Advertisement

Disregulation of Autophagy in the Transgenerational Cc2d1a Mouse Model of Autism

  • Halime Dana
  • Keziban Korkmaz Bayramov
  • Nesrin Delibaşı
  • Reyhan Tahtasakal
  • Ruslan Bayramov
  • Zuhal Hamurcu
  • Elif Funda SenerEmail author
Original Paper

Abstract

Autism spectrum disorder (ASD) is a heterogeneously childhood neurodevelopmental disorder, believed to be under development of various genetic and environmental factors. Autophagy and related pathways have also been implicated in the etiology of ASD. We aimed to investigate autophagic markers by generating the transgenerational inheritance of ASD-like behaviors in the Cc2d1a animal model of ASD. Cc2d1a (+/−) mouse model of ASD was built in two different groups by following three generations. After behavior test, bilateral hippocampus was sliced. Western Blot assay and quantitative real-time polymerase chain reaction (QRT-PCR) were used for measurement of LC3 and Beclin-1 as key regulators of autophagy. All of the animal and laboratory studies were conducted in the Erciyes University Genome and Stem Cell Center (GENKOK). Significant LC3 and Beclin-1 mRNA expression levels were observed in mouse hippocampus between groups and generations. Western blot confirmed the changes of the proteins in the hippocampus. LC3 expressions were increased for females and decreased for males compared to the control group. Beclin-1 expression levels were found to be significantly decreased in males and females compared to controls. This study could help explain a new pathway of autophagy in ASD mouse models. Future animal studies need to investigate sex differences in mouse modeling autism-relevant genes like CC2D1A. We anticipate our results to be a starting point for more comprehensive autophagy studies in this mouse model of ASD.

Keywords

Autism CC2D1A Hippocampus Autophagy LC3 Beclin-1 

Notes

Acknowledgements

The authors are grateful to Prof. Dr. Minoo Rassoulzadegan for her advice on mouse line generation and critics for the draft. Work in our laboratory is supported by Research Fund of the Erciyes University (Project Number: TYL-2016-6347).

Compliance with Ethical Standards

Conflict of interest

The authors have no conflicts of interest or other disclosures to report.

Supplementary material

12017_2019_8579_MOESM1_ESM.docx (222 kb)
Supplementary material 1 (DOCX 221 kb)

References

  1. Al-Tawashi, A., Jung, S. Y., Liu, D., Su, B., & Qin, J. (2012). Protein implicated in nonsyndromic mental retardation regulates protein kinase A (PKA) activity. Journal of Biological Chemistry,287(18), 14644–14658.CrossRefGoogle Scholar
  2. Basel-Vanagaite, L., Attia, R., Yahav, M., Ferland, R. J., Anteki, L., Walsh, C. A., et al. (2006). The CC2D1A, a member of a new gene family with C2 domains, is involved in autosomal recessive non-syndromic mental retardation. Journal of Medical Genetics,43(3), 203–210.CrossRefGoogle Scholar
  3. Bowling, H., & Klann, E. (2014). Shaping dendritic spines in autism spectrum disorder: mTORC1 dependent macroautophagy. Neuron,83(5), 994–996.CrossRefGoogle Scholar
  4. Bowling, H., Zhang, G., Bhattacharya, A., Pérez-Cuesta, L. M., Deinhardt, K., Hoeffer, C. A., et al. (2014). Antipsychotics activate mTORC1-dependent translation to enhance neuronal morphological complexity. Science Signaling,7(308), ra4.CrossRefGoogle Scholar
  5. Costa, L., Amaral, C., Teixeira, N., et al. (2015). Cannabinoid-induced autophagy:protective or death role? Prostaglandins Other Lipid Mediators,2, 54–63.Google Scholar
  6. Daghsni, M., Rima, M., Fajloun, Z., Ronjat, M., Brusés, J. L., M’rad, R., et al. (2018). Autism throughout genetics: Perusal of the implication of ion channels. Brain and Behavior,22, e00978.  https://doi.org/10.1002/brb3.978.CrossRefGoogle Scholar
  7. Drusenheimer, N., Migdal, B., Jäckel, S., Tveriakhina, L., Scheider, K., Schulz, K., et al. (2015). The mammalian orthologs of drosophila Lgd, CC2D1A and CC2D1B, function in the endocytic pathway, but their individual loss of function does not affect notch signalling. PLoS Genetics,11(12), e1005749.CrossRefGoogle Scholar
  8. Hamurcu, Z., Ashour, A., Kahraman, N., & Ozpolat, B. (2016). FOXM1 regulates expression of eukaryotic elongation factor 2 kinase and promotes proliferation, invasion and tumorgenesis of human triple negative breast cancer cells. Oncotarget,7(13), 16619–16635.CrossRefGoogle Scholar
  9. Hamurcu, Z., Delibaşı, N., Geçene, S., Şener, E. F., Dönmez-Altuntaş, H., Özkul, Y., et al. (2018). Targeting LC3 and Beclin-1 autophagy genes suppresses proliferation, survival, migration and invasion by inhibition of Cyclin-D1 and uPAR/Integrin β1/Src signaling in triple negative breast cancer cells. Journal of Cancer Research and Clinical Oncology,144(3), 415–430.CrossRefGoogle Scholar
  10. Hutsler, J. J., & Zhang, H. (2010). Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Research,1309, 83–94.CrossRefGoogle Scholar
  11. Kang, R., Zeh, H. J., Lotze, M. T., & Tang, D. (2011). The Beclin 1 network regulates autophagy and apoptosis. Cell Death and Differentiation,18(4), 571–580.CrossRefGoogle Scholar
  12. Kim, H. J., Cho, M. H., Shim, W. H., Kim, J. K., Jeon, E. Y., Kim, D. H., et al. (2017). Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects. Molecular Psychiatry,22(11), 1576–1584.CrossRefGoogle Scholar
  13. Kwon, C. H., Luikart, B. W., Powell, C. M., Zhou, J., Matheny, S. A., Zhang, W., et al. (2006). Pten regulates neuronal arborization and social interaction in mice. Neuron,50, 377–388.CrossRefGoogle Scholar
  14. Lai, M. C., Lerch, J. P., Floris, D. L., Ruigrok, A. N., Pohl, A., Lombardo, M. V., et al. (2017). Imaging sex/gender and autism in the brain: Etiological implications. Journal of Neuroscience Research,95(1–2), 380–397.CrossRefGoogle Scholar
  15. Lee, K. M., Hwang, S. K., & Lee, J. A. (2013). Neuronal autophagy and neurodevelopmental disorders. Experimental Neurobiology,22(3), 133–142.CrossRefGoogle Scholar
  16. Majumdar, D., Nebhan, C. A., Hu, L., Anderson, B., & Webb, D. J. (2011). An APPL1/Akt signaling complex regulates dendritic spine and synapse formation in hippocampal neurons. Molecular and Cellular Neuroscience,46, 633–644.CrossRefGoogle Scholar
  17. Manzini, M. C., Xiong, L., Shaheen, R., et al. (2014). CC2D1A regulates human intellectual and social function as well as NF-κB signaling homeostasis. Cell Reports,8(3), 647–655.  https://doi.org/10.1016/j.celrep.2014.06.039.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Moseley, R. L., Hitchiner, R., & Kirkby, J. A. (2018). Self-reported sex differences in high-functioning adults with autism: A meta-analysis. Molecular Autism,9, 33.  https://doi.org/10.1186/s13229-018-0216-6.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Nicolini, C., & Fahnestock, M. (2018). The valproic acid-induced rodent model of autism. Experimental Neurology,299(Pt A), 217–227.CrossRefGoogle Scholar
  20. Oaks, A. W., Zamarbide, M., Tambunan, D. E., Santini, E., Di Costanzo, S., Pond, H. L., et al. (2017). Cc2d1a loss of function disrupts functional and morphological development in forebrain neurons leading to cognitive and social deficits. Cerebral Cortex,27(2), 1670–1685.CrossRefGoogle Scholar
  21. Poultney, C. S., Goldberg, A. P., Drapeau, E., et al. (2013). Identification of small exonic CNV from whole-exome sequence data and application to autism spectrumdisorder. American Journal of Human Genetics,93(4), 607–619.CrossRefGoogle Scholar
  22. Qin, L., Dai, X., & Yin, Y. (2016). Valproic acid exposure sequentially activates Wnt and mTOR pathways in rats. Molecular and Cellular Neuroscience,75, 27–35.CrossRefGoogle Scholar
  23. Rubinsztein, D. C., Codogno, P., & Levine, B. (2012). Autophagy modulation as a potential therapeutic target for diverse diseases. Nature Reviews Drug Discovery,11, 709–730.CrossRefGoogle Scholar
  24. Salminen, A., Kaarniranta, K., Kauppinen, A., Ojala, J., Haapasalo, A., Soininen, H., et al. (2013). Impaired autophagy and APP processing in Alzheimer’s disease: The potential role of Beclin 1 interactome. Progress in Neurobiology,106–107, 33–54.CrossRefGoogle Scholar
  25. Sener, E. F., Canatan, H., & Ozkul, Y. (2016a). Recent advances in autism spectrum disorders: Applications of whole exome sequencing technology. Psychiatry Investigation,13(3), 255–264.CrossRefGoogle Scholar
  26. Sener, E. F., Cıkılı Uytun, M., Korkmaz Bayramov, K., Zararsiz, G., Oztop, D. B., Canatan, H., et al. (2016b). The roles of CC2D1A and HTR1A gene expressions in autism spectrum disorders. Metabolic Brain Disease,31(3), 613–619.CrossRefGoogle Scholar
  27. Tang, G., Gudsnuk, K., Kuo, S. H., Cotrina, M. L., Rosoklija, G., Sosunov, A., et al. (2014). Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron,83, 1–13.CrossRefGoogle Scholar
  28. Wang, Z. Z., Zhang, Y., Liu, Y. Q., Zhao, N., Zhang, Y. Z., Yuan, L., et al. (2013). RNA Interference mediated phosphodiesterase 4D splice variants knockdown in the prefrontal cortex produces antidepressant-like and cognition-enhancing effects. British Journal of Pharmacology,168, 1001–1014.CrossRefGoogle Scholar
  29. Wong, E., & Cuervo, A. M. (2010). Autophagy gone awry in neurodegenerative diseases. Nature Neuroscience,13(7), 805–811.CrossRefGoogle Scholar
  30. Yoon, S. Y., Choi, J. E., Kweon, H. S., Choe, H., Kim, S. W., Hwang, O., et al. (2008). Okadaic acid increases autophagosomes in rat neurons: Implications for Alzheimer’s disease. Journal of Neuroscience Research,86(14), 3230–3239.CrossRefGoogle Scholar
  31. Zamarbide, M., Oaks, A. W., Pond, H. L., Adelman, J. S., & Manzini, M. C. (2018). Loss of the intellectual disability and autism gene Cc2d1a and its homolog Cc2d1b differentially affect spatial memory, anxiety, and hyperactivity. Frontiers in Genetics,2(9), 65.  https://doi.org/10.3389/fgene.2018.00065.CrossRefGoogle Scholar
  32. Zhang, J., Zhang, J. X., & Zhang, Q. L. (2016). PI3 K/AKT/mTOR-mediated autophagy in the development of autism spectrum disorder. Brain Research Bulletin,125, 152–158.CrossRefGoogle Scholar
  33. Zhao, M., Raingo, J., Chen, Z. J., & Kavalali, E. T. (2011). Cc2d1a, a C2 domain containing protein linked to nonsyndromic mental retardation, controls functional maturation of central synapses. Journal of Neurophysiology,105(4), 1506–1515.CrossRefGoogle Scholar
  34. Zoghbi, H. Y., & Bear, M. F. (2012). Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harbor Perspectives in Biology,4(3), a009886.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Medical Biology, Medical FacultyErciyes UniversityKayseriTurkey
  2. 2.Genome and Stem Cell Center (GENKOK)Erciyes UniversityKayseriTurkey
  3. 3.Department of Medical GeneticsHaseki Education Research HospitalIstanbulTurkey

Personalised recommendations