Advertisement

Fourier Transform Infrared Spectroscopy of Bone Tissue: Bone Quality Assessment in Preclinical and Clinical Applications of Osteoporosis and Fragility Fracture

  • Nikolaos KourkoumelisEmail author
  • Xianzuo Zhang
  • Zeming Lin
  • Jian Wang
Review Paper
  • 31 Downloads

Abstract

The pathogenesis of bone fragility is of utmost importance especially to modern societies with aging populations. Increased skeletal fragility due to aging and disease motivates researchers to investigate the contributing biological mechanisms and to find ways to inhibit them. Bone quality is a set of structural and compositional variables that contribute to bone strength and influence its ability to resist fracture. They originate from multiple bone hierarchical levels and include the morphology (mass distribution), the chemical composition, and the biomechanical properties of bone tissue such as stiffness, fatigue strength, and fracture toughness. Qualitative and quantitative measurements of bone material properties reflect the underlying health or disease status. Fourier transform infrared (FTIR) spectroscopy and imaging are able to evaluate spatially inhomogeneous structures like bone in the form of sections or homogenized powder, providing simultaneous quantitative and qualitative information from both organic and inorganic tissue components. These techniques give a snapshot of structural and material properties that essentially depend on bone turnover while they are also sensitive to tissue alterations due to metabolic and nonmetabolic diseases, and external factors like administration of drugs. In this review, we discuss the application of FTIR spectroscopy and imaging to preclinical and clinical studies. The interpretation of results emphasizes the potential of infrared spectroscopic techniques to associate bone heterogeneity with fracture risk, assess the compositional and structural properties of osteoporotic bone, and investigate bisphosphonates’ antiresorptive action and side effects.

Keywords

Fourier transform infrared spectroscopy FTIR Imaging Bone quality Osteoporosis Fragility fracture Bone molecular structure 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.

References

  1. 1.
    Rabar S, Lau R, O’Flynn N, Li L, Barry P. Risk assessment of fragility fractures: summary of NICE guidance. BMJ. 2012;345(aug08 1):e3698.PubMedCrossRefGoogle Scholar
  2. 2.
    Mccreadie BR, Goldstein SA. Biomechanics of fracture: is bone mineral density sufficient to assess risk? J Bone Miner Res. 2000;15(12):2305–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Patel AA, Ramanathan R, Kuban J, Willis MH. Imaging findings and evaluation of metabolic bone disease. Adv Radiol. 2015;2015:812794.CrossRefGoogle Scholar
  4. 4.
    Talari AC, Martinez MA, Movasaghi Z, Rehman S, Rehman IU. Advances in Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev. 2017;52(5):456–506.CrossRefGoogle Scholar
  5. 5.
    Old OJ, Fullwood LM, Scott R, Lloyd GR, Almond LM, Shepherd NA, et al. Vibrational spectroscopy for cancer diagnostics. Anal Methods. 2014;6(12):3901–17.CrossRefGoogle Scholar
  6. 6.
    Wagermaier W, Klaushofer K, Fratzl P. Fragility of bone material controlled by internal interfaces. Calcif Tissue Int. 2015;97(3):201–12.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Liu Y, Luo D, Wang T. Hierarchical structures of bone and bioinspired bone tissue engineering. Small. 2016;12(34):4611–32.PubMedCrossRefGoogle Scholar
  8. 8.
    Wegst UG, Bai H, Saiz E, Tomsia AP, Ritchie RO. Bioinspired structural materials. Nat Mater. 2015;14(1):23–36.PubMedCrossRefGoogle Scholar
  9. 9.
    Sabet FA, Najafi AR, Hamed E, Jasiuk I. Modelling of bone fracture and strength at different length scales: a review. Interface Focus. 2016;6(1):20150055.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Milovanovic P, Potocnik J, Stoiljkovic M, Djonic D, Nikolic S, Neskovic O, et al. Nanostructure and mineral composition of trabecular bone in the lateral femoral neck: implications for bone fragility in elderly women. Acta Biomater. 2011;7(9):3446–51.PubMedCrossRefGoogle Scholar
  11. 11.
    van der Harst MR, Brama PA, van de Lest CH, Kiers GH, DeGroot J, van Weeren PR. An integral biochemical analysis of the main constituents of articular cartilage, subchondral and trabecular bone. Osteoarthr Cartil. 2004;12(9):752–61.PubMedCrossRefGoogle Scholar
  12. 12.
    Kourkoumelis N. Osteoporosis and strontium-substituted hydroxyapatites. Ann Transl Med. 2016;4:1.CrossRefGoogle Scholar
  13. 13.
    Chai YC, Carlier A, Bolander J, Roberts SJ, Geris L, Schrooten J, et al. Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies. Acta Biomater. 2012;8(11):3876–87.PubMedCrossRefGoogle Scholar
  14. 14.
    Hu YY, Rawal A, Schmidt-Rohr K. Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proc Natl Acad Sci. 2010;107(52):22425–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Baig AA, Fox JL, Young RA, Wang Z, Hsu J, Higuchi WI, et al. Relationships among carbonated apatite solubility, crystallite size, and microstrain parameters. Calcif Tissue Int. 1999;64(5):437–49.PubMedCrossRefGoogle Scholar
  16. 16.
    Milovanovic P, Potocnik J, Djonic D, Nikolic S, Zivkovic V, Djuric M, et al. Age-related deterioration in trabecular bone mechanical properties at material level: nanoindentation study of the femoral neck in women by using AFM. Exp Gerontol. 2012;47(2):154–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Miller LM, Little W, Schirmer A, Sheik F, Busa B, Judex S. Accretion of bone quantity and quality in the developing mouse skeleton. J Bone Miner Res. 2007;22(7):1037–45.PubMedCrossRefGoogle Scholar
  18. 18.
    Belbachir K, Noreen R, Gouspillou G, Petibois C. Collagen types analysis and differentiation by FTIR spectroscopy. Anal Bioanal Chem. 2009;395(3):829–37.PubMedCrossRefGoogle Scholar
  19. 19.
    Yamauchi M. Collagen: the major matrix molecule in mineralized tissues. In: Anderson JJB, Garner SC, editors. Calcium and phosphorus in health and disease. NY: CRC Press; 1996.Google Scholar
  20. 20.
    Chappard D, Baslé MF, Legrand E, Audran M. New laboratory tools in the assessment of bone quality. Osteoporos Int. 2011;22(8):2225–40.PubMedCrossRefGoogle Scholar
  21. 21.
    Landis WJ, Silver FH. Mineral deposition in the extracellular matrices of vertebrate tissues: identification of possible apatite nucleation sites on type I collagen. Cells Tissues Organs. 2009;189(1–4):20–4.PubMedCrossRefGoogle Scholar
  22. 22.
    Boskey AL. Matrix proteins and mineralization: an overview. Connect Tissue Res. 1996;35(1–4):357–63.PubMedCrossRefGoogle Scholar
  23. 23.
    Young MF. Bone matrix proteins: their function, regulation, and relationship to osteoporosis. Osteoporos Int. 2003;14(3):35–42.CrossRefGoogle Scholar
  24. 24.
    Kourkoumelis N, Tzaphlidou M. Spectroscopic assessment of normal cortical bone: differences in relation to bone site and sex. Sci World J. 2010;10:402–12.CrossRefGoogle Scholar
  25. 25.
    Hunt HB, Donnelly E. Bone quality assessment techniques: geometric, compositional, and mechanical characterization from macroscale to nanoscale. Clin Rev Bone Miner Metab. 2016;14(3):133–49.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Small RE. Uses and limitations of bone mineral density measurements in the management of osteoporosis. Medscape Gen Med. 2005;7(2):3.Google Scholar
  27. 27.
    Kanis JA. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. Osteoporos Int. 1994;4(6):368–81.PubMedCrossRefGoogle Scholar
  28. 28.
    Schuit SC, Van der Klift M, Weel AE, De Laet CE, Burger H, Seeman E, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam study. Bone. 2004;34(1):195–202.PubMedCrossRefGoogle Scholar
  29. 29.
    Bouxsein ML. Bone quality: where do we go from here? Osteoporos Int. 2003;14(5):118–27.CrossRefGoogle Scholar
  30. 30.
    Bouxsein ML, Seeman E. Quantifying the material and structural determinants of bone strength. Best Pract Res Clin Rheumatol. 2009;23(6):741–53.PubMedCrossRefGoogle Scholar
  31. 31.
    Felsenberg D, Boonen S. The bone quality framework: determinants of bone strength and their interrelationships, and implications for osteoporosis management. Clin Ther. 2005;27(1):1–11.PubMedCrossRefGoogle Scholar
  32. 32.
    Seeman E, Delmas PD. Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354(21):2250–61.PubMedCrossRefGoogle Scholar
  33. 33.
    Kourkoumelis N. Spectroscopy for biosciences. Contemp Phys. 2015;56(4):480–2.CrossRefGoogle Scholar
  34. 34.
    Barth A. Infrared spectroscopy of proteins. Biochim Biophys Acta (BBA)-Bioenergetics. 2007;1767(9):1073–101.CrossRefGoogle Scholar
  35. 35.
    Steiner G, Koch E. Trends in Fourier transform infrared spectroscopic imaging. Anal Bioanal Chem. 2009;394(3):671–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Cheng JX, Xie XS. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science. 2015;350(6264):aaa8870.PubMedCrossRefGoogle Scholar
  37. 37.
    Lopes CD, Limirio PH, Novais VR, Dechichi P. Fourier transform infrared spectroscopy (FTIR) application chemical characterization of enamel, dentin and bone. Appl Spectrosc Rev. 2018;53(9):747–69.Google Scholar
  38. 38.
    Kazarian SG, Chan KA. ATR-FTIR spectroscopic imaging: recent advances and applications to biological systems. Analyst. 2013;138(7):1940–51.PubMedCrossRefGoogle Scholar
  39. 39.
    Querido W, Ailavajhala R, Padalkar M, Pleshko N. Validated approaches for quantification of bone mineral crystallinity using transmission Fourier transform infrared (FT-IR), attenuated Total reflection (ATR) FT-IR, and Raman spectroscopy. Appl Spectrosc. 2018;72(11):1581–93.Google Scholar
  40. 40.
    Ellingham ST, Thompson TJ, Islam M. The effect of soft tissue on temperature estimation from burnt bone using Fourier transform infrared spectroscopy. J Forensic Sci. 2016;61(1):153–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Gu C, Katti DR, Katti KS. Photoacoustic FTIR spectroscopic study of undisturbed human cortical bone. Spectrochim Acta A Mol Biomol Spectrosc. 2013;103:25–37.PubMedCrossRefGoogle Scholar
  42. 42.
    Wang X, Zhai M, Zhao Y, Yin J. A review of articular cartilage and osteoarthritis studies by Fourier transform infrared spectroscopic imaging. Ann Joint. 2018;3:9.Google Scholar
  43. 43.
    Movasaghi Z, Rehman S, ur Rehman DI. Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev. 2008;43(2):134–79.CrossRefGoogle Scholar
  44. 44.
    Petra M, Anastassopoulou J, Theologis T, Theophanides T. Synchrotron micro-FT-IR spectroscopic evaluation of normal paediatric human bone. J Mol Struct. 2005;733(1–3):101–10.CrossRefGoogle Scholar
  45. 45.
    Mkukuma LD, Skakle JM, Gibson IR, Imrie CT, Aspden RM, Hukins DW. Effect of the proportion of organic material in bone on thermal decomposition of bone mineral: an investigation of a variety of bones from different species using thermogravimetric analysis coupled to mass spectrometry, high-temperature X-ray diffraction, and Fourier transform infrared spectroscopy. Calcif Tissue Int. 2004;75(4):321–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Combes C, Cazalbou S, Rey C. Apatite biominerals. Fortschr Mineral. 2016;6(2):34.CrossRefGoogle Scholar
  47. 47.
    Rey C, Shimizu M, Collins B, Glimcher MJ. Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: investigations in the v 4 PO4 domain. Calcif Tissue Int. 1990;46(6):384–94.PubMedCrossRefGoogle Scholar
  48. 48.
    Wilson RM, Elliott JC, Dowker SE, Smith RI. Rietveld structure refinement of precipitated carbonate apatite using neutron diffraction data. Biomaterials. 2004;25(11):2205–13.PubMedCrossRefGoogle Scholar
  49. 49.
    Ivanova TI, Frank-Kamenetskaya OV, Kol'tsov AB, Ugolkov VL. Crystal structure of calcium-deficient carbonated hydroxyapatite. Thermal decomposition. J Solid State Chem. 2001;160(2):340–9.CrossRefGoogle Scholar
  50. 50.
    Byrne HJ, Knief P, Keating ME, Bonnier F. Spectral pre and post processing for infrared and Raman spectroscopy of biological tissues and cells. Chem Soc Rev. 2016;45(7):1865–78.PubMedCrossRefGoogle Scholar
  51. 51.
    Rinnan Å. Pre-processing in vibrational spectroscopy—when, why and how. Anal Methods. 2014;6(18):7124–9.CrossRefGoogle Scholar
  52. 52.
    Lasch P. Spectral pre-processing for biomedical vibrational spectroscopy and microspectroscopic imaging. Chemom Intell Lab Syst. 2012;117:100–14.CrossRefGoogle Scholar
  53. 53.
    Kourkoumelis N, Tzaphlidou M. Multivariate statistical evaluation of bone site and sex as parameters for the Fourier transform infrared spectroscopic study of normal bone. Spectroscopy. 2010;24(1–2):99–104.CrossRefGoogle Scholar
  54. 54.
    Baker MJ, Trevisan J, Bassan P, Bhargava R, Butler HJ, Dorling KM, et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc. 2014;9(8):1771–91.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Petibois C, Desbat B. Clinical application of FTIR imaging: new reasons for hope. Trends Biotechnol. 2010;28(10):495–500.PubMedCrossRefGoogle Scholar
  56. 56.
    Paschalis EP, Gamsjaeger S, Klaushofer K. Vibrational spectroscopic techniques to assess bone quality. Osteoporos Int. 2017;28(8):2275–91.PubMedCrossRefGoogle Scholar
  57. 57.
    Paschalis EP, DiCarlo E, Betts F, Sherman P, Mendelsohn R, Boskey AL. FTIR microspectroscopic analysis of human osteonal bone. Calcif Tissue Int. 1996;59(6):480–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Boskey AL, Imbert L. Bone quality changes associated with aging and disease: a review. Ann N Y Acad Sci. 2017;1410(1):93–106.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Boskey A, Camacho NP. FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials. 2007;28(15):2465–78.PubMedCrossRefGoogle Scholar
  60. 60.
    Miller LM, Vairavamurthy V, Chance MR, Mendelsohn R, Paschalis EP, Betts F, et al. In situ analysis of mineral content and crystallinity in bone using infrared micro-spectroscopy of the ν4 PO4 3− vibration. Biochim Biophys Acta (BBA) Gen Subj. 2001;1527(1–2):11–9.CrossRefGoogle Scholar
  61. 61.
    Isaksson H, Turunen MJ, Rieppo L, Saarakkala S, Tamminen IS, Rieppo J, et al. Infrared spectroscopy indicates altered bone turnover and remodeling activity in renal osteodystrophy. J Bone Miner Res. 2010;25(6):1360–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Gourion-Arsiquaud S, Burket JC, Havill LM, DiCarlo E, Doty SB, Mendelsohn R, et al. Spatial variation in osteonal bone properties relative to tissue and animal age. J Bone Miner Res. 2009a;24(7):1271–81.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Blank RD, Baldini TH, Kaufman M, Bailey S, Gupta R, Yershov Y, et al. Spectroscopically determined collagen Pyr/deH-DHLNL cross-link ratio and crystallinity indices differ markedly in recombinant congenic mice with divergent calculated bone tissue strength. Connect Tissue Res. 2003;44(3–4):134–42.PubMedCrossRefGoogle Scholar
  64. 64.
    Bala Y, Farlay D, Chapurlat R, Boivin G. Modifications of bone material properties in postmenopausal osteoporotic women long-term treated with alendronate. Eur J Endocrinol. 2011;165:647–55.Google Scholar
  65. 65.
    Donnelly E, Chen DX, Boskey AL, Baker SP, van der Meulen MC. Contribution of mineral to bone structural behavior and tissue mechanical properties. Calcif Tissue Int. 2010;87(5):450–60.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Dal Sasso G, Asscher Y, Angelini I, Nodari L, Artioli G. A universal curve of apatite crystallinity for the assessment of bone integrity and preservation. Sci Rep. 2018;8(1):12025.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Kourkoumelis N, Lani A, Tzaphlidou M. Infrared spectroscopic assessment of the inflammation-mediated osteoporosis (IMO) model applied to rabbit bone. J Biol Phys. 2012;38(4):623–35.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Farlay D, Panczer G, Rey C, Delmas PD, Boivin G. Mineral maturity and crystallinity index are distinct characteristics of bone mineral. J Bone Miner Metab. 2010;28(4):433–45.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Bala Y, Depalle B, Farlay D, Douillard T, Meille S, Follet H, et al. Bone micromechanical properties are compromised during long-term alendronate therapy independently of mineralization. J Bone Miner Res. 2012;27(4):825–34.PubMedCrossRefGoogle Scholar
  70. 70.
    Yamauchi M, Young DR, Chandler GS, Mechanic GL. Cross-linking and new bone collagen synthesis in immobilized and recovering primate osteoporosis. Bone. 1988;9(6):415–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Banse X, Sims TJ, Bailey AJ. Mechanical properties of adult vertebral cancellous bone: correlation with collagen intermolecular cross-links. J Bone Miner Res. 2002;17(9):1621–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Ritchie RO. The conflicts between strength and toughness. Nat Mater. 2011;10(11):817–22.PubMedCrossRefGoogle Scholar
  73. 73.
    Robins SP, Duncan A, Wilson N, Evans BJ. Standardization of pyridinium crosslinks, pyridinoline and deoxypyridinoline, for use as biochemical markers of collagen degradation. Clin Chem. 1996;42(10):1621–6.PubMedGoogle Scholar
  74. 74.
    Paschalis EP, Gamsjaeger S, Tatakis DN, Hassler N, Robins SP, Klaushofer K. Fourier transform infrared spectroscopic characterization of mineralizing type I collagen enzymatic trivalent cross-links. Calcif Tissue Int. 2015;96(1):18–29.PubMedCrossRefGoogle Scholar
  75. 75.
    Farlay D, Duclos ME, Gineyts E, Bertholon C, Viguet-Carrin S, Nallala J, et al. The ratio 1660/1690 cm−1 measured by infrared microspectroscopy is not specific of enzymatic collagen cross-links in bone tissue. PLoS One. 2011;6(12):e28736.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Goodacre R, Sergo V, Barr H, Sammon C, Schultz ZD, Baker MJ, et al. Clinical Spectroscopy: general discussion. Faraday Discuss. 2016;187:429–60.PubMedCrossRefGoogle Scholar
  77. 77.
    Hooijmans CR, Ritskes-Hoitinga M. Progress in using systematic reviews of animal studies to improve translational research. PLoS Med. 2013;10(7):e1001482.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Perel P, Roberts I, Sena E, Wheble P, Briscoe C, Sandercock P, et al. Comparison of treatment effects between animal experiments and clinical trials: systematic review. BMJ. 2007;334(7586):197.PubMedCrossRefGoogle Scholar
  79. 79.
    Bonjour JP, Ammann P, Rizzoli R. Importance of preclinical studies in the development of drugs for treatment of osteoporosis: a review related to the 1998 WHO guidelines. Osteoporos Int. 1999;9(5):379–93.PubMedCrossRefGoogle Scholar
  80. 80.
    Hui SL, Slemenda CW, Johnston CC. Age and bone mass as predictors of fracture in a prospective study. J Clin Invest. 1988;81(6):1804–9.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Acevedo C, Stadelmann VA, Pioletti DP, Alliston T, Ritchie RO. Fatigue as the missing link between bone fragility and fracture. Nat Biomed Eng. 2018;2(2):62–71.Google Scholar
  82. 82.
    Gupta HS, Zioupos P. Fracture of bone tissue: the ‘hows’ and the ‘whys’. Med Eng Phys. 2008;30(10):1209–26.PubMedCrossRefGoogle Scholar
  83. 83.
    Zimmermann EA, Schaible E, Bale H, Barth HD, Tang SY, Reichert P, et al. Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales. Proc Natl Acad Sci. 2011;108(35):14416–21.PubMedCrossRefGoogle Scholar
  84. 84.
    Nyman JS, Granke M, Singleton RC, Pharr GM. Tissue-level mechanical properties of bone contributing to fracture risk. Curr Osteoporos Rep. 2016;14(4):138–50.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Currey J. Structural heterogeneity in bone: good or bad? J Musculoskelet Nueronal Interact. 2005;5(4):317.Google Scholar
  86. 86.
    Makowski AJ, Granke M, Uppuganti S, Mahadevan-Jansen A, Nyman JS. Bone tissue heterogeneity is associated with fracture toughness: a polarization Raman spectroscopy study. In SPIE BiOS. International Society for Optics and Photonics. SPIE Proc. 2015;9303:341.Google Scholar
  87. 87.
    Besdo S, Vashishth D. Extended finite element models of introcortical porosity and heterogeneity in cortical bone. Comput Mater Sci. 2012;64:301–5.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Yao H, Dao M, Carnelli D, Tai K, Ortiz C. Size-dependent heterogeneity benefits the mechanical performance of bone. J Mech Phys Solids. 2011;59(1):64–74.CrossRefGoogle Scholar
  89. 89.
    Hadjipanteli A, Kourkoumelis N, Fromme P, Olivo A, Huang J, Speller R. A new technique for the assessment of the 3D spatial distribution of the calcium/phosphorus ratio in bone apatite. Physiol Meas. 2013;34(11):1399–410.PubMedCrossRefGoogle Scholar
  90. 90.
    Hadjipanteli A, Kourkoumelis N, Speller R. Evaluation of CT-DEA performance on ca/P ratio assessment in bone apatite using EDX. X-Ray Spectrom. 2014;43(5):286–91.CrossRefGoogle Scholar
  91. 91.
    Hadjipanteli A, Kourkoumelis N, Fromme P, Huang J, Speller RD. Evaluation of the 3D spatial distribution of the calcium/phosphorus ratio in bone using computed-tomography dual-energy analysis. Phys Med. 2016;32(1):162–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Boskey AL, Donnelly E, Boskey E, Spevak L, Ma Y, Zhang W, et al. Examining the relationships between bone tissue composition, compositional heterogeneity, and fragility fracture: a matched case-controlled FTIRI study. J Bone Miner Res. 2016;31(5):1070–81.PubMedCrossRefGoogle Scholar
  93. 93.
    Gourion-Arsiquaud S, Faibish D, Myers E, Spevak L, Compston J, Hodsman A, et al. Use of FTIR spectroscopic imaging to identify parameters associated with fragility fracture. J Bone Miner Res. 2009;24(9):1565–71.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Wang ZX, Lloyd AA, Burket JC, Gourion-Arsiquaud S, Donnelly E. Altered distributions of bone tissue mineral and collagen properties in women with fragility fractures. Bone. 2016;84:237–44.PubMedCrossRefGoogle Scholar
  95. 95.
    Gourion-Arsiquaud S, Lukashova L, Power J, Loveridge N, Reeve J, Boskey AL. Fourier transform infrared imaging of femoral neck bone: reduced heterogeneity of mineral-to-matrix and carbonate-to-phosphate and more variable crystallinity in treatment-naive fracture cases compared with fracture-free controls. J Bone Miner Res. 2013;28(1):150–61.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Imbert L, Gourion-Arsiquaud S, Villarreal-Ramirez E, Spevak L, Taleb H, van der Meulen MCH, et al. Dynamic structure and composition of bone investigated by nanoscale infrared spectroscopy. PLoS One. 2018;13(9):e0202833.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Gaidash AA, Sinitsa LN, Babenko OA, Lugovskoy AA. Nanoporous structure of bone matrix at osteoporosis from data of atomic force microscopy and IR spectroscopy. J Osteoporos. 2011;2011:1–7.CrossRefGoogle Scholar
  98. 98.
    Mathavan N, Turunen MJ, Tägil M, Isaksson H. Characterising bone material composition and structure in the ovariectomized (OVX) rat model of osteoporosis. Calcif Tissue Int. 2015;97(2):134–44.PubMedCrossRefGoogle Scholar
  99. 99.
    Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet. 2011;377(9773):1276–87.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Kourkoumelis N, Balatsoukas I, Tzaphlidou M. Ca/P concentration ratio at different sites of normal and osteoporotic rabbit bones evaluated by Auger and energy dispersive X-ray spectroscopy. J Biol Phys. 2012;38(2):279–91.PubMedCrossRefGoogle Scholar
  101. 101.
    Burr DB, Forwood MR, Fyhrie DP, Martin RB, Schaffler MB, Turner CH. Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J Bone Miner Res. 1997;12(1):6–15.PubMedCrossRefGoogle Scholar
  102. 102.
    Paschalis EP, Betts F, DiCarlo E, Mendelsohn R, Boskey AL. FTIR microspectroscopic analysis of human iliac crest biopsies from untreated osteoporotic bone. Calcif Tissue Int. 1997;61(6):487–92.PubMedCrossRefGoogle Scholar
  103. 103.
    Gadeleta SJ, Boskey AL, Paschalis E, Carlson C, Menschik F, Baldini T, et al. A physical, chemical, and mechanical study of lumbar vertebrae from normal, ovariectomized, and nandrolone decanoate-treated cynomolgus monkeys (Macaca fascicularis). Bone. 2000;27(4):541–50.PubMedCrossRefGoogle Scholar
  104. 104.
    Faibish D, Ott SM, Boskey AL. Mineral changes in osteoporosis a review. Clin Orthop Relat Res. 2006;443:28–38.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Boskey AL, DiCarlo E, Paschalis E, West P, Mendelsohn R. Comparison of mineral quality and quantity in iliac crest biopsies from high-and low-turnover osteoporosis: an FT-IR microspectroscopic investigation. Osteoporos Int. 2005;16(12):2031–8.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    McCreadie BR, Morris MD, Chen TC, Rao DS, Finney WF, Widjaja E, et al. Bone tissue compositional differences in women with and without osteoporotic fracture. Bone. 2006;39(6):1190–5.PubMedCrossRefGoogle Scholar
  107. 107.
    Greenwood C, Clement J, Dicken A, Evans JP, Lyburn I, Martin RM, et al. Towards new material biomarkers for fracture risk. Bone. 2016;93:55–63.PubMedCrossRefGoogle Scholar
  108. 108.
    Spevak L, Flach CR, Hunter T, Mendelsohn R, Boskey A. Fourier transform infrared spectroscopic imaging parameters describing acid phosphate substitution in biologic hydroxyapatite. Calcif Tissue Int. 2013;92(5):418–28.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Garcia I, Chiodo V, Ma Y, Boskey A. Evidence of altered matrix composition in iliac crest biopsies from patients with idiopathic juvenile osteoporosis. Connect Tissue Res. 2016;57(1):28–37.PubMedCrossRefGoogle Scholar
  110. 110.
    Miller LM, Novatt JT, Hamerman D, Carlson CS. Alterations in mineral composition observed in osteoarthritic joints of cynomolgus monkeys. Bone. 2004;35(2):498–506.PubMedCrossRefGoogle Scholar
  111. 111.
    Huang RY, Miller LM, Carlson CS, Chance MR. Characterization of bone mineral composition in the proximal tibia of cynomolgus monkeys: effect of ovariectomy and nandrolone decanoate treatment. Bone. 2002;30(3):492–7.PubMedCrossRefGoogle Scholar
  112. 112.
    Bohic S, Rey C, Legrand A, Sfihi H, Rohanizadeh R, Martel C, et al. Characterization of the trabecular rat bone mineral: effect of ovariectomy and bisphosphonate treatment. Bone. 2000;26(4):341–8.PubMedCrossRefGoogle Scholar
  113. 113.
    Ouyang H, Sherman PJ, Paschalis EP, Boskey AL, Mendelsohn R. Fourier transform infrared microscopic imaging: effects of estrogen and estrogen deficiency on fracture healing in rat femurs. Appl Spectrosc. 2004;58(1):1–9.PubMedCrossRefGoogle Scholar
  114. 114.
    Huang RY, Miller LM, Carlson CS, Chance MR. In situ chemistry of osteoporosis revealed by synchrotron infrared microspectroscopy. Bone. 2003;33(4):514–21.PubMedCrossRefGoogle Scholar
  115. 115.
    Akkus O, Adar F, Schaffler MB. Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone. 2004;34(3):443–53.PubMedCrossRefGoogle Scholar
  116. 116.
    Ruppel ME, Burr DB, Miller LM. Chemical makeup of microdamaged bone differs from undamaged bone. Bone. 2006;39(2):318–24.PubMedCrossRefGoogle Scholar
  117. 117.
    Lani A, Kourkoumelis N, Baliouskas G, Tzaphlidou M. The effect of calcium and vitamin D supplementation on osteoporotic rabbit bones studied by vibrational spectroscopy. J Biol Phys. 2014;40(4):401–12.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Saito M, Marumo KM. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int. 2010;21(2):195–214.PubMedCrossRefGoogle Scholar
  119. 119.
    SY T, Vashishth D. The relative contributions of non-enzymatic glycation and cortical porosity on the fracture toughness of aging bone. J Biomech. 2011;44(2):330–6.CrossRefGoogle Scholar
  120. 120.
    Siegmund T, Allen MR, Burr DB. Failure of mineralized collagen fibrils: modeling the role of collagen cross-linking. J Biomech. 2008;41(7):1427–35.PubMedCrossRefGoogle Scholar
  121. 121.
    Viguet-Carrin S, Garnero P, Delmas PD. The role of collagen in bone strength. Osteoporos Int. 2006;17(3):319–36.PubMedCrossRefGoogle Scholar
  122. 122.
    Vashishth D. The role of the collagen matrix in skeletal fragility. Curr Osteoporos Rep. 2007;5(2):62–6.PubMedCrossRefGoogle Scholar
  123. 123.
    Schmidt FN, Zimmermann EA, Campbell GM, Sroga GE, Püschel K, Amling M, et al. Assessment of collagen quality associated with non-enzymatic cross-links in human bone using Fourier-transform infrared imaging. Bone. 2017;97:243–51.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Paschalis EP, Shane E, Lyritis G, Skarantavos G, Mendelsohn R, Boskey AL. Bone fragility and collagen cross-links. J Bone Miner Res. 2004;19(12):2000–4.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Wen XX, Wang FQ, Xu C, Wu ZX, Zhang Y, Feng YF, et al. Time related changes of mineral and collagen and their roles in cortical bone mechanics of ovariectomized rabbits. PLoS One. 2015;10(6):e0127973.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Imbert L, Boskey A. Effects of drugs on bone quality. Clin Rev Bone Miner Metab. 2016;14(3):167–96.CrossRefGoogle Scholar
  127. 127.
    Black DM, Abrahamsen B, Bouxsein ML, Einhorn T, Napoli N. Atypical femur fractures—review of epidemiology, relationship to bisphosphonates, prevention and clinical management. Endocr Rev. 2018;  https://doi.org/10.1210/er.2018-00001.
  128. 128.
    Ettinger B, Burr DB, Ritchie RO. Proposed pathogenesis for atypical femoral fractures: lessons from materials research. Bone. 2013;55(2):495–500.PubMedCrossRefGoogle Scholar
  129. 129.
    Russell RG, Watts NB, Ebetino FH, Rogers MJ. Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int. 2008;19(6):733–59.PubMedCrossRefGoogle Scholar
  130. 130.
    Errassifi F, Sarda S, Barroug A, Legrouri A, Sfihi H, Rey C. Infrared, Raman and NMR investigations of risedronate adsorption on nanocrystalline apatites. J Colloid Interface Sci. 2014;420:101–11.PubMedCrossRefGoogle Scholar
  131. 131.
    Rey C, Combes C, Drouet C, Sfihi H, Barroug A. Physico-chemical properties of nanocrystalline apatites: implications for biominerals and biomaterials. Mater Sci Eng C. 2007;27(2):198–205.CrossRefGoogle Scholar
  132. 132.
    Boskey AL, Spevak L, Weinstein RS. Spectroscopic markers of bone quality in alendronate-treated postmenopausal women. Osteoporos Int. 2009;20(5):793–800.PubMedCrossRefGoogle Scholar
  133. 133.
    Gamsjaeger S, Buchinger B, Zwettler E, Recker R, Black D, Gasser JA, et al. Bone material properties in actively bone-forming trabeculae in postmenopausal women with osteoporosis after three years of treatment with once-yearly zoledronic acid. J Bone Miner Res. 2011;26(1):12–8.PubMedCrossRefGoogle Scholar
  134. 134.
    Hofstetter B, Gamsjaeger S, Phipps RJ, Recker RR, Ebetino FH, Klaushofer K, et al. Effects of alendronate and risedronate on bone material properties in actively forming trabecular bone surfaces. J Bone Miner Res. 2012;27(5):995–1003.PubMedCrossRefGoogle Scholar
  135. 135.
    Lloyd AA, Gludovatz B, Riedel C, Luengo EA, Saiyed R, Marty E, et al. Atypical fracture with long-term bisphosphonate therapy is associated with altered cortical composition and reduced fracture resistance. Proc Natl Acad Sci. 2017;114(33):8722–7.PubMedCrossRefGoogle Scholar
  136. 136.
    Milovanovic P, Zimmermann EA, Riedel C, vom Scheidt A, Herzog L, Krause M, et al. Multi-level characterization of human femoral cortices and their underlying osteocyte network reveal trends in quality of young, aged, osteoporotic and antiresorptive-treated bone. Biomaterials. 2015;45:46–55.PubMedCrossRefGoogle Scholar
  137. 137.
    Plotkin LI, Lezcano V, Thostenson J, Weinstein RS, Manolagas SC, Bellido T. Connexin 43 is required for the anti-apoptotic effect of bisphosphonates on osteocytes and osteoblasts in vivo. J Bone Miner Res. 2008;23(11):1712–21.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Boskey AL, Spevak L, Ma Y, Wang H, Bauer DC, Black DM, et al. Insights into the bisphosphonate holiday: a preliminary FTIRI study. Osteoporos Int. 2018;29(3):699–705.PubMedCrossRefGoogle Scholar
  139. 139.
    Gourion-Arsiquaud S, Allen MR, Burr DB, Vashishth D, Tang SY, Boskey AL. Bisphosphonate treatment modifies canine bone mineral and matrix properties and their heterogeneity. Bone. 2010;46(3):666–72.PubMedCrossRefGoogle Scholar
  140. 140.
    Burr DB, Miller L, Grynpas M, Li J, Boyde A, Mashiba T, et al. Tissue mineralization is increased following 1-year treatment with high doses of bisphosphonates in dogs. Bone. 2003;33(6):960–9.PubMedCrossRefGoogle Scholar
  141. 141.
    Acevedo C, Bale H, Gludovatz B, Wat A, Tang SY, Wang M, et al. Alendronate treatment alters bone tissues at multiple structural levels in healthy canine cortical bone. Bone. 2015;81:352–63.PubMedCrossRefGoogle Scholar
  142. 142.
    Burket JC, Brooks DJ, MacLeay JM, Baker SP, Boskey AL, van der Meulen MC. Variations in nanomechanical properties and tissue composition within trabeculae from an ovine model of osteoporosis and treatment. Bone. 2013;52(1):326–36.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Medical Physics, School of Health SciencesUniversity of IoanninaIoanninaGreece
  2. 2.Department of Orthopedics, Anhui Provincial HospitalUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Department of Arthroplasty, Nanfang HospitalSouthern Medical UniversityGuangzhouChina

Personalised recommendations