the third ventricle. J. Neurosurg. 111(3), 600–609 (2009)PubMedGoogle Scholar
  9. 9.
    R. Siwanuwatn, P. Deshmukh, I. Feiz-Erfan et al., Microsurgical anatomy of the transcallosal anterior interforniceal approach to the third ventricle. Neurosurgery 62(6 Suppl 3), 1059–1065 (2008)PubMedGoogle Scholar
  10. 10.
    G.B. Northam, F. Liegeois, J.D. Tournier et al., Interhemispheric temporal lobe connectivity predicts language impairment in adolescents born preterm. Brain 135(Pt 12), 3781–3798 (2012)PubMedPubMedCentralGoogle Scholar
  11. 11.
    T. Asano, Interhemispheric, trans-lamina terminalis approach for craniopharyngioma [in Japanese]. No. Shinkei. Geka. 17(9), 799–812 (1989)PubMedGoogle Scholar
  12. 12.
    T. Kanno, A. Kasama, M. Shoda, C. Yamaguchi, Y. Kato, A pitfall in the interhemispheric translamina terminalis approach for the removal of a craniopharyngioma. Significance of preserving draining veins. Part I. Clinical study. Surg. Neurol. 32(2), 111–115 (1989)PubMedGoogle Scholar
  13. 13.
    T. Serizawa, N. Saeki, K. Fukuda, A. Yamaura, Microsurgical anatomy of the anterior communicating artery and its perforating arteries important for interhemispheric trans-lamina terminalis approach: analysis based on cadaver brains [in Japanese]. No. Shinkei. Geka. 22(5), 447–454 (1994)PubMedGoogle Scholar
  14. 14.
    J. Suzuki, R. Katakura, T. Mori, Interhemispheric approach through the lamina terminalis to tumors of the anterior part of the third ventricle. Surg. Neurol. 22(2), 157–163 (1984)PubMedGoogle Scholar
  15. 15.
    P Mortini, F Gagliardi, N Boari, F Roberti, A.J. Caputy, The combined interhemispheric subcommissural translaminaterminalis approach for large craniopharyngiomas. World Neurosurg. (2012).Google Scholar
  16. 16.
    D.N. Louis, H. Ohgaki, O.D. Wiestler et al., The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114(2), 97–109 (2007)PubMedPubMedCentralGoogle Scholar
  17. 17.
    A. Rhoton Jr., Microsurgical anatomy of the region of the third ventricle. (Williams & Wilkins, Baltimore), 1987Google Scholar
  18. 18.
    S.S. Yeo, J.P. Seo, Y.H. Kwon, S.H. Jang, Precommissural fornix in the human brain: a diffusion tensor tractography study. Yonsei Med. J. 54(2), 315–320 (2013)PubMedPubMedCentralGoogle Scholar
  19. 19.
    J. Peltier, S. Verclytte, C. Delmaire, J.P. Pruvo, E. Havet, D. Le Gars, Microsurgical anatomy of the anterior commissure: correlations with diffusion tensor imaging fiber tracking and clinical relevance. Neurosurgery 69(2 Suppl Operative), ons241–ons246 (2011). discussion ons246–247PubMedGoogle Scholar
  20. 20.
    M.D. Patel, N. Toussaint, G.D. Charles-Edwards, J.P. Lin, P.G. Batchelor, Distribution and fibre field similarity mapping of the human anterior commissure fibres by diffusion tensor imaging. MAGMA 23(5-6), 399–408 (2010)PubMedGoogle Scholar
  21. 21.
    J.J. Lemaire, H. Nezzar, L. Sakka et al., Maps of the adult human hypothalamus. Surg. Neurol. Int 4(Suppl 3), S156–S163 (2013)PubMedPubMedCentralGoogle Scholar
  22. 22.
    T.J. Herron, X. Kang, D.L. Woods, Automated measurement of the human corpus callosum using MRI. Front. neuroinform. 6, 25 (2012)PubMedPubMedCentralGoogle Scholar
  23. 23.
    M. Fabri, G. Polonara, Functional topography of human corpus callosum: an FMRI mapping study. Neural. Plast. 2013, 251308 (2013)PubMedPubMedCentralGoogle Scholar
  24. 24.
    B.C. Wen, D.H. Hussey, J. Staples et al., A comparison of the roles of surgery and radiation therapy in the management of craniopharyngiomas. Int. J. Radiat. Oncol. Biol. Phys. 16(1), 17–24 (1989)PubMedGoogle Scholar
  25. 25.
    P. Mortini, M. Losa, G. Pozzobon et al., Neurosurgical treatment of craniopharyngioma in adults and children: early and long-term results in a large case series. J. Neurosurg. 114(5), 1350–1359 (2011)PubMedGoogle Scholar
  26. 26.
    A.L. Rhoton Jr., The lateral and third ventricles. Neurosurgery 51(4 Suppl), S207–S271 (2002)Google Scholar
  27. 27.
    B.D. Milligan, F.B. Meyer, Morbidity of transcallosal and transcortical approaches to lesions in and around the lateral and third ventricles: a single-institution experience. Neurosurgery 67(6), 1483–1496 (2010). discussion 1496PubMedGoogle Scholar
  28. 28.
    K.I. Desai, T.D. Nadkarni, D.P. Muzumdar, A.H. Goel, Surgical management of colloid cyst of the third ventricle--A study of 105 cases. Surg. Neurol. 57(5), 295–302 (2002). discussion 302–304PubMedGoogle Scholar
  29. 29.
    D. Hellwig, B.L. Bauer, M. Schulte, S. Gatscher, T. Riegel, H. Bertalanffy, Neuroendoscopic treatment for colloid cysts of the third ventricle: the experience of a decade. Neurosurgery 52(3), 525–533 (2003). discussion 532–523PubMedGoogle Scholar
  30. 30.
    E.M. Horn, I. Feiz-Erfan, R.E. Bristol et al., Treatment options for third ventricular colloid cysts: comparison of open microsurgical versus endoscopic resection. Neurosurgery 60(4), 613–618 (2007). discussion 618–620PubMedGoogle Scholar
  31. 31.
    H. Nishioka, N. Fukuhara, M. Yamaguchi-Okada, S. Yamada, Endoscopic endonasal surgery for purely intra-third ventricle craniopharyngioma. World Neurosurg. 91(July), 266–271 (2016)PubMedGoogle Scholar
  32. 32.
    A. Shoakazemi, A.I. Evins, J.C. Burrell, P.E. Stieg, A. Bernardo, A 3D endoscopic transtubular transcallosal approach to the third ventricle. J. Neurosurg. 122(3), 564–573 (2015)PubMedGoogle Scholar
  33. 33.
    N. Russo, A. Brunori, A. Delitala, Endoscopic approaches to intraventricular lesions. J Neurol. Surg. A Cent. Eur. Neurosurg. 76(5), 353–360 (2015)PubMedGoogle Scholar
  34. 34.
    J. Roth, S. Constantini, Combined rigid and flexible endoscopy for tumors in the posterior third ventricle. J. Neurosurg. 122(6), 1341–1346 (2015)PubMedGoogle Scholar
  35. 35.
    Y. Gu, X. Zhang, F. Hu et al., Suprachiasmatic translamina terminalis corridor used in endoscopic endonasal approach for resecting third ventricular craniopharyngioma. J. Neurosurg. 122(5), 1166–1172 (2015)PubMedGoogle Scholar
  36. 36.
    L.M. Cavallo, A. Di Somma, M. de Notaris et al., Extended endoscopic endonasal approach to the third ventricle: multimodal anatomical study with surgical implications. World Neurosurg 84(2), 267–278 (2015)PubMedGoogle Scholar
  37. 37.
    M.M. Souweidane, C.E. Hoffman, T.H. Schwartz, Transcavum interforniceal endoscopic surgery of the third ventricle. J. Neurosurg. Pediatr 2(4), 231–236 (2008)PubMedGoogle Scholar
  38. 38.
    P. Charalampaki, R. Filippi, S. Welschehold, J. Conrad, A. Perneczky, Tumors of the lateral and third ventricle: removal under endoscope-assisted keyhole conditions. Neurosurgery 62(6 Suppl 3), 1049–1058 (2008)PubMedGoogle Scholar
  39. 39.
    C. Teo, J.D. Greenlee, Application of endoscopy to third ventricular tumors. Clin. Neurosurg. 52, 24–28 (2005)PubMedGoogle Scholar
  40. 40.
    M.S. Abdou, A.R. Cohen, Endoscopic surgery of the third ventricle: the subfrontal trans-lamina terminalis approach. Minim. Invasive. Neurosurg. 43(4), 208–211 (2000)PubMedGoogle Scholar
  41. 41.
    L.R. Barzaghi, M. Medone, M. Losa, S. Bianchi, M. Giovanelli, P. Mortini, Prognostic factors of visual field improvement after trans-sphenoidal approach for pituitary macroadenomas: review of the literature and analysis by quantitative method. Neurosurg. Rev. 35(3), 369–378 (2012). discussion 378–379PubMedGoogle Scholar
  42. 42.
    P. Mortini, L.R. Barzaghi, C. Serra, V. Orlandi, S. Bianchi, M. Losa, Visual outcome after fronto-temporo-orbito-zygomatic approach combined with early extradural and intradural optic nerve decompression in tuberculum and diaphragma sellae meningiomas. Clin. Neurol. Neurosurg. 114(6), 597–606 (2012)PubMedGoogle Scholar
  43. 43.
    P. Mortini, F. Gagliardi, N. Boari, M. Losa, Surgical strategies and modern therapeutic options in the treatment of craniopharyngiomas. Crit. Rev. Oncol. Hematol. 88(3), 514–529 (2013)PubMedGoogle Scholar
  44. 44.
    A. Perneczky, G. Fries, Endoscope-assisted brain surgery: part 1--Evolution, basic concept, and current technique. Neurosurgery 42(2), 219–224 (1998). discussion 224–225PubMedGoogle Scholar
  45. 45.
    Q. Lan, J. Dong, Q. Huang, Minimally invasive keyhole approaches for removal of tumors of the third ventricle. Chin. Med. J. (Engl.) 119(17), 1444–1450 (2006)Google Scholar
  46. 46.
    E.A. Wilde, E.D. Bigler, J.M. Haider et al., Vulnerability of the anterior commissure in moderate to severe pediatric traumatic brain injury. J. Child Neurol. 21(9), 769–776 (2006)PubMedGoogle Scholar
  47. 47.
    K. Saxena, L. Tamm, A. Walley et al., A preliminary investigation of corpus callosum and anterior commissure aberrations in aggressive youth with bipolar disorders. J. Child Adolesc. Psychopharmacol. 22(2), 112–119 (2012)PubMedPubMedCentralGoogle Scholar
  48. 48.
    K.H. Cho, G. Murakami, J.F. Rodriguez-Vazquez, Early fetal development of the anterior commissure. Pediatr. Neurol. 48(1), 56–58 (2013)PubMedGoogle Scholar
  49. 49.
    T.K.,N. Kanno, K. Akashi, Bifrontal Transbasal Interhemispheric Approach for Craniopharyngioma. Operat. Tech. Neurosurg 6(4), 174–191 (2003)Google Scholar
  50. 50.
    S. Nagata, A.L. Rhoton Jr., M. Barry, Microsurgical anatomy of the choroidal fissure. Surg. Neurol. 30(1), 3–59 (1988)PubMedGoogle Scholar
  51. 51.
    I. Yamamoto, A.L. Rhoton Jr., D.A. Peace, Microsurgery of the third ventricle: part I. Microsurgical anatomy. Neurosurgery 8(3), 334–356 (1981)PubMedGoogle Scholar
  52. 52.
    E. Timurkaynak, A.L. Rhoton Jr., M. Barry, Microsurgical anatomy and operative approaches to the lateral ventricles. Neurosurgery 19(5), 685–723 (1986)PubMedGoogle Scholar
  53. 53.
    S.H. Jang, S.S. Yeo, M.C. Chang Unusual compensatory neural connections following disruption of corpus callosum fibers in a patient with corpus callosum hemorrhage. Int. J. Neurosci. (2013).Google Scholar
  54. 54.
    S. Kobayashi, H. Okazaki, C.S. MacCarty, Intraventricular meningiomas. Mayo. Clin. Proc. 46(11), 735–741 (1971)PubMedGoogle Scholar
  55. 55.
    M.L.J.L.N. Apuzzo. Surgery in and around the anterior third ventricle. (Churchill-Livingstone, New York), 1993Google Scholar
  56. 56.
    R.G. Ellenbogen, Transcortical surgery for lateral ventricular tumors. Neurosurg. Focus 10(6), E2 (2001)PubMedGoogle Scholar
  57. 57.
    R.M.T.G. Villani. Approach to tumors of the third ventricle. 5th edn. Saunders Elsevier, Philadelphia), 2006Google Scholar
  58. 58.
    A.L. Rhoton Jr., Microsurgical anatomy of the region of the third ventricle. Surgery of the Third Ventricle. A. MLJ ed. Williams & Wilkins, Baltimore), 1987 92–166Google Scholar
  59. 59.
    A.L. Rhoton Jr., I. Yamamoto, D.A. Peace, Microsurgery of the third ventricle: part 2. Operative approaches. Neurosurgery 8(3), 357–373 (1981)PubMedGoogle Scholar
  60. 60.
    S.S., A. Oi, M. Samii, Operative techniques ofr tumors in the third ventricle. Operative Tech. Neurosurg. 6(4), 205–214 (2003)Google Scholar
  61. 61.
    G. Geffen, A. Walsh, D. Simpson, M. Jeeves, Comparison of the effects of transcortical and transcallosal removal of intraventricular tumours. Brain 103(4), 773–788 (1980)PubMedGoogle Scholar
  62. 62.
    M. Alaywan, M. Sindou, Fronto-temporal approach with orbito-zygomatic removal. Surgical anatomy. Acta Neurochir. (Wien). 104(3-4), 79–83 (1990)PubMedGoogle Scholar
  63. 63.
    L.F. Gonzalez, N.R. Crawford, M.A. Horgan, P. Deshmukh, J.M. Zabramski, R.F. Spetzler, Working area and angle of attack in three cranial base approaches: pterional, orbitozygomatic, and maxillary extension of the orbitozygomatic approach. Neurosurgery 50(3), 550–555 (2002). discussion 555–557PubMedGoogle Scholar
  64. 64.
    S. Honeybul, G. Neil-Dwyer, P.D. Lees, B.T. Evans, D.A. Lang, The orbitozygomatic infratemporal fossa approach: a quantitative anatomical study. Acta Neurochir. (Wien.) 138(3), 255–264 (1996)Google Scholar
  65. 65.
    G.M. Lemole Jr., J.S. Henn, J.M. Zabramski, R.F. Spetzler, Modifications to the orbitozygomatic approach. Technical note. J. Neurosurg. 99(5), 924–930 (2003)PubMedGoogle Scholar
  66. 66.
    M.S. Schwartz, G.J. Anderson, M.A. Horgan, J.X. Kellogg, S.O. McMenomey, J.B. Delashaw Jr., Quantification of increased exposure resulting from orbital rim and orbitozygomatic osteotomy via the frontotemporal transsylvian approach. J. Neurosurg. 91(6), 1020–1026 (1999)PubMedGoogle Scholar
  67. 67.
    J.M. Zabramski, T. Kiris, S.K. Sankhla, J. Cabiol, R.F. Spetzler, Orbitozygomatic craniotomy. Technical note. J. Neurosurg. 89(2), 336–341 (1998)PubMedGoogle Scholar
  68. 68.
    T. Serizawa, N. Saeki, A. Yamaura, Microsurgical anatomy and clinical significance of the anterior communicating artery and its perforating branches. Neurosurgery 40(6), 1211–1216 (1997). discussion 1216–1218PubMedGoogle Scholar
  69. 69.
    A. Taraszewska, J. Andrychowski, Z. Czernicki, Microscopic stucture of the lamina terminalis: implications for microsurgical third ventriculostomy. Zentralbl. Neurochir. 66(4), 202–206 (2005)PubMedGoogle Scholar
  70. 70.
    N. Kodama, T. Sasaki, Y. Sakurai, Transthird ventricular approach for a high basilar bifurcation aneurysm. Report of three cases. J. Neurosurg. 82(4), 664–668 (1995)PubMedGoogle Scholar
  71. 71.
    K. Fujitsu, T. Sekino, K. Sakata, T. Kawasaki, Basal interfalcine approach through a frontal sinusotomy with vein and nerve preservation. Technical note. J. Neurosurg. 80(3), 575–579 (1994)PubMedGoogle Scholar
  72. 72.
    M. Shibuya, M. Takayasu, Y. Suzuki, K. Saito, K. Sugita, Bifrontal basal interhemispheric approach to craniopharyngioma resection with or without division of the anterior communicating artery. J. Neurosurg. 84(6), 951–956 (1996)PubMedGoogle Scholar
  73. 73.
    A. Rhoton Jr., Cranial anatomy and surgical approaches. (Lippincott Williams & Wilkins, Philadelphia), 2003Google Scholar
  74. 74.
    Y. MG, Microneurosurgery. vol I, (Stuttgart, Georg Thieme Verlag, 1984).MG YGoogle Scholar
  75. 75.
    J.K. Liu, C.D. Cole, J.R. Kestle, D.L. Brockmeyer, M.L. Walker, Cranial base strategies for resection of craniopharyngioma in children. Neurosurg. Focus 18(6A), E9 (2005)PubMedGoogle Scholar
  76. 76.
    A.L. Rhoton Jr., The sellar region. Neurosurgery 51(4 Suppl), S335–S374 (2002)PubMedGoogle Scholar
  77. 77.
    S. Nishio, S. Fujiwara, T. Tashima, I. Takeshita, K. Fujii, M. Fukui, Tumors of the lateral ventricular wall, especially the septum pellucidum: clinical presentation and variations in pathological features. Neurosurgery 27(2), 224–230 (1990)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific InstituteVita-Salute UniversityMilanItaly
  2. 2.Neuroradiology Department and CERMAC, San Raffaele Scientific InstituteVita-Salute San Raffaele UniversityMilanItaly

Personalised recommendations