Advertisement

Measuring Respiration in Isolated Murine Brain Mitochondria: Implications for Mechanistic Stroke Studies

  • Jared A. Sperling
  • Siva S. V. P. Sakamuri
  • Aaron L. Albuck
  • Venkata N. Sure
  • Wesley R. Evans
  • Nicholas R. Peterson
  • Ibolya Rutkai
  • Ricardo Mostany
  • Ryousuke Satou
  • Prasad V. G. KatakamEmail author
Original Paper

Abstract

Measuring mitochondrial respiration in brain tissue is very critical in understanding the physiology and pathology of the central nervous system. Particularly, measurement of respiration in isolated mitochondria provides the advantage over the whole cells or tissues as the changes in respiratory function are intrinsic to mitochondrial structures rather than the cellular signaling that regulates mitochondria. Moreover, a high-throughput technique for measuring mitochondrial respiration minimizes the experimental time and the sample-to-sample variation. Here, we provide a detailed protocol for measuring respiration in isolated brain non-synaptosomal mitochondria using Agilent Seahorse XFe24 Analyzer. We optimized the protocol for the amount of mitochondria and concentrations of ADP, oligomycin, and trifluoromethoxy carbonylcyanide phenylhydrazone (FCCP) for measuring respiratory parameters for complex I-mediated respiration. In addition, we measured complex II-mediated respiratory parameters. We observed that 10 µg of mitochondrial protein per well, ADP concentrations ranging between 2.5 and 10 mmol/L along with 5 µmol/L of oligomycin, and 5 µmol/L of FCCP are ideal for measuring the complex I-mediated respiration in isolated mouse brain mitochondria. Furthermore, we determined that 2.5 µg of mitochondrial protein per well is ideal for measuring complex II-mediated respiration. Notably, we provide a discussion of logical analysis of data and how the assay could be utilized to design mechanistic studies for experimental stroke. In conclusion, we provide detailed experimental design for measurement of various respiratory parameters in isolated brain mitochondria utilizing a novel high-throughput technique along with interpretation and analysis of data.

Keywords

Mitochondrial respiration Non-synaptosomal mitochondria Isolated mitochondria Oxygen consumption rate 

Notes

Acknowledgements

We thank Ms. Sufen Zheng for her technical help for the studies.

Funding

This research project was supported by the National Institutes of Health: National Institute of Neurological Disorders and Stroke and National Institute of General Medical Sciences (NS094834—P.V. Katakam), National Institute on Aging (R01AG047296—R. Mostany), and National Institute of Diabetes and Digestive and Kidney Diseases (DK107694—R. Satou). In addition, the study was supported by American Heart Association (National Center Scientist Development Grant, 14SDG20490359—P.V. Katakam; Greatersoutheast Affiliate Predoctoral Fellowship Grant, 16PRE27790122—V.N. Sure; and Scientist Development Grant, 17SDG33410366—I. Rutkai), Louisiana Clinical and Translational Science Center (supported in part by U54 GM104940 from the National Institute of General Medical Sciences of the National Institutes of Health, which funds the LACaTS to I. Rutkai), and Louisiana Board of Regents grants (RCS, LEQSF(2016-19)-RD-A-24—R. Mostany). This work was supported in part by [U54 GM104940] from the National Institute of General Medical Sciences of the National Institutes of Health, which funds the Louisiana Clinical and Translational Science Center (to I. Rutkai). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Animal procedures and protocols were approved by the Institutional Animal Care and Use Committee of Tulane University and performed in accordance with the ARRIVE guidelines. Furthermore, the manuscript is in compliance with the ethical standards and the policies of the journal.

References

  1. Agostini, M., Romeo, F., Inoue, S., Niklison-Chirou, M. V., Elia, A. J., Dinsdale, D., et al. (2016). Metabolic reprogramming during neuronal differentiation. Cell Death and Differentiation, 23(9), 1502–1514.  https://doi.org/10.1038/cdd.2016.36.CrossRefGoogle Scholar
  2. Andersen, J. V., Jakobsen, E., Waagepetersen, H. S., & Aldana, B. I. (2019). Distinct differences in rates of oxygen consumption and ATP synthesis of regionally isolated non-synaptic mouse brain mitochondria. Journal of Neuroscience Research.  https://doi.org/10.1002/jnr.24371.Google Scholar
  3. Attwell, D., & Laughlin, S. B. (2001). An energy budget for signaling in the grey matter of the brain. Journal of Cerebral Blood Flow and Metabolism, 21(10), 1133–1145.  https://doi.org/10.1097/00004647-200110000-00001.CrossRefGoogle Scholar
  4. Back, T., Hemmen, T., & Schuler, O. G. (2004). Lesion evolution in cerebral ischemia. Journal of Neurology, 251(4), 388–397.  https://doi.org/10.1007/s00415-004-0399-y.CrossRefGoogle Scholar
  5. Barrientos, A., Fontanesi, F., & Diaz, F. (2009). Evaluation of the mitochondrial respiratory chain and oxidative phosphorylation system using polarography and spectrophotometric enzyme assays. Current Protocols in Human Genetics, Chapter, 19(Unit19), 13.  https://doi.org/10.1002/0471142905.hg1903s63.Google Scholar
  6. Belayev, L., Zhao, W., Busto, R., & Ginsberg, M. D. (1997). Transient middle cerebral artery occlusion by intraluminal suture: I. Three-dimensional autoradiographic image-analysis of local cerebral glucose metabolism-blood flow interrelationships during ischemia and early recirculation. Journal of Cerebral Blood Flow and Metabolism, 17(12), 1266–1280.  https://doi.org/10.1097/00004647-199712000-00002.CrossRefGoogle Scholar
  7. Berressem, D., Koch, K., Franke, N., Klein, J., & Eckert, G. P. (2016). Intravenous treatment with a long-chain omega-3 lipid emulsion provides neuroprotection in a murine model of ischemic stroke—A pilot study. PLoS ONE, 11(11), e0167329.  https://doi.org/10.1371/journal.pone.0167329.CrossRefGoogle Scholar
  8. Boutagy, N. E., Rogers, G. W., Pyne, E. S., Ali, M. M., Hulver, M. W., & Frisard, M. I. (2015). Using isolated mitochondria from minimal quantities of mouse skeletal muscle for high throughput microplate respiratory measurements. Journal of Visualized Experiments.  https://doi.org/10.3791/53216.Google Scholar
  9. Brand, M. D., & Nicholls, D. G. (2011). Assessing mitochondrial dysfunction in cells. Biochemical Journal, 435(2), 297–312.  https://doi.org/10.1042/BJ20110162.CrossRefGoogle Scholar
  10. Busija, D. W., Katakam, P., Rajapakse, N. C., Kis, B., Grover, G., Domoki, F., et al. (2005). Effects of ATP-sensitive potassium channel activators diazoxide and BMS-191095 on membrane potential and reactive oxygen species production in isolated piglet mitochondria. Brain Research Bulletin, 66(2), 85–90.  https://doi.org/10.1016/j.brainresbull.2005.03.022.CrossRefGoogle Scholar
  11. Cebak, J. E., Singh, I. N., Hill, R. L., Wang, J. A., & Hall, E. D. (2017). Phenelzine protects brain mitochondrial function in vitro and in vivo following traumatic brain injury by scavenging the reactive carbonyls 4-hydroxynonenal and acrolein leading to cortical histological neuroprotection. Journal of Neurotrauma, 34(7), 1302–1317.  https://doi.org/10.1089/neu.2016.4624.CrossRefGoogle Scholar
  12. Clerc, P., & Polster, B. M. (2012). Investigation of mitochondrial dysfunction by sequential microplate-based respiration measurements from intact and permeabilized neurons. PLoS ONE, 7(4), e34465.  https://doi.org/10.1371/journal.pone.0034465.CrossRefGoogle Scholar
  13. Domoki, F., Bari, F., Nagy, K., Busija, D. W., & Siklos, L. (2004). Diazoxide prevents mitochondrial swelling and Ca2 + accumulation in CA1 pyramidal cells after cerebral ischemia in newborn pigs. Brain Research, 1019(1–2), 97–104.  https://doi.org/10.1016/j.brainres.2004.05.088.CrossRefGoogle Scholar
  14. Doyle, K. P., Simon, R. P., & Stenzel-Poore, M. P. (2008). Mechanisms of ischemic brain damage. Neuropharmacology, 55(3), 310–318.  https://doi.org/10.1016/j.neuropharm.2008.01.005.CrossRefGoogle Scholar
  15. Fried, N. T., Moffat, C., Seifert, E. L., & Oshinsky, M. L. (2014). Functional mitochondrial analysis in acute brain sections from adult rats reveals mitochondrial dysfunction in a rat model of migraine. The American Journal of Physiology-Cell Physiology, 307(11), C1017–C1030.  https://doi.org/10.1152/ajpcell.00332.2013.CrossRefGoogle Scholar
  16. Gaspar, T., Domoki, F., Lenti, L., Katakam, P. V., Snipes, J. A., Bari, F., et al. (2009). Immediate neuronal preconditioning by NS1619. Brain Research, 1285, 196–207.  https://doi.org/10.1016/j.brainres.2009.06.008.CrossRefGoogle Scholar
  17. Gaspar, T., Katakam, P., Snipes, J. A., Kis, B., Domoki, F., Bari, F., et al. (2008). Delayed neuronal preconditioning by NS1619 is independent of calcium activated potassium channels. Journal of Neurochemistry, 105(4), 1115–1128.  https://doi.org/10.1111/j.1471-4159.2007.05210.x.CrossRefGoogle Scholar
  18. Gido, G., Kristian, T., & Siesjo, B. K. (1997). Extracellular potassium in a neocortical core area after transient focal ischemia. Stroke, 28(1), 206–210.CrossRefGoogle Scholar
  19. Golpich, M., Amini, E., Mohamed, Z., Azman Ali, R., Mohamed Ibrahim, N., & Ahmadiani, A. (2017). Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: Pathogenesis and treatment. CNS Neuroscience & Therapeutics, 23(1), 5–22.  https://doi.org/10.1111/cns.12655.CrossRefGoogle Scholar
  20. Hossmann, K. A. (1994). Viability thresholds and the penumbra of focal ischemia. Annals of Neurology, 36(4), 557–565.  https://doi.org/10.1002/ana.410360404.CrossRefGoogle Scholar
  21. Kristian, T., Gido, G., Kuroda, S., Schutz, A., & Siesjo, B. K. (1998). Calcium metabolism of focal and penumbral tissues in rats subjected to transient middle cerebral artery occlusion. Experimental Brain Research, 120(4), 503–509.CrossRefGoogle Scholar
  22. Kuroda, S., Katsura, K., Hillered, L., Bates, T. E., & Siesjo, B. K. (1996). Delayed treatment with alpha-phenyl-N-tert-butyl nitrone (PBN) attenuates secondary mitochondrial dysfunction after transient focal cerebral ischemia in the rat. Neurobiology of Disease, 3(2), 149–157.CrossRefGoogle Scholar
  23. Long, A. N., Owens, K., Schlappal, A. E., Kristian, T., Fishman, P. S., & Schuh, R. A. (2015). Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer’s disease-relevant murine model. BMC Neurology, 15, 19.  https://doi.org/10.1186/s12883-015-0272-x.CrossRefGoogle Scholar
  24. Mayanagi, K., Gaspar, T., Katakam, P. V., Kis, B., & Busija, D. W. (2007). The mitochondrial K(ATP) channel opener BMS-191095 reduces neuronal damage after transient focal cerebral ischemia in rats. Journal of Cerebral Blood Flow and Metabolism, 27(2), 348–355.  https://doi.org/10.1038/sj.jcbfm.9600345.CrossRefGoogle Scholar
  25. Memezawa, H., Minamisawa, H., Smith, M. L., & Siesjo, B. K. (1992). Ischemic penumbra in a model of reversible middle cerebral artery occlusion in the rat. Experimental Brain Research, 89(1), 67–78.CrossRefGoogle Scholar
  26. Moreira, P. I., Santos, M. S., Moreno, A. M., Seica, R., & Oliveira, C. R. (2003). Increased vulnerability of brain mitochondria in diabetic (Goto-Kakizaki) rats with aging and amyloid-beta exposure. Diabetes, 52(6), 1449–1456.CrossRefGoogle Scholar
  27. Nakai, A., Kuroda, S., Kristián, T., & Siesjö, B. K. (1997). The immunosuppressant drug FK506 ameliorates secondary mitochondrial dysfunction following transient focal cerebral ischemia in the rat. Neurobiology of Disease, 4(3), 288–300.  https://doi.org/10.1006/nbdi.1997.0146.CrossRefGoogle Scholar
  28. Nicholls, D. (2002). Mitochondrial bioenergetics, aging, and aging-related disease. Science of Aging Knowledge Environment, 2002(31), pe12.  https://doi.org/10.1126/sageke.2002.31.pe12.CrossRefGoogle Scholar
  29. Nicholls, D. G. (2001). A history of UCP1. Biochemical Society Transactions, 29(Pt 6), 751–755.CrossRefGoogle Scholar
  30. Nicholls, D. G. (2004). Mitochondrial membrane potential and aging. Aging Cell, 3(1), 35–40.  https://doi.org/10.1111/j.1474-9728.2003.00079.x.CrossRefGoogle Scholar
  31. Nicholls, D. G. (2005). Mitochondria and calcium signaling. Cell Calcium, 38(3–4), 311–317.  https://doi.org/10.1016/j.ceca.2005.06.011.CrossRefGoogle Scholar
  32. Nicholls, D. G., & Budd, S. L. (1998). Mitochondria and neuronal glutamate excitotoxicity. Biochimica et Biophysica Acta, 1366(1–2), 97–112.CrossRefGoogle Scholar
  33. Nicholls, D. G., Budd, S. L., Ward, M. W., & Castilho, R. F. (1999). Excitotoxicity and mitochondria. Biochemical Society Symposium, 66, 55–67.CrossRefGoogle Scholar
  34. Novgorodov, S. A., Riley, C. L., Keffler, J. A., Yu, J., Kindy, M. S., Macklin, W. B., et al. (2016). SIRT3 deacetylates ceramide synthases: Implications for mitochondrial dysfunction and brain injury. Journal of Biological Chemistry, 291(4), 1957–1973.  https://doi.org/10.1074/jbc.M115.668228.CrossRefGoogle Scholar
  35. Pandya, J. D., Sullivan, P. G., & Pettigrew, L. C. (2011). Focal cerebral ischemia and mitochondrial dysfunction in the TNFalpha-transgenic rat. Brain Research, 1384, 151–160.  https://doi.org/10.1016/j.brainres.2011.01.102.CrossRefGoogle Scholar
  36. Piwonska, M., Szewczyk, A., Schroder, U. H., Reymann, K. G., & Bednarczyk, I. (2016). Effectors of large-conductance calcium-activated potassium channel modulate glutamate excitotoxicity in organotypic hippocampal slice cultures. Acta Neurobiologiae Experimentalis (Wars), 76(1), 20–31.CrossRefGoogle Scholar
  37. Rogers, G. W., Brand, M. D., Petrosyan, S., Ashok, D., Elorza, A. A., Ferrick, D. A., et al. (2011). High throughput microplate respiratory measurements using minimal quantities of isolated mitochondria. PLoS ONE, 6(7), e21746.  https://doi.org/10.1371/journal.pone.0021746.CrossRefGoogle Scholar
  38. Russo, E., Napoli, E., & Borlongan, C. V. (2018). Healthy mitochondria for stroke cells. Brain Circulation, 4(3), 95–98.  https://doi.org/10.4103/bc.bc_20_18.CrossRefGoogle Scholar
  39. Sakamuri, S., Sperling, J. A., Sure, V. N., Dholakia, M. H., Peterson, N. R., Rutkai, I., et al. (2018). Measurement of respiratory function in isolated cardiac mitochondria using Seahorse XFe24 Analyzer: Applications for aging research. Geroscience, 40(3), 347–356.  https://doi.org/10.1007/s11357-018-0021-3.CrossRefGoogle Scholar
  40. Sauerbeck, A., Pandya, J., Singh, I., Bittman, K., Readnower, R., Bing, G., et al. (2011). Analysis of regional brain mitochondrial bioenergetics and susceptibility to mitochondrial inhibition utilizing a microplate based system. Journal of Neuroscience Methods, 198(1), 36–43.  https://doi.org/10.1016/j.jneumeth.2011.03.007.CrossRefGoogle Scholar
  41. Schuh, R. A., Clerc, P., Hwang, H., Mehrabian, Z., Bittman, K., Chen, H., et al. (2011). Adaptation of microplate-based respirometry for hippocampal slices and analysis of respiratory capacity. Journal of Neuroscience Research, 89(12), 1979–1988.  https://doi.org/10.1002/jnr.22650.CrossRefGoogle Scholar
  42. Schwarzkopf, T. M., Hagl, S., Eckert, G. P., & Klein, J. (2013). Neuroprotection by bilobalide in ischemia: Improvement of mitochondrial function. Pharmazie, 68(7), 584–589.Google Scholar
  43. Shimizu, K., Lacza, Z., Rajapakse, N., Horiguchi, T., Snipes, J., & Busija, D. W. (2002). MitoK(ATP) opener, diazoxide, reduces neuronal damage after middle cerebral artery occlusion in the rat. American Journal of Physiology-Heart and Circulatory Physiology, 283(3), H1005–H1011.  https://doi.org/10.1152/ajpheart.00054.2002.CrossRefGoogle Scholar
  44. Sims, N. R., & Muyderman, H. (2010). Mitochondria, oxidative metabolism and cell death in stroke. Biochimica et Biophysica Acta, 1802(1), 80–91.  https://doi.org/10.1016/j.bbadis.2009.09.003.CrossRefGoogle Scholar
  45. Takahashi, K., Miura, Y., Ohsawa, I., Shirasawa, T., & Takahashi, M. (2018). In vitro rejuvenation of brain mitochondria by the inhibition of actin polymerization. Scientific Reports, 8(1), 15585.  https://doi.org/10.1038/s41598-018-34006-5.CrossRefGoogle Scholar
  46. Tyrrell, D. J., Bharadwaj, M. S., Jorgensen, M. J., Register, T. C., Shively, C., Andrews, R. N., et al. (2017). Blood-based bioenergetic profiling reflects differences in brain bioenergetics and metabolism. Oxidative Medicine and Cellular Longevity, 2017, 7317251.  https://doi.org/10.1155/2017/7317251.CrossRefGoogle Scholar
  47. Wang, Y., Xu, E., Musich, P. R., & Lin, F. (2019). Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure. CNS Neuroscience & Therapeutics.  https://doi.org/10.1111/cns.13116.Google Scholar
  48. Yang, J. L., Mukda, S., & Chen, S. D. (2018). Diverse roles of mitochondria in ischemic stroke. Redox Biology, 16, 263–275.  https://doi.org/10.1016/j.redox.2018.03.002.CrossRefGoogle Scholar
  49. Zhao, W., Belayev, L., & Ginsberg, M. D. (1997). Transient middle cerebral artery occlusion by intraluminal suture: II. Neurological deficits, and pixel-based correlation of histopathology with local blood flow and glucose utilization. Journal of Cerebral Blood Flow and Metabolism, 17(12), 1281–1290.  https://doi.org/10.1097/00004647-199712000-00003.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jared A. Sperling
    • 1
  • Siva S. V. P. Sakamuri
    • 1
  • Aaron L. Albuck
    • 1
    • 3
  • Venkata N. Sure
    • 1
  • Wesley R. Evans
    • 1
    • 3
  • Nicholas R. Peterson
    • 1
  • Ibolya Rutkai
    • 1
    • 3
  • Ricardo Mostany
    • 1
    • 3
  • Ryousuke Satou
    • 2
  • Prasad V. G. Katakam
    • 1
    • 3
    Email author
  1. 1.Department of PharmacologyTulane University School of MedicineNew OrleansUSA
  2. 2.Department of PhysiologyTulane University School of MedicineNew OrleansUSA
  3. 3.Tulane Brain InstituteTulane UniversityNew OrleansUSA

Personalised recommendations