Advertisement

Prolactin is Not Associated with Disability and Clinical Forms in Patients with Multiple Sclerosis

  • Wildéa Lice de Carvalho Jennings Pereira
  • Tamires Flauzino
  • Daniela Frizon Alfieri
  • Sayonara Rangel Oliveira
  • Ana Paula Kallaur
  • Andrea Name Colado Simão
  • Marcell Alysson Batisti Lozovoy
  • Damacio Ramón Kaimen-Maciel
  • Michael Maes
  • Edna Maria Vissoci ReicheEmail author
Original Paper

Abstract

An association between prolactinemia with disability, clinical forms, and sex of patients with multiple sclerosis (MS) remains unclear. The aim of this study was to evaluate the association of prolactin with clinical forms and accumulating disability over time in patients with MS. A longitudinal study was carried out with 101 patients with relapsing–remitting MS (RRMS) and 19 with progressive forms of MS (ProgMS). The disability over time, as well as prolactin and ferritin serum levels were evaluated at baseline (T0), 8-month follow-up (T8), and 16-month follow-up. The disability at T0, T8, and T16 was higher among patients with ProgMS than those with RRMS. Prolactin and ferritin levels did not differ over time between both groups. Initially, prolactin was associated with MS disability. After introducing age and sex, the effects of prolactin on disability were no longer significant. Prolactin was associated with age and sex, whereby age was positively associated with disability. In the same way, after introducing age and sex, the effects of diagnosis on prolactin levels, as well as the association between prolactin and ferritin, were no longer significant (P = 0.563 and P = 0.599, respectively). Moreover, 21.6% of the variance in the disability was predicted by age (P < 0.001), and sex (P = 0.049), while prolactin was not significant. In conclusion, the effects of prolactin on the disability and clinical forms of MS patients may be spurious results because those correlations reflect the positive associations of age with the disability and the negative association of age with prolactin.

Keywords

Multiple sclerosis Disability Prolactin Ferritin Spurious result 

Notes

Funding

This study was partially supported by Novartis Biosciences S.A. for the development of the research according to the Researcher’s Initiative Study CFTY720DBR07T. The authors do not receive any reimbursement or financial benefits and declare that they have no competing interests. Novartis Biosciences S.A. played no role in the design, methods, data management or analysis or in the decision to publish. The study was also supported by grants from Coordination for the Improvement of Higher Level of Education Personnel (CAPES) of Brazilian Ministry of Education; Institutional Program for Scientific Initiation Scholarship (PIBIC) of the National Council for Scientific and Technological Development (CNPq).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

The protocol was approved by the Institutional Research Ethics Committees of University of Londrina, Paraná, Brazil (CAAE: 22290913.9.0000.5231) and all of the individuals invited were informed in detail about the research and gave written Informed Consent.

References

  1. Academia Brasileira De Neurologia. (2016). Recomendações no tratamento da Esclerose Múltipla e Neuromielite Óptica (2nd ed.). São Paulo: Omnifarma.Google Scholar
  2. Alberti, K. G., Eckel, R. H., Grundy, S. M., et al. (2009). Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation, 120(16), 1640–1645.CrossRefPubMedGoogle Scholar
  3. Azar, S. T., & Yamout, B. (1999). Prolactin secretion is increased in patients with multiple sclerosis. Endocrine Research, 25(2), 207–214.  https://doi.org/10.1080/07435809909066142.CrossRefPubMedGoogle Scholar
  4. Borba, V. V., Zandman-Goddard, G., & Shoenfeld, Y. (2018). Prolactin and autoimmunity. Frontiers in Immunology, 9, 1–8.CrossRefGoogle Scholar
  5. Borchers, A. T., Naguwa, S. M., Keen, C. L., & Gershwin, M. E. (2010). The implications of autoimmunity and pregnancy. Journal of Autoimmunity, 34(3), 287–299.  https://doi.org/10.1016/j.jaut.2009.11.015.CrossRefGoogle Scholar
  6. Correale, J., Farez, M. F., & Ysrraelit, M. C. (2014). Role of prolactin in B cell regulation in multiple sclerosis. Journal of Neuroimmunology, 269(1–2), 76–86.  https://doi.org/10.1016/j.jneuroim.2014.02.007.CrossRefPubMedGoogle Scholar
  7. Cottrell, D. A., Kremenchutzky, M., Rice, G. P., et al. (1999). The natural history of multiple sclerosis: A geographically based study. 5. The clinical features and natural history of primary progressive multiple sclerosis. Brain, 122(Pt 4), 625–639.CrossRefPubMedGoogle Scholar
  8. Da Costa, R., Szyper-Kravitz, M., Szekanecz, Z., et al. (2011). Ferritin and prolactin levels in multiple sclerosis. Israel Medical Association Journal, 13(2), 91–95.PubMedGoogle Scholar
  9. De Giglio, L., Marinelli, F., Prosperini, L., et al. (2015). Relationship between prolactin plasma levels and white matter volume in women with multiple sclerosis. Mediators of Inflammation, 2015, 732539.  https://doi.org/10.1155/2015/732539.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Devi, Y. S., & Halperin, J. (2014). Reproductive actions of prolactin mediated through short and long receptor isoforms. Molecular and Cellular Endocrinology, 382(1), 400–410.  https://doi.org/10.1016/j.mce.2013.09.016.CrossRefGoogle Scholar
  11. Ferreira, K. P. Z., Oliveira, S. R., Kallaur, A. P., et al. (2017). Disease progression and oxidative stress are associated with higher serum ferritin levels in patients with multiple sclerosis. Journal of the Neurological Sciences, 15(373), 236–241.  https://doi.org/10.1016/j.jns.2016.12.039.CrossRefGoogle Scholar
  12. Gregg, C. (2009). Pregnancy, prolactin and white matter regeneration. J Neurological Sciences, 285, 22–27.CrossRefGoogle Scholar
  13. Gregg, C., Shikar, V., Larsen, P., et al. (2007). White matter plasticity and enhanced remyelination in the maternal CNS. Journal of Neuroscience, 21, 1812–1823.CrossRefGoogle Scholar
  14. Heesen, C., Gold, S. M., Bruhn, M., Mönch, A., & Schulz, K. H. (2002). Prolactin stimulation in multiple sclerosis—An indicator of disease subtypes and activity? Endocrine Research, 28(1–2), 9–18.CrossRefPubMedGoogle Scholar
  15. Huitinga, I., Erkut, Z. A., Van Beurden, D., et al. (2004). Impaired hypothalamus-pituitary-adrenal axis activity and more severe multiple sclerosis with hypothalamic lesions. Annals of Neurology, 55, 37–45.CrossRefPubMedGoogle Scholar
  16. James, P. A., Oparil, S., Carter, B. L., et al. (2014). Evidence-based guideline for the management of high blood pressure in adults: Report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA, 311(5), 507–520.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kira, J., Harada, M., Yamaguchi, Y., et al. (1991). Hyperprolactinemia in multiple sclerosis. Journal of the Neurological Sciences, 102, 61–66.CrossRefPubMedGoogle Scholar
  18. Koch, M., Mostert, J., Arutjunyan, A. V., et al. (2007). Plasma lipid peroxidation and progression of disability in multiple sclerosis. European Journal of Neurology, 14, 529–533.CrossRefPubMedGoogle Scholar
  19. Kurtzke, J. F. (1983). Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology, 33, 1444–1452.CrossRefGoogle Scholar
  20. Langer-Gould, A., Huang, S. M., & Gupta, R. (2009). Exclusive breastfeeding and the risk of postpartum relapses in women with multiple sclerosis. Archives of Neurology, 66, 958–963.CrossRefPubMedGoogle Scholar
  21. Lassmann, H., van Horssen, J., & Mahad, D. (2012). Progressive multiple sclerosis: Pathology and pathogenesis. Nature Reviews Neurology, 8, 647–656.CrossRefPubMedGoogle Scholar
  22. Lennartsson, A. K., & Jonsdottir, I. H. (2011). Prolactin in response to acute psychosocial stress in healthy men and women. Psychoneuroendocrinology, 36, 1530–1539.CrossRefPubMedGoogle Scholar
  23. Lublin, F. D., & Reingold, S. C. (1996). Defining the clinical course of multiple sclerosis: Results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology, 46, 907–911.CrossRefGoogle Scholar
  24. Lublin, F. D., Reingold, S. C., Cohen, J. A., Cutter, G. R., Sørensen, P. S., Thompson, A. J., et al. (2014). Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology, 83(3), 278–286.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Mackern-Oberti, J. P., Jara, E. L., Riedel, C. A., & Kalergis, A. M. (2011). Hormonal modulation of dendritic cells differentiation, maturation and function: Implications for the initiation and progress of systemic autoimmunity. Archivum immunolgiae et therapiae experimentalis, 65(2), 123–136.  https://doi.org/10.1007/s00005-016-0418-6.CrossRefGoogle Scholar
  26. Majumdar, A., & Mangal, N. S. (2013). Hyperprolactinemia. Journal of Human Reproductive Sciences, 6(3), 168–175.  https://doi.org/10.4103/0974-1208.121400.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Mellai, M., Giordano, M., D’Alfonso, S., et al. (2003). Prolactin and prolactin receptor gene polymorphisms in multiple sclerosis and systemic lupus erythematosus. Human Immunology, 64(2), 274–284.  https://doi.org/10.1016/s0198-8859(02)00804-2.CrossRefPubMedGoogle Scholar
  28. Moshirzadeh, S., Ghareghozli, K., Harandi, A. A., & Pakdaman, H. (2012). Serum prolactin level in patients with relapsing-remitting multiple sclerosis during relapse. Journal of Clinical Neuroscience, 19(4), 622–623.  https://doi.org/10.1016/j.jocn.2011.07.032.CrossRefPubMedGoogle Scholar
  29. Orbach, H., Zandman-Goddard, G., Amital, H., Barak, V., Szekanecz, Z., Szucs, G., et al. (2007). Novel biomarkers in autoimmune diseases: Prolactin, ferritin, vitamin D, and TPA levels in autoimmune diseases. Annals of the New York Academy of Sciences, 1109, 385–400.CrossRefPubMedGoogle Scholar
  30. Ortona, E., Pierdominici, M., Maselli, A., Veroni, C., Aloisi, F., & Shoenfeld, Y. (2016). Sex-based differences in autoimmune diseases. Annali dell Istituto Superiore di Sanita, 52(2), 205–212.  https://doi.org/10.4415/ann_16_02_12.CrossRefPubMedGoogle Scholar
  31. Peeva, E., & Zouali, M. (2005). Spotlight on the role of hormonal factors in the emergence of autoreactive B-lymphocytes. Immunology Letters, 101(2), 123–143.  https://doi.org/10.1016/j.imlet.2005.05.014.CrossRefPubMedGoogle Scholar
  32. Pereira Suarez, A. L., Lopez-Rincon, G., Martinez Neri, P. A., & Estrada-Chavez, C. (2015). Prolactin in inflammatory response. Advances in Experimental Medicine and Biology, 846, 243–264.  https://doi.org/10.1007/978-3-319-12114-7_11.CrossRefPubMedGoogle Scholar
  33. Polman, C. H., Reingold, S. C., Banwell, B., et al. (2011). Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria. Annals of Neurology, 69, 292–302.  https://doi.org/10.1002/ana.22366.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Ringle, C. M., Wende, S., Becker, J.-M. SmartPLS 3. Bönningstedt: SmartPLS, 2015. Retrieved from http://www.smartpls.com.
  35. Sinha, Y. (1995). Structural variants of prolactin: Occurrence and physiological significance. Endocrine Reviews, 16, 354–369.CrossRefPubMedGoogle Scholar
  36. Sospedra, M., & Martin, R. (2016). Immunology of multiple sclerosis. Seminars in Neurology, 36, 115–127.CrossRefPubMedGoogle Scholar
  37. Vera-Lastra, O., Jara, L. J., & Espinoza, L. R. (2002). Prolactin and autoimmunity. Autoimmunity Reviews, 1(6), 360–364.  https://doi.org/10.1016/S1568-9972(02)00081-2.CrossRefPubMedGoogle Scholar
  38. Vukusic, S., Hutchinson, M., & Hours, M. (2004). Pregnancy and multiple sclerosis (the PRIMS study): Clinical predictors of postpartum relapse. Brain, 127, 1353–1360.CrossRefPubMedGoogle Scholar
  39. Yamasaki, K., Horiuchi, I., Minohara, M., et al. (2000). Hyperprolactinemia in optico-spinal multiple sclerosis. Internal Medicine, 39, 296–299.CrossRefPubMedGoogle Scholar
  40. Zhornitsky, S., Yong, V. W., Weiss, S., & Metz, L. M. (2012). Prolactin in multiple sclerosis. Multiple Sclerosis Journal, 19(1), 15–23.  https://doi.org/10.1177/1352458512458555.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Wildéa Lice de Carvalho Jennings Pereira
    • 1
    • 2
  • Tamires Flauzino
    • 1
  • Daniela Frizon Alfieri
    • 1
  • Sayonara Rangel Oliveira
    • 1
    • 3
  • Ana Paula Kallaur
    • 1
  • Andrea Name Colado Simão
    • 1
    • 3
  • Marcell Alysson Batisti Lozovoy
    • 1
    • 3
  • Damacio Ramón Kaimen-Maciel
    • 2
    • 4
  • Michael Maes
    • 5
    • 6
  • Edna Maria Vissoci Reiche
    • 1
    • 3
    Email author
  1. 1.Laboratory of Applied Immunology, Health Sciences CenterUniversity of LondrinaLondrinaBrazil
  2. 2.Outpatient Clinic for NeurologyUniversity Hospital, State University of LondrinaLondrinaBrazil
  3. 3.Department of Pathology, Clinical Analysis and Toxicology, Health Sciences CenterUniversity of LondrinaLondrinaBrazil
  4. 4.Clinical NeurologySanta Casa de Misericórdia de LondrinaLondrinaBrazil
  5. 5.IMPACT Strategic Research Centre, School of MedicineDeakin UniversityGeelongAustralia
  6. 6.Department of PsychiatryKing Chulalongkorn Memorial HospitalBangkokThailand

Personalised recommendations