Advertisement

NeuroMolecular Medicine

, Volume 21, Issue 4, pp 325–343 | Cite as

Intracranial Aneurysms: Pathology, Genetics, and Molecular Mechanisms

  • Zhen Xu
  • Yan-Ning Rui
  • John P. HaganEmail author
  • Dong H. KimEmail author
Review Paper
  • 544 Downloads

Abstract

Intracranial aneurysms (IA) are local dilatations in cerebral arteries that predominantly affect the circle of Willis. Occurring in approximately 2–5% of adults, these weakened areas are susceptible to rupture, leading to subarachnoid hemorrhage (SAH), a type of hemorrhagic stroke. Due to its early age of onset and poor prognosis, SAH accounts for > 25% of years lost for all stroke victims under the age of 65. In this review, we describe the cerebrovascular pathology associated with intracranial aneurysms. To understand IA genetics, we summarize syndromes with elevated incidence, genome-wide association studies (GWAS), whole exome studies on IA-affected families, and recent research that established definitive roles for Thsd1 (Thrombospondin Type 1 Domain Containing Protein 1) and Sox17 (SRY-box 17) in IA using genetically engineered mouse models. Lastly, we discuss the underlying molecular mechanisms of IA, including defects in vascular endothelial and smooth muscle cells caused by dysfunction in mechanotransduction, Thsd1/FAK (Focal Adhesion Kinase) signaling, and the Transforming Growth Factor β (TGF-β) pathway. As illustrated by THSD1 research, cell adhesion may play a significant role in IA.

Keywords

Intracranial aneurysm Subarachnoid hemorrhage Etiology Genetics Animal models THSD1 

Notes

Acknowledgements

This work was supported by the grant # 1R01NS104280-01A1 from the National Institute of Neurological Disorders and Stroke, National Institutes of Health. We thank Dr. Joanna O’Leary for helpful comments that helped improve the manuscript.

Compliance with Ethical Standards

Conflicts of interest

There are no conflicts of interest to report.

References

  1. AbouAlaiwi, W. A., Takahashi, M., Mell, B. R., Jones, T. J., Ratnam, S., Kolb, R. J., et al. (2009). Ciliary polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signaling cascades. Circulation Research,104(7), 860–869.  https://doi.org/10.1161/CIRCRESAHA.108.192765.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abrantes, P., Santos, M. M., Sousa, I., Xavier, J. M., Francisco, V., Krug, T., et al. (2015). Genetic variants underlying risk of intracranial aneurysms: Insights from a GWAS in Portugal. PLoS ONE,10(7), e0133422.  https://doi.org/10.1371/journal.pone.0133422.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Akagawa, H., Tajima, A., Sakamoto, Y., Krischek, B., Yoneyama, T., Kasuya, H., et al. (2006). A haplotype spanning two genes, ELN and LIMK1, decreases their transcripts and confers susceptibility to intracranial aneurysms. Human Molecular Genetics,15(10), 1722–1734.  https://doi.org/10.1093/hmg/ddl096.CrossRefPubMedGoogle Scholar
  4. Akiyama, K., Narita, A., Nakaoka, H., Cui, T., Takahashi, T., Yasuno, K., et al. (2010). Genome-wide association study to identify genetic variants present in Japanese patients harboring intracranial aneurysms. Journal of Human Genetics,55(10), 656–661.  https://doi.org/10.1038/jhg.2010.82.CrossRefPubMedGoogle Scholar
  5. Alg, V. S., Ke, X., Grieve, J., Bonner, S., Walsh, D. C., Bulters, D., et al. (2018). Association of functional MMP-2 gene variant with intracranial aneurysms: Case-control genetic association study and meta-analysis. British Journal of Neurosurgery,32(3), 255–259.  https://doi.org/10.1080/02688697.2018.1427213.CrossRefPubMedGoogle Scholar
  6. Alg, V. S., Sofat, R., Houlden, H., & Werring, D. J. (2013). Genetic risk factors for intracranial aneurysms: A meta-analysis in more than 116,000 individuals. Neurology,80(23), 2154–2165.  https://doi.org/10.1212/WNL.0b013e318295d751.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Andreasen, T. H., Bartek, J., Jr., Andresen, M., Springborg, J. B., & Romner, B. (2013). Modifiable risk factors for aneurysmal subarachnoid hemorrhage. Stroke,44(12), 3607–3612.  https://doi.org/10.1161/STROKEAHA.113.001575.CrossRefPubMedGoogle Scholar
  8. Aoki, T., Kataoka, H., Ishibashi, R., Nozaki, K., Egashira, K., & Hashimoto, N. (2009). Impact of monocyte chemoattractant protein-1 deficiency on cerebral aneurysm formation. Stroke,40(3), 942–951.  https://doi.org/10.1161/STROKEAHA.108.532556.CrossRefPubMedGoogle Scholar
  9. Aoki, T., Kataoka, H., Shimamura, M., Nakagami, H., Wakayama, K., Moriwaki, T., et al. (2007). NF-kappaB is a key mediator of cerebral aneurysm formation. Circulation,116(24), 2830–2840.  https://doi.org/10.1161/CIRCULATIONAHA.107.728303.CrossRefPubMedGoogle Scholar
  10. Aoki, T., & Nishimura, M. (2011). The development and the use of experimental animal models to study the underlying mechanisms of CA formation. Journal of Biomedicine and Biotechnology,2011, 535921.  https://doi.org/10.1155/2011/535921.CrossRefPubMedGoogle Scholar
  11. Aoki, T., Saito, M., Koseki, H., Tsuji, K., Tsuji, A., Murata, K., et al. (2017). Macrophage imaging of cerebral aneurysms with ferumoxytol: An exploratory study in an animal model and in patients. The Journal of Stroke & Cerebrovascular Diseases,26(10), 2055–2064.  https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.10.026.CrossRefGoogle Scholar
  12. Arning, A., Jeibmann, A., Kohnemann, S., Brokinkel, B., Ewelt, C., Berger, K., et al. (2016). ADAMTS genes and the risk of cerebral aneurysm. Journal of Neurosurgery,125(2), 269–274.  https://doi.org/10.3171/2015.7.JNS154.CrossRefPubMedGoogle Scholar
  13. Batra, R., Suh, M. K., Carson, J. S., Dale, M. A., Meisinger, T. M., Fitzgerald, M., et al. (2018). IL-1beta (interleukin-1beta) and TNF-alpha (tumor necrosis factor-alpha) impact abdominal aortic aneurysm formation by differential effects on macrophage polarization. Arteriosclerosis, Thrombosis, and Vascular Biology,38(2), 457–463.  https://doi.org/10.1161/ATVBAHA.117.310333.CrossRefPubMedGoogle Scholar
  14. Bergmann, C., Guay-Woodford, L. M., Harris, P. C., Horie, S., Peters, D. J. M., & Torres, V. E. (2018). Polycystic kidney disease. Nature Reviews Disease Primers,4(1), 50.  https://doi.org/10.1038/s41572-018-0047-y.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bilguvar, K., Yasuno, K., Niemela, M., Ruigrok, Y. M., von Und, Zu, Fraunberg, M., et al. (2008). Susceptibility loci for intracranial aneurysm in European and Japanese populations. Nature Genetics,40(12), 1472–1477.  https://doi.org/10.1038/ng.240.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bober, M. B., Khan, N., Kaplan, J., Lewis, K., Feinstein, J. A., Scott, C. I., Jr., et al. (2010). Majewski osteodysplastic primordial dwarfism type II (MOPD II): Expanding the vascular phenotype. The American Journal of Medical Genetics - Part A,152A(4), 960–965.  https://doi.org/10.1002/ajmg.a.33252.CrossRefPubMedGoogle Scholar
  17. Bor, A. S., Rinkel, G. J., Adami, J., Koffijberg, H., Ekbom, A., Buskens, E., et al. (2008). Risk of subarachnoid haemorrhage according to number of affected relatives: A population based case-control study. Brain,131(Pt 10), 2662–2665.  https://doi.org/10.1093/brain/awn187.CrossRefPubMedGoogle Scholar
  18. Bourcier, R., Le Scouarnec, S., Bonnaud, S., Karakachoff, M., Bourcereau, E., Heurtebise-Chretien, S., et al. (2018). Rare coding variants in ANGPTL6 are associated with familial forms of intracranial aneurysm. American Journal of Human Genetics,102(1), 133–141.  https://doi.org/10.1016/j.ajhg.2017.12.006.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Bouzeghrane, F., Naggara, O., Kallmes, D. F., Berenstein, A., Raymond, J., & International Consortium of Neuroendovascular, C. (2010). In vivo experimental intracranial aneurysm models: A systematic review. AJNR American Journal of Neuroradiology,31(3), 418–423.  https://doi.org/10.3174/ajnr.A1853.CrossRefGoogle Scholar
  20. Brain Aneurysm Foundation. (2017). Brain aneurysm statistics and facts. Retrieved May 8, 2017 https://www.bafound.org/about-brain-aneurysms/brain-aneurysm-basics/brain-aneurysm-statistics-and-facts/.
  21. Brancati, F., Castori, M., Mingarelli, R., & Dallapiccola, B. (2005). Majewski osteodysplastic primordial dwarfism type II (MOPD II) complicated by stroke: Clinical report and review of cerebral vascular anomalies. The American Journal of Medical Genetics,139(3), 212–215.  https://doi.org/10.1002/ajmg.a.31009.CrossRefPubMedGoogle Scholar
  22. Bromberg, J. E., Rinkel, G. J., Algra, A., Greebe, P., van Duyn, C. M., Hasan, D., et al. (1995). Subarachnoid haemorrhage in first and second degree relatives of patients with subarachnoid haemorrhage. BMJ,311(7000), 288–289.CrossRefGoogle Scholar
  23. Cagnazzo, F., Gambacciani, C., Morganti, R., & Perrini, P. (2017). Intracranial aneurysms in patients with autosomal dominant polycystic kidney disease: Prevalence, risk of rupture, and management. A systematic review. Acta Neurochirurgica,159(5), 811–821.  https://doi.org/10.1007/s00701-017-3142-z.CrossRefPubMedGoogle Scholar
  24. Canham, P. B., Talman, E. A., Finlay, H. M., & Dixon, J. G. (1991). Medial collagen organization in human arteries of the heart and brain by polarized light microscopy. Connective Tissue Research,26(1–2), 121–134.CrossRefGoogle Scholar
  25. Chalouhi, N., Ali, M. S., Jabbour, P. M., Tjoumakaris, S. I., Gonzalez, L. F., Rosenwasser, R. H., et al. (2012). Biology of intracranial aneurysms: Role of inflammation. Journal of Cerebral Blood Flow and Metabolism,32(9), 1659–1676.  https://doi.org/10.1038/jcbfm.2012.84.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Chu, Y., Wilson, K., Gu, H., Wegman-Points, L., Dooley, S. A., Pierce, G. L., et al. (2015). Myeloperoxidase is increased in human cerebral aneurysms and increases formation and rupture of cerebral aneurysms in mice. Stroke,46(6), 1651–1656.  https://doi.org/10.1161/STROKEAHA.114.008589.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Conway, J. E., Hutchins, G. M., & Tamargo, R. J. (1999). Marfan syndrome is not associated with intracranial aneurysms. Stroke,30(8), 1632–1636.CrossRefGoogle Scholar
  28. Conway, J. E., Hutchins, G. M., & Tamargo, R. J. (2001). Lack of evidence for an association between neurofibromatosis type I and intracranial aneurysms: autopsy study and review of the literature. Stroke,32(11), 2481–2485.CrossRefGoogle Scholar
  29. Crist, A. M., Lee, A. R., Patel, N. R., Westhoff, D. E., & Meadows, S. M. (2018). Vascular deficiency of Smad4 causes arteriovenous malformations: A mouse model of Hereditary Hemorrhagic Telangiectasia. Angiogenesis,21(2), 363–380.  https://doi.org/10.1007/s10456-018-9602-0.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Cun, Y. P., Xiong, C. J., Diao, B., Yang, Y., Pan, L., & Ma, L. T. (2017). Association between angiotensin-converting enzyme insertion/deletion polymorphisms and intracranial aneurysm susceptibility: A meta-analysis. Biomedical Reports,6(6), 663–670.  https://doi.org/10.3892/br.2017.893.CrossRefPubMedPubMedCentralGoogle Scholar
  31. de Hoog, C. L., Foster, L. J., & Mann, M. (2004). RNA and RNA binding proteins participate in early stages of cell spreading through spreading initiation centers. Cell,117(5), 649–662.CrossRefGoogle Scholar
  32. De Paepe, A., & Malfait, F. (2012). The Ehlers-Danlos syndrome, a disorder with many faces. Clinical Genetics,82(1), 1–11.  https://doi.org/10.1111/j.1399-0004.2012.01858.x.CrossRefPubMedGoogle Scholar
  33. Deka, R., Koller, D. L., Lai, D., Indugula, S. R., Sun, G., Woo, D., et al. (2010). The relationship between smoking and replicated sequence variants on chromosomes 8 and 9 with familial intracranial aneurysm. Stroke,41(6), 1132–1137.  https://doi.org/10.1161/STROKEAHA.109.574640.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Deng, Q., Huo, Y., & Luo, J. (2014). Endothelial mechanosensors: The gatekeepers of vascular homeostasis and adaptation under mechanical stress. Science China Life Sciences,57(8), 755–762.  https://doi.org/10.1007/s11427-014-4705-3.CrossRefPubMedGoogle Scholar
  35. Diagbouga, M. R., Morel, S., Bijlenga, P., & Kwak, B. R. (2018). Role of hemodynamics in initiation/growth of intracranial aneurysms. European Journal of Clinical Investigation,48(9), e12992.  https://doi.org/10.1111/eci.12992.CrossRefPubMedGoogle Scholar
  36. Dietz, H. C., Saraiva, J. M., Pyeritz, R. E., Cutting, G. R., & Francomano, C. A. (1992). Clustering of fibrillin (FBN1) missense mutations in Marfan syndrome patients at cysteine residues in EGF-like domains. Human Mutation,1(5), 366–374.  https://doi.org/10.1002/humu.1380010504.CrossRefPubMedGoogle Scholar
  37. Draghia, F., Draghia, A. C., & Onicescu, D. (2008). Electron microscopic study of the arterial wall in the cerebral aneurysms. Romanian Journal of Morphology and Embryology,49(1), 101–103.PubMedGoogle Scholar
  38. Fan, J., Sun, W., Lin, M., Yu, K., Wang, J., Duan, D., et al. (2016). Genetic association study identifies a functional CNV in the WWOX gene contributes to the risk of intracranial aneurysms. Oncotarget,7(13), 16104–16111.  https://doi.org/10.18632/oncotarget.7546.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Farlow, J. L., Lin, H., Sauerbeck, L., Lai, D., Koller, D. L., Pugh, E., et al. (2015). Lessons learned from whole exome sequencing in multiplex families affected by a complex genetic disorder, intracranial aneurysm. PLoS ONE,10(3), e0121104.  https://doi.org/10.1371/journal.pone.0121104.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Farnham, J. M., Camp, N. J., Neuhausen, S. L., Tsuruda, J., Parker, D., MacDonald, J., et al. (2004). Confirmation of chromosome 7q11 locus for predisposition to intracranial aneurysm. Human Genetics,114(3), 250–255.  https://doi.org/10.1007/s00439-003-1044-z.CrossRefPubMedGoogle Scholar
  41. Fennell, V. S., Kalani, M. Y., Atwal, G., Martirosyan, N. L., & Spetzler, R. F. (2016). Biology of saccular cerebral aneurysms: A review of current understanding and future directions. Frontiers in Surgery,3, 43.  https://doi.org/10.3389/fsurg.2016.00043.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Finlay, H. M., McCullough, L., & Canham, P. B. (1995). Three-dimensional collagen organization of human brain arteries at different transmural pressures. Journal of Vascular Research,32(5), 301–312.  https://doi.org/10.1159/000159104.CrossRefPubMedGoogle Scholar
  43. Finlay, H. M., Whittaker, P., & Canham, P. B. (1998). Collagen organization in the branching region of human brain arteries. Stroke,29(8), 1595–1601.CrossRefGoogle Scholar
  44. Finney, L. H., Roberts, T. S., & Anderson, R. E. (1976). Giant intracranial aneurysm associated with Marfan’s syndrome. Case report. Journal of Neurosurgery,45(3), 342–347.  https://doi.org/10.3171/jns.1976.45.3.0342.CrossRefPubMedGoogle Scholar
  45. Forbus, W. D. (1930). On the origin of miliary aneurysms of the superficial cerebral arteries. Bulletin of the Johns Hopkins Hospital,47, 239–284.Google Scholar
  46. Foroud, T., Koller, D. L., Lai, D., Sauerbeck, L., Anderson, C., Ko, N., et al. (2012). Genome-wide association study of intracranial aneurysms confirms role of Anril and SOX17 in disease risk. Stroke,43(11), 2846–2852.  https://doi.org/10.1161/STROKEAHA.112.656397.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Foroud, T., Lai, D., Koller, D., Van’t Hof, F., Kurki, M. I., Anderson, C. S., et al. (2014). Genome-wide association study of intracranial aneurysm identifies a new association on chromosome 7. Stroke,45(11), 3194–3199.  https://doi.org/10.1161/STROKEAHA.114.006096.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Foroud, T., Sauerbeck, L., Brown, R., Anderson, C., Woo, D., Kleindorfer, D., et al. (2009). Genome screen in familial intracranial aneurysm. BMC Medical Genetics,10, 3.  https://doi.org/10.1186/1471-2350-10-3.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Foroud, T., Sauerbeck, L., Brown, R., Anderson, C., Woo, D., Kleindorfer, D., et al. (2008). Genome screen to detect linkage to intracranial aneurysm susceptibility genes: The Familial Intracranial Aneurysm (FIA) study. Stroke,39(5), 1434–1440.  https://doi.org/10.1161/STROKEAHA.107.502930.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Gan, Q., Liu, Q., Hu, X., & You, C. (2017). Collagen type I alpha 2 (COL1A2) polymorphism contributes to intracranial aneurysm susceptibility: A meta-analysis. Medical Science Monitor,23, 3240–3246.CrossRefGoogle Scholar
  51. Givens, C., & Tzima, E. (2016). Endothelial mechanosignaling: Does one sensor fit all? Antioxidants & Redox Signaling,25(7), 373–388.  https://doi.org/10.1089/ars.2015.6493.CrossRefGoogle Scholar
  52. Glasker, S., Schatlo, B., Klingler, J. H., Braun, V., Spangenberg, P., Kim, I. S., et al. (2014). Associations of collagen type I alpha2 polymorphisms with the presence of intracranial aneurysms in patients from Germany. The Journal of Stroke and Cerebrovascular Diseases,23(2), 356–360.  https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.04.038.CrossRefPubMedGoogle Scholar
  53. Haasdijk, R. A., Den Dekker, W. K., Cheng, C., Tempel, D., Szulcek, R., Bos, F. L., et al. (2016). THSD1 preserves vascular integrity and protects against intraplaque haemorrhaging in ApoE−/− mice. Cardiovascular Research,110(1), 129–139.  https://doi.org/10.1093/cvr/cvw015.CrossRefPubMedGoogle Scholar
  54. Hainsworth, P. J., & Mendelow, A. D. (1991). Giant intracranial aneurysm associated with Marfan’s syndrome: A case report. Journal of Neurology, Neurosurgery and Psychiatry,54(5), 471–472.CrossRefGoogle Scholar
  55. Harburger, D. S., & Calderwood, D. A. (2009). Integrin signalling at a glance. Journal of Cell Science,122(Pt 2), 159–163.  https://doi.org/10.1242/jcs.018093.CrossRefPubMedGoogle Scholar
  56. Hateboer, N., v Dijk, M. A., Bogdanova, N., Coto, E., Saggar-Malik, A. K., San Millan, J. L., et al. (1999). Comparison of phenotypes of polycystic kidney disease types 1 and 2. European PKD1-PKD2 Study Group. Lancet,353(9147), 103–107.CrossRefGoogle Scholar
  57. Hayward, C., Keston, M., Brock, D. J., & Dietz, H. C. (1992). Fibrillin (FBN1) mutations in Marfan syndrome. Human Mutation,1(1), 79.  https://doi.org/10.1002/humu.1380010115.CrossRefPubMedGoogle Scholar
  58. Higashida, R. T., Halbach, V. V., Hieshima, G. B., & Cahan, L. (1988). Cavernous carotid artery aneurysm associated with Marfan’s syndrome: Treatment by balloon embolization therapy. Neurosurgery,22(2), 297–300.CrossRefGoogle Scholar
  59. Hitchcock, E., & Gibson, W. T. (2017). A review of the genetics of intracranial berry aneurysms and implications for genetic counseling. Journal of Genetic Counseling,26(1), 21–31.  https://doi.org/10.1007/s10897-016-0029-8.CrossRefPubMedGoogle Scholar
  60. Hong, E. P., Jeon, J. P., Kim, S. E., Yang, J. S., Choi, H. J., Kang, S. H., et al. (2017). A novel association between lysyl oxidase gene polymorphism and intracranial aneurysm in Koreans. Yonsei Medical Journal,58(5), 1006–1011.  https://doi.org/10.3349/ymj.2017.58.5.1006.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Hop, J. W., Rinkel, G. J., Algra, A., & van Gijn, J. (1997). Case-fatality rates and functional outcome after subarachnoid hemorrhage: A systematic review. Stroke,28(3), 660–664.CrossRefGoogle Scholar
  62. Hu, J., Luo, J., Wang, H., Wang, C., Sun, X., Li, A., et al. (2017). Association of TNF-alpha-3959T/C gene polymorphisms in the Chinese population with intracranial aneurysms. Journal of Molecular Neuroscience,63(3–4), 349–354.  https://doi.org/10.1007/s12031-017-0985-y.CrossRefPubMedGoogle Scholar
  63. Hu, X., Fang, Y., Li, Y. K., Liu, W. K., Li, H., Ma, L., et al. (2015). Role of endoglin insertion and rs1800956 polymorphisms in intracranial aneurysm susceptibility: A meta-analysis. Medicine (Baltimore),94(45), e1847.  https://doi.org/10.1097/MD.0000000000001847.CrossRefGoogle Scholar
  64. Iida, A., Wang, Z., Hirata, H., & Sehara-Fujisawa, A. (2018). Integrin beta1 activity is required for cardiovascular formation in zebrafish. Genes to Cells,23(11), 938–951.  https://doi.org/10.1111/gtc.12641.CrossRefPubMedGoogle Scholar
  65. International Study of Unruptured Intracranial Aneurysms (1998). Unruptured intracranial aneurysms–risk of rupture and risks of surgical intervention. New England Journal of Medicine,339(24), 1725–1733.  https://doi.org/10.1056/NEJM199812103392401.CrossRefGoogle Scholar
  66. Ishibashi, R., Aoki, T., Nishimura, M., Hashimoto, N., & Miyamoto, S. (2010). Contribution of mast cells to cerebral aneurysm formation. Current Neurovascular Research,7(2), 113–124.CrossRefGoogle Scholar
  67. Itoh, F., Itoh, S., Adachi, T., Ichikawa, K., Matsumura, Y., Takagi, T., et al. (2012). Smad2/Smad3 in endothelium is indispensable for vascular stability via S1PR1 and N-cadherin expressions. Blood,119(22), 5320–5328.  https://doi.org/10.1182/blood-2011-12-395772.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Johnston, S. C., Selvin, S., & Gress, D. R. (1998). The burden, trends, and demographics of mortality from subarachnoid hemorrhage. Neurology,50(5), 1413–1418.CrossRefGoogle Scholar
  69. Joo, S. P., Kim, T. S., Lee, I. K., Lee, J. K., Seo, B. R., Kim, J. H., et al. (2009). The role of collagen type I alpha2 polymorphisms: intracranial aneurysms in Koreans. Surgical Neurology,72(1), 48–53.  https://doi.org/10.1016/j.surneu.2009.02.009 (discussion 53).CrossRefPubMedGoogle Scholar
  70. Joo, S. P., Lee, J. K., Kim, T. S., Kim, M. K., Lee, I. K., Seo, B. R., et al. (2008). A polymorphic variant of the endoglin gene is associated with increased risk for intracranial aneurysms in a Korean population. Surgical Neurology,70(1), 39–44.  https://doi.org/10.1016/j.surneu.2008.01.060.CrossRefPubMedGoogle Scholar
  71. Jurczyk, A., Gromley, A., Redick, S., San Agustin, J., Witman, G., Pazour, G. J., et al. (2004). Pericentrin forms a complex with intraflagellar transport proteins and polycystin-2 and is required for primary cilia assembly. Journal of Cell Biology,166(5), 637–643.  https://doi.org/10.1083/jcb.200405023.CrossRefPubMedGoogle Scholar
  72. Kallakuri, S., Yu, J. A., Li, J., Li, Y., Weinstein, B. M., Nicoli, S., et al. (2015). Endothelial cilia are essential for developmental vascular integrity in zebrafish. Journal of the American Society of Nephrology,26(4), 864–875.  https://doi.org/10.1681/ASN.2013121314.CrossRefPubMedGoogle Scholar
  73. Kanematsu, Y., Kanematsu, M., Kurihara, C., Tada, Y., Tsou, T. L., van Rooijen, N., et al. (2011). Critical roles of macrophages in the formation of intracranial aneurysm. Stroke,42(1), 173–178.  https://doi.org/10.1161/STROKEAHA.110.590976.CrossRefPubMedGoogle Scholar
  74. Kim, C. J., Park, S. S., Lee, H. S., Chung, H. J., Choi, W., Chung, J. H., et al. (2011). Identification of an autosomal dominant locus for intracranial aneurysm through a model-based family collection in a geographically limited area. Journal of Human Genetics,56(6), 464–466.  https://doi.org/10.1038/jhg.2011.27.CrossRefPubMedGoogle Scholar
  75. Kim, D. H., Van Ginhoven, G., & Milewicz, D. M. (2003). Incidence of familial intracranial aneurysms in 200 patients: Comparison among Caucasian, African-American, and Hispanic populations. Neurosurgery,53(2), 302–308.CrossRefGoogle Scholar
  76. Kim, S. T., Brinjikji, W., & Kallmes, D. F. (2016). Prevalence of intracranial aneurysms in patients with connective tissue diseases: A retrospective study. AJNR American Journal of Neuroradiology,37(8), 1422–1426.  https://doi.org/10.3174/ajnr.A4718.CrossRefPubMedGoogle Scholar
  77. Kondo, S., Hashimoto, N., Kikuchi, H., Hazama, F., Nagata, I., & Kataoka, H. (1998). Apoptosis of medial smooth muscle cells in the development of saccular cerebral aneurysms in rats. Stroke,29(1), 181–188 (discussion 189).CrossRefGoogle Scholar
  78. Korja, M., Silventoinen, K., Laatikainen, T., Jousilahti, P., Salomaa, V., Hernesniemi, J., et al. (2013). Risk factors and their combined effects on the incidence rate of subarachnoid hemorrhage—A population-based cohort study. PLoS ONE,8(9), e73760.  https://doi.org/10.1371/journal.pone.0073760.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Korja, M., Silventoinen, K., McCarron, P., Zdravkovic, S., Skytthe, A., Haapanen, A., et al. (2010). Genetic epidemiology of spontaneous subarachnoid hemorrhage: Nordic Twin Study. Stroke,41(11), 2458–2462.  https://doi.org/10.1161/STROKEAHA.110.586420.CrossRefPubMedGoogle Scholar
  80. Krings, T., Mandell, D. M., Kiehl, T. R., Geibprasert, S., Tymianski, M., Alvarez, H., et al. (2011). Intracranial aneurysms: From vessel wall pathology to therapeutic approach. Nature Reviews Neurology,7(10), 547–559.  https://doi.org/10.1038/nrneurol.2011.136.CrossRefPubMedGoogle Scholar
  81. Krischek, B., Tajima, A., Akagawa, H., Narita, A., Ruigrok, Y., Rinkel, G., et al. (2010). Association of the Jun dimerization protein 2 gene with intracranial aneurysms in Japanese and Korean cohorts as compared to a Dutch cohort. Neuroscience,169(1), 339–343.  https://doi.org/10.1016/j.neuroscience.2010.05.002.CrossRefPubMedGoogle Scholar
  82. Kurki, M. I., Gaal, E. I., Kettunen, J., Lappalainen, T., Menelaou, A., Anttila, V., et al. (2014). High risk population isolate reveals low frequency variants predisposing to intracranial aneurysms. PLoS Genetics,10(1), e1004134.  https://doi.org/10.1371/journal.pgen.1004134.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Lee, S., Kim, I. K., Ahn, J. S., Woo, D. C., Kim, S. T., Song, S., et al. (2015). Deficiency of endothelium-specific transcription factor Sox17 induces intracranial aneurysm. Circulation,131(11), 995–1005.  https://doi.org/10.1161/CIRCULATIONAHA.114.012568.CrossRefPubMedGoogle Scholar
  84. Li, F. F., Wang, X. D., Zhu, M. W., Lou, Z. H., Zhang, Q., Zhu, C. Y., et al. (2015). Identification of two novel critical mutations in PCNT gene resulting in microcephalic osteodysplastic primordial dwarfism type II associated with multiple intracranial aneurysms. Metabolic Brain Disease,30(6), 1387–1394.  https://doi.org/10.1007/s11011-015-9712-y.CrossRefPubMedGoogle Scholar
  85. Linn, F. H., Rinkel, G. J., Algra, A., & van Gijn, J. (1996). Incidence of subarachnoid hemorrhage: Role of region, year, and rate of computed tomography: A meta-analysis. Stroke,27(4), 625–629.CrossRefGoogle Scholar
  86. Liu, J., Zeng, L., Kennedy, R. M., Gruenig, N. M., & Childs, S. J. (2012). betaPix plays a dual role in cerebral vascular stability and angiogenesis, and interacts with integrin alphavbeta8. Developmental Biology,363(1), 95–105.  https://doi.org/10.1016/j.ydbio.2011.12.022.CrossRefPubMedGoogle Scholar
  87. Loeys, B. L., Schwarze, U., Holm, T., Callewaert, B. L., Thomas, G. H., Pannu, H., et al. (2006). Aneurysm syndromes caused by mutations in the TGF-beta receptor. New England Journal of Medicine,355(8), 788–798.  https://doi.org/10.1056/NEJMoa055695.CrossRefPubMedGoogle Scholar
  88. Lorenzo-Betancor, O., Blackburn, P. R., Edwards, E., Vazquez-do-Campo, R., Klee, E. W., Labbe, C., et al. (2018). PCNT point mutations and familial intracranial aneurysms. Neurology,91(23), e2170–e2181.  https://doi.org/10.1212/WNL.0000000000006614.CrossRefPubMedGoogle Scholar
  89. Low, S. K., Takahashi, A., Cha, P. C., Zembutsu, H., Kamatani, N., Kubo, M., et al. (2012). Genome-wide association study for intracranial aneurysm in the Japanese population identifies three candidate susceptible loci and a functional genetic variant at EDNRA. Human Molecular Genetics,21(9), 2102–2110.  https://doi.org/10.1093/hmg/dds020.CrossRefPubMedGoogle Scholar
  90. Low, S. K., Zembutsu, H., Takahashi, A., Kamatani, N., Cha, P. C., Hosono, N., et al. (2011). Impact of LIMK1, MMP2 and TNF-alpha variations for intracranial aneurysm in Japanese population. Journal of Human Genetics,56(3), 211–216.  https://doi.org/10.1038/jhg.2010.169.CrossRefPubMedGoogle Scholar
  91. MacCarrick, G., Black, J. H., 3rd, Bowdin, S., El-Hamamsy, I., Frischmeyer-Guerrerio, P. A., Guerrerio, A. L., et al. (2014). Loeys-Dietz syndrome: A primer for diagnosis and management. Genetics in Medicine,16(8), 576–587.  https://doi.org/10.1038/gim.2014.11.CrossRefPubMedPubMedCentralGoogle Scholar
  92. Mackey, J., Brown, R. D., Sauerbeck, L., Hornung, R., Moomaw, C. J., Koller, D. L., et al. (2015). Affected twins in the familial intracranial aneurysm study. Cerebrovascular Diseases,39(2), 82–86.  https://doi.org/10.1159/000369961.CrossRefPubMedGoogle Scholar
  93. Malfait, F. (2018). Vascular aspects of the Ehlers-Danlos Syndromes. Matrix Biology,71–72, 380–395.  https://doi.org/10.1016/j.matbio.2018.04.013.CrossRefPubMedGoogle Scholar
  94. Matsuda, M., Matsuda, I., Handa, H., & Okamoto, K. (1979). Intracavernous giant aneurysm associated with Marfan’s syndrome. Surgical Neurology,12(2), 119–121.PubMedGoogle Scholar
  95. Meng, H., Tutino, V. M., Xiang, J., & Siddiqui, A. (2014). High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: Toward a unifying hypothesis. AJNR American Journal of Neuroradiology,35(7), 1254–1262.  https://doi.org/10.3174/ajnr.A3558.CrossRefPubMedGoogle Scholar
  96. Meng, H., Wang, Z., Hoi, Y., Gao, L., Metaxa, E., Swartz, D. D., et al. (2007). Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke,38(6), 1924–1931.  https://doi.org/10.1161/STROKEAHA.106.481234.CrossRefPubMedPubMedCentralGoogle Scholar
  97. Mineharu, Y., Inoue, K., Inoue, S., Yamada, S., Nozaki, K., Hashimoto, N., et al. (2007). Model-based linkage analyses confirm chromosome 19q13.3 as a susceptibility locus for intracranial aneurysm. Stroke,38(4), 1174–1178.  https://doi.org/10.1161/01.str.0000259657.73682.03.CrossRefPubMedGoogle Scholar
  98. Miyata, H., Koseki, H., Takizawa, K., Kasuya, H., Nozaki, K., Narumiya, S., et al. (2017). T cell function is dispensable for intracranial aneurysm formation and progression. PLoS ONE,12(4), e0175421.  https://doi.org/10.1371/journal.pone.0175421.CrossRefPubMedPubMedCentralGoogle Scholar
  99. Montero-Balaguer, M., Swirsding, K., Orsenigo, F., Cotelli, F., Mione, M., & Dejana, E. (2009). Stable vascular connections and remodeling require full expression of VE-cadherin in zebrafish embryos. PLoS ONE,4(6), e5772.  https://doi.org/10.1371/journal.pone.0005772.CrossRefPubMedPubMedCentralGoogle Scholar
  100. Morimoto, M., Miyamoto, S., Mizoguchi, A., Kume, N., Kita, T., & Hashimoto, N. (2002). Mouse model of cerebral aneurysm: Experimental induction by renal hypertension and local hemodynamic changes. Stroke,33(7), 1911–1915.CrossRefGoogle Scholar
  101. Nader, G. P., Ezratty, E. J., & Gundersen, G. G. (2016). FAK, talin and PIPKIgamma regulate endocytosed integrin activation to polarize focal adhesion assembly. Nature Cell Biology,18(5), 491–503.  https://doi.org/10.1038/ncb3333.CrossRefPubMedGoogle Scholar
  102. Nahed, B. V., Seker, A., Guclu, B., Ozturk, A. K., Finberg, K., Hawkins, A. A., et al. (2005). Mapping a Mendelian form of intracranial aneurysm to 1p34.3-p36.13. American Journal of Human Genetics, 76(1), 172–179.  https://doi.org/10.1086/426953.CrossRefGoogle Scholar
  103. Nakajima-Takagi, Y., Osawa, M., Oshima, M., Takagi, H., Miyagi, S., Endoh, M., et al. (2013). Role of SOX17 in hematopoietic development from human embryonic stem cells. Blood,121(3), 447–458.  https://doi.org/10.1182/blood-2012-05-431403.CrossRefPubMedGoogle Scholar
  104. Nauli, S. M., Kawanabe, Y., Kaminski, J. J., Pearce, W. J., Ingber, D. E., & Zhou, J. (2008). Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation,117(9), 1161–1171.  https://doi.org/10.1161/CIRCULATIONAHA.107.710111.CrossRefPubMedPubMedCentralGoogle Scholar
  105. Nicholls, A. C., De Paepe, A., Narcisi, P., Dalgleish, R., De Keyser, F., Matton, M., et al. (1988). Linkage of a polymorphic marker for the type III collagen gene (COL3A1) to atypical autosomal dominant Ehlers-Danlos syndrome type IV in a large Belgian pedigree. Human Genetics,78(3), 276–281.CrossRefGoogle Scholar
  106. Norrgard, O., Angquist, K. A., Fodstad, H., Forsell, A., & Lindberg, M. (1987). Intracranial aneurysms and heredity. Neurosurgery,20(2), 236–239.CrossRefGoogle Scholar
  107. Nuki, Y., Tsou, T. L., Kurihara, C., Kanematsu, M., Kanematsu, Y., & Hashimoto, T. (2009). Elastase-induced intracranial aneurysms in hypertensive mice. Hypertension,54(6), 1337–1344.  https://doi.org/10.1161/HYPERTENSIONAHA.109.138297.CrossRefPubMedPubMedCentralGoogle Scholar
  108. Ohtsuki, H., Sugiura, M., Iwaki, K., Nishikawa, M., & Yasuno, M. (1984). A case of Marfan’s syndrome with a ruptured distal middle cerebral aneurysm. No Shinkei Geka,12(8), 983–985.PubMedGoogle Scholar
  109. Olson, J. M., Vongpunsawad, S., Kuivaniemi, H., Ronkainen, A., Hernesniemi, J., Ryynanen, M., et al. (2002). Search for intracranial aneurysm susceptibility gene(s) using Finnish families. BMC Medical Genetics,3, 7.CrossRefGoogle Scholar
  110. Onda, H., Kasuya, H., Yoneyama, T., Takakura, K., Hori, T., Takeda, J., et al. (2001). Genomewide-linkage and haplotype-association studies map intracranial aneurysm to chromosome 7q11. American Journal of Human Genetics,69(4), 804–819.  https://doi.org/10.1086/323614.CrossRefPubMedPubMedCentralGoogle Scholar
  111. Ozturk, A. K., Nahed, B. V., Bydon, M., Bilguvar, K., Goksu, E., Bademci, G., et al. (2006). Molecular genetic analysis of two large kindreds with intracranial aneurysms demonstrates linkage to 11q24-25 and 14q23-31. Stroke,37(4), 1021–1027.  https://doi.org/10.1161/01.STR.0000206153.92675.b9.CrossRefPubMedGoogle Scholar
  112. Paschoal, E. H. A., Yamaki, V. N., Teixeira, R. K. C., Paschoal Junior, F. M., Jong, A. L. G. S., Teixeira, M. J., et al. (2018). Relationship between endothelial nitric oxide synthase (eNOS) and natural history of intracranial aneurysms: Meta-analysis. Neurosurgical Review,41(1), 87–94.  https://doi.org/10.1007/s10143-016-0761-4.CrossRefPubMedGoogle Scholar
  113. Paterakis, K., Koutsias, S., Doxani, C., Xanthopoulou, P., Kokkali, C., Mpoulimari, I., et al. (2017). Variants of the elastin (ELN) gene and susceptibility to intracranial aneurysm: A synthesis of genetic association studies using a genetic model-free approach. International Journal of Neuroscience,127(7), 567–572.  https://doi.org/10.1080/00207454.2016.1212027.CrossRefPubMedGoogle Scholar
  114. Pentimalli, L., Modesti, A., Vignati, A., Marchese, E., Albanese, A., Di Rocco, F., et al. (2004). Role of apoptosis in intracranial aneurysm rupture. Journal of Neurosurgery,101(6), 1018–1025.  https://doi.org/10.3171/jns.2004.101.6.1018.CrossRefPubMedGoogle Scholar
  115. Pirson, Y. (2010). Extrarenal manifestations of autosomal dominant polycystic kidney disease. Advances in Chronic Kidney Disease,17(2), 173–180.  https://doi.org/10.1053/j.ackd.2010.01.003.CrossRefPubMedGoogle Scholar
  116. Rauch, A. (2011). The shortest of the short: Pericentrin mutations and beyond. Best Practice & Research Clinical Endocrinology & Metabolism,25(1), 125–130.  https://doi.org/10.1016/j.beem.2010.10.015.CrossRefGoogle Scholar
  117. Rauch, A., Thiel, C. T., Schindler, D., Wick, U., Crow, Y. J., Ekici, A. B., et al. (2008). Mutations in the pericentrin (PCNT) gene cause primordial dwarfism. Science,319(5864), 816–819.  https://doi.org/10.1126/science.1151174.CrossRefPubMedGoogle Scholar
  118. Ravindra, V. M., Karsy, M., Schmidt, R. H., Taussky, P., Park, M. S., & Bollo, R. J. (2016). Rapid de novo aneurysm formation after clipping of a ruptured middle cerebral artery aneurysm in an infant with an MYH11 mutation. Journal of Neurosurgery Pediatrics,18(4), 463–470.  https://doi.org/10.3171/2016.5.PEDS16115.CrossRefPubMedGoogle Scholar
  119. Rodrigues, V. J., Elsayed, S., Loeys, B. L., Dietz, H. C., & Yousem, D. M. (2009). Neuroradiologic manifestations of Loeys-Dietz syndrome type 1. AJNR American Journal of Neuroradiology,30(8), 1614–1619.  https://doi.org/10.3174/ajnr.A1651.CrossRefPubMedGoogle Scholar
  120. Ronkainen, A., Hernesniemi, J., Puranen, M., Niemitukia, L., Vanninen, R., Ryynanen, M., et al. (1997). Familial intracranial aneurysms. Lancet,349(9049), 380–384.  https://doi.org/10.1016/S0140-6736(97)80009-8.CrossRefPubMedGoogle Scholar
  121. Ronkainen, A., Hernesniemi, J., & Ryynanen, M. (1993). Familial subarachnoid hemorrhage in east Finland, 1977-1990. Neurosurgery,33(5), 787–796 (discussion 796–797).PubMedGoogle Scholar
  122. Roos, Y. B., Pals, G., Struycken, P. M., Rinkel, G. J., Limburg, M., Pronk, J. C., et al. (2004). Genome-wide linkage in a large Dutch consanguineous family maps a locus for intracranial aneurysms to chromosome 2p13. Stroke,35(10), 2276–2281.  https://doi.org/10.1161/01.STR.0000141415.28155.46.CrossRefPubMedGoogle Scholar
  123. Roszer, T. (2015). Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators of Inflammation,2015, 816460.  https://doi.org/10.1155/2015/816460.CrossRefPubMedPubMedCentralGoogle Scholar
  124. Rui, Y. N., Xu, Z., Fang, X., Menezes, M. R., Balzeau, J., Niu, A., et al. (2017). The intracranial aneurysm gene THSD1 connects endosome dynamics to nascent focal adhesion assembly. Cellular Physiology and Biochemistry,43(6), 2200–2211.  https://doi.org/10.1159/000484298.CrossRefPubMedGoogle Scholar
  125. Ruigrok, Y. M., Rinkel, G. J., & Wijmenga, C. (2006). The versican gene and the risk of intracranial aneurysms. Stroke,37(9), 2372–2374.  https://doi.org/10.1161/01.STR.0000236499.55301.09.CrossRefPubMedGoogle Scholar
  126. Ruigrok, Y. M., Rinkel, G. J., Wijmenga, C., Kasuya, H., Tajima, A., Takahashi, T., et al. (2009). Association analysis of genes involved in the maintenance of the integrity of the extracellular matrix with intracranial aneurysms in a Japanese cohort. Cerebrovascular Diseases,28(2), 131–134.  https://doi.org/10.1159/000223438.CrossRefPubMedGoogle Scholar
  127. Ruigrok, Y. M., Wijmenga, C., Rinkel, G. J., van’t Slot, R., Baas, F., Wolfs, M., et al. (2008). Genomewide linkage in a large Dutch family with intracranial aneurysms: replication of 2 loci for intracranial aneurysms to chromosome 1p36.11-p36.13 and Xp22.2-p22.32. Stroke, 39(4), 1096–1102.  https://doi.org/10.1161/strokeaha.107.495168.CrossRefGoogle Scholar
  128. Santiago-Sim, T., Depalma, S. R., Ju, K. L., McDonough, B., Seidman, C. E., Seidman, J. G., et al. (2009a). Genomewide linkage in a large Caucasian family maps a new locus for intracranial aneurysms to chromosome 13q. Stroke,40(3 Suppl), S57–60.  https://doi.org/10.1161/STROKEAHA.108.534396.CrossRefPubMedGoogle Scholar
  129. Santiago-Sim, T., Fang, X., Hennessy, M. L., Nalbach, S. V., DePalma, S. R., Lee, M. S., et al. (2016). THSD1 (thrombospondin type 1 domain containing protein 1) mutation in the pathogenesis of intracranial aneurysm and subarachnoid hemorrhage. Stroke,47(12), 3005–3013.  https://doi.org/10.1161/STROKEAHA.116.014161.CrossRefPubMedPubMedCentralGoogle Scholar
  130. Santiago-Sim, T., & Kim, D. H. (2011). Pathobiology of intracranial aneurysms. In H. R. Winn (Ed.), Youmans neurological surgery (6th ed., Vol. 4, pp. 3747–3755). Philadelphia, PA: Elsevier.CrossRefGoogle Scholar
  131. Santiago-Sim, T., Mathew-Joseph, S., Pannu, H., Milewicz, D. M., Seidman, C. E., Seidman, J. G., et al. (2009b). Sequencing of TGF-beta pathway genes in familial cases of intracranial aneurysm. Stroke,40(5), 1604–1611.  https://doi.org/10.1161/STROKEAHA.108.540245.CrossRefPubMedPubMedCentralGoogle Scholar
  132. Santoro, M. M., Samuel, T., Mitchell, T., Reed, J. C., & Stainier, D. Y. (2007). Birc2 (cIap1) regulates endothelial cell integrity and blood vessel homeostasis. Nature Genetics,39(11), 1397–1402.  https://doi.org/10.1038/ng.2007.8.CrossRefPubMedGoogle Scholar
  133. Sathyan, S., Koshy, L. V., Balan, S., Easwer, H. V., Premkumar, S., Nair, S., et al. (2014). Association of Versican (VCAN) gene polymorphisms rs251124 and rs2287926 (G428D), with intracranial aneurysm. Meta Gene,2, 651–660.  https://doi.org/10.1016/j.mgene.2014.07.001.CrossRefPubMedPubMedCentralGoogle Scholar
  134. Sawyer, D. M., Pace, L. A., Pascale, C. L., Kutchin, A. C., O’Neill, B. E., Starke, R. M., et al. (2016). Lymphocytes influence intracranial aneurysm formation and rupture: Role of extracellular matrix remodeling and phenotypic modulation of vascular smooth muscle cells. Journal of Neuroinflammation,13(1), 185.  https://doi.org/10.1186/s12974-016-0654-z.CrossRefPubMedPubMedCentralGoogle Scholar
  135. Scanarini, M., Mingrino, S., Zuccarello, M., & Trincia, G. (1978). Scanning electron microscopy (s.e.m.) of biopsy specimens of ruptured intracranial saccular aneurysms. Acta Neuropathologica,44(2), 131–134.CrossRefGoogle Scholar
  136. Schievink, W. I., Parisi, J. E., Piepgras, D. G., & Michels, V. V. (1997). Intracranial aneurysms in Marfan’s syndrome: An autopsy study. Neurosurgery,41(4), 866–870 (discussion 871).CrossRefGoogle Scholar
  137. Schievink, W. I., Riedinger, M., & Maya, M. M. (2005). Frequency of incidental intracranial aneurysms in neurofibromatosis type 1. American Journal of Medical Genetics Part A,134A(1), 45–48.  https://doi.org/10.1002/ajmg.a.30475.CrossRefPubMedGoogle Scholar
  138. Schievink, W. I., Schaid, D. J., Michels, V. V., & Piepgras, D. G. (1995). Familial aneurysmal subarachnoid hemorrhage: A community-based study. Journal of Neurosurgery,83(3), 426–429.  https://doi.org/10.3171/jns.1995.83.3.0426.CrossRefPubMedGoogle Scholar
  139. Schievink, W. I., Schaid, D. J., Rogers, H. M., Piepgras, D. G., & Michels, V. V. (1994). On the inheritance of intracranial aneurysms. Stroke,25(10), 2028–2037.CrossRefGoogle Scholar
  140. Schurmann, C., Gremse, F., Jo, H., Kiessling, F., & Brandes, R. P. (2015). Micro-CT technique is well suited for documentation of remodeling processes in murine carotid arteries. PLoS ONE,10(6), e0130374.  https://doi.org/10.1371/journal.pone.0130374.CrossRefPubMedPubMedCentralGoogle Scholar
  141. Sforza, D. M., Putman, C. M., & Cebral, J. R. (2009). Hemodynamics of cerebral aneurysms. Annual Review of Fluid Mechanics,41, 91–107.  https://doi.org/10.1146/annurev.fluid.40.111406.102126.CrossRefPubMedPubMedCentralGoogle Scholar
  142. Shao, L., Qin, X., Liu, J., Jian, Z., Xiong, X., & Liu, R. (2017). Macrophage polarization in cerebral aneurysm: Perspectives and potential targets. Journal of Immunology Research,2017, 8160589.  https://doi.org/10.1155/2017/8160589.CrossRefPubMedPubMedCentralGoogle Scholar
  143. Shen, T. L., Park, A. Y., Alcaraz, A., Peng, X., Jang, I., Koni, P., et al. (2005). Conditional knockout of focal adhesion kinase in endothelial cells reveals its role in angiogenesis and vascular development in late embryogenesis. Journal of Cell Biology,169(6), 941–952.  https://doi.org/10.1083/jcb.200411155.CrossRefPubMedGoogle Scholar
  144. Signorelli, F., Sela, S., Gesualdo, L., Chevrel, S., Tollet, F., Pailler-Mattei, C., et al. (2018). Hemodynamic stress, inflammation, and intracranial aneurysm development and rupture: A systematic review. World Neurosurg,115, 234–244.  https://doi.org/10.1016/j.wneu.2018.04.143.CrossRefPubMedGoogle Scholar
  145. Sima, X., Sun, H., Zhou, P., & You, C. (2015). A potential polymorphism in the promoter of Let-7 is associated with an increased risk of intracranial aneurysm: A case-control study. Medicine (Baltimore),94(51), e2267.  https://doi.org/10.1097/MD.0000000000002267.CrossRefGoogle Scholar
  146. Song, Y., Liu, P., Li, Z., Shi, Y., Huang, J., Li, S., et al. (2018). The effect of myosin light chain kinase on the occurrence and development of intracranial aneurysm. Frontiers in Cellular Neuroscience,12, 416.  https://doi.org/10.3389/fncel.2018.00416.CrossRefPubMedPubMedCentralGoogle Scholar
  147. Starke, R. M., Chalouhi, N., Ding, D., Raper, D. M., McKisic, M. S., Owens, G. K., et al. (2014). Vascular smooth muscle cells in cerebral aneurysm pathogenesis. Translational Stroke Research,5(3), 338–346.  https://doi.org/10.1007/s12975-013-0290-1.CrossRefPubMedGoogle Scholar
  148. Stehbens, W. E., Delahunt, B., & Hilless, A. D. (1989). Early berry aneurysm formation in Marfan’s syndrome. Surgical Neurology,31(3), 200–202.CrossRefGoogle Scholar
  149. Sun, H., Zhang, D., & Zhao, J. (2008). The interleukin-6 gene -572G > C promoter polymorphism is related to intracranial aneurysms in Chinese Han nationality. Neuroscience Letters,440(1), 1–3.  https://doi.org/10.1016/j.neulet.2008.04.077.CrossRefPubMedGoogle Scholar
  150. Suo, M., Lin, Y., Yu, H., Song, W., Sun, K., Song, Y., et al. (2014). Association of Kallikrein gene polymorphisms with sporadic intracranial aneurysms in the Chinese population. Journal of Neurosurgery,120(6), 1397–1401.  https://doi.org/10.3171/2013.11.JNS131036.CrossRefPubMedGoogle Scholar
  151. Superti-Furga, A., Gugler, E., Gitzelmann, R., & Steinmann, B. (1988). Ehlers-Danlos syndrome type IV: A multi-exon deletion in one of the two COL3A1 alleles affecting structure, stability, and processing of type III procollagen. Journal of Biological Chemistry,263(13), 6226–6232.PubMedGoogle Scholar
  152. Tada, Y., Kanematsu, Y., Kanematsu, M., Nuki, Y., Liang, E. I., Wada, K., et al. (2011). A mouse model of intracranial aneurysm: Technical considerations. Acta Neurochirurgica. Supplementum,111, 31–35.  https://doi.org/10.1007/978-3-7091-0693-8_6.CrossRefGoogle Scholar
  153. Teasdale, G. M., Wardlaw, J. M., White, P. M., Murray, G., Teasdale, E. M., & Easton, V. (2005). The familial risk of subarachnoid haemorrhage. Brain,128(Pt 7), 1677–1685.  https://doi.org/10.1093/brain/awh497.CrossRefPubMedGoogle Scholar
  154. Teo, M., Johnson, J. N., Bell-Stephens, T. E., Marks, M. P., Do, H. M., Dodd, R. L., et al. (2016). Surgical outcomes of Majewski osteodysplastic primordial dwarfism Type II with intracranial vascular anomalies. Journal of Neurosurgery Pediatrics,25(6), 717–723.  https://doi.org/10.3171/2016.6.PEDS16243.CrossRefPubMedGoogle Scholar
  155. Thompson, B. G., Brown, R. D., Jr., Amin-Hanjani, S., Broderick, J. P., Cockroft, K. M., Connolly, E. S., Jr., et al. (2015). Guidelines for the management of patients with unruptured intracranial aneurysms: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke,46(8), 2368–2400.  https://doi.org/10.1161/STR.0000000000000070.CrossRefPubMedGoogle Scholar
  156. Tromp, G., Weinsheimer, S., Ronkainen, A., & Kuivaniemi, H. (2014). Molecular basis and genetic predisposition to intracranial aneurysm. Annals of Medicine,46(8), 597–606.  https://doi.org/10.3109/07853890.2014.949299.CrossRefPubMedPubMedCentralGoogle Scholar
  157. Tsipouras, P., Byers, P. H., Schwartz, R. C., Chu, M. L., Weil, D., Pepe, G., et al. (1986). Ehlers-Danlos syndrome type IV: Cosegregation of the phenotype to a COL3A1 allele of type III procollagen. Human Genetics,74(1), 41–46.CrossRefGoogle Scholar
  158. van den Berg, J. S., Limburg, M., & Hennekam, R. C. (1996). Is Marfan syndrome associated with symptomatic intracranial aneurysms? Stroke,27(1), 10–12.CrossRefGoogle Scholar
  159. van der Voet, M., Olson, J. M., Kuivaniemi, H., Dudek, D. M., Skunca, M., Ronkainen, A., et al. (2004). Intracranial aneurysms in Finnish families: confirmation of linkage and refinement of the interval to chromosome 19q13.3. The American Journal of Human Genetics, 74(3), 564–571.  https://doi.org/10.1086/382285.CrossRefGoogle Scholar
  160. Vanakker, O. M., Hemelsoet, D., & De Paepe, A. (2011). Hereditary connective tissue diseases in young adult stroke: a comprehensive synthesis. Stroke Research and Treatment,2011, 712903.  https://doi.org/10.4061/2011/712903.CrossRefPubMedPubMedCentralGoogle Scholar
  161. Verlaan, D. J., Dube, M. P., St-Onge, J., Noreau, A., Roussel, J., Satge, N., et al. (2006). A new locus for autosomal dominant intracranial aneurysm, ANIB4, maps to chromosome 5p15.2-14.3. Journal of Medical Genetics,43(6), e31.  https://doi.org/10.1136/jmg.2005.033209.CrossRefPubMedPubMedCentralGoogle Scholar
  162. Vo, A. H., Swaroop, A., Liu, Y., Norris, Z. G., & Shavit, J. A. (2013). Loss of fibrinogen in zebrafish results in symptoms consistent with human hypofibrinogenemia. PLoS ONE,8(9), e74682.  https://doi.org/10.1371/journal.pone.0074682.CrossRefPubMedPubMedCentralGoogle Scholar
  163. Wang, Q., Liu, Z., Ren, J., Morgan, S., Assa, C., & Liu, B. (2015a). Receptor-interacting protein kinase 3 contributes to abdominal aortic aneurysms via smooth muscle cell necrosis and inflammation. Circulation Research,116(4), 600–611.  https://doi.org/10.1161/CIRCRESAHA.116.304899.CrossRefPubMedPubMedCentralGoogle Scholar
  164. Wang, Y., Emeto, T. I., Lee, J., Marshman, L., Moran, C., Seto, S. W., et al. (2015b). Mouse models of intracranial aneurysm. Brain Pathology,25(3), 237–247.  https://doi.org/10.1111/bpa.12175.CrossRefPubMedGoogle Scholar
  165. Weinsheimer, S., Goddard, K. A., Parrado, A. R., Lu, Q., Sinha, M., Lebedeva, E. R., et al. (2007). Association of kallikrein gene polymorphisms with intracranial aneurysms. Stroke,38(10), 2670–2676.  https://doi.org/10.1161/STROKEAHA.107.486225.CrossRefPubMedGoogle Scholar
  166. Wiebers, D. O., Piepgras, D. G., Meyer, F. B., Kallmes, D. F., Meissner, I., Atkinson, J. L., et al. (2004). Pathogenesis, natural history, and treatment of unruptured intracranial aneurysms. Mayo Clinic Proceedings,79(12), 1572–1583.  https://doi.org/10.4065/79.12.1572.CrossRefPubMedGoogle Scholar
  167. Wiebers, D. O., Whisnant, J. P., Huston, J., 3rd, Meissner, I., Brown, R. D., Jr., Piepgras, D. G., et al. (2003). Unruptured intracranial aneurysms: Natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet,362(9378), 103–110.CrossRefGoogle Scholar
  168. Willems, M., Genevieve, D., Borck, G., Baumann, C., Baujat, G., Bieth, E., et al. (2010). Molecular analysis of pericentrin gene (PCNT) in a series of 24 Seckel/microcephalic osteodysplastic primordial dwarfism type II (MOPD II) families. Journal of Medical Genetics,47(12), 797–802.  https://doi.org/10.1136/jmg.2009.067298.CrossRefPubMedGoogle Scholar
  169. Williams, L. N., & Brown, R. D., Jr. (2013). Management of unruptured intracranial aneurysms. Neurology: Clinical Practice,3(2), 99–108.  https://doi.org/10.1212/CPJ.0b013e31828d9f6b.CrossRefGoogle Scholar
  170. Wozniak, M. A., Modzelewska, K., Kwong, L., & Keely, P. J. (2004). Focal adhesion regulation of cell behavior. Biochimica et Biophysica Acta,1692(2–3), 103–119.  https://doi.org/10.1016/j.bbamcr.2004.04.007.CrossRefPubMedGoogle Scholar
  171. Wu, Q., Zhang, J., Koh, W., Yu, Q., Zhu, X., Amsterdam, A., et al. (2015). Talin1 is required for cardiac Z-disk stabilization and endothelial integrity in zebrafish. FASEB J,29(12), 4989–5005.  https://doi.org/10.1096/fj.15-273409.CrossRefPubMedPubMedCentralGoogle Scholar
  172. Wu, Y., Li, Z., Shi, Y., Chen, L., Tan, H., Wang, Z., et al. (2017). Exome sequencing identifies LOXL2 mutation as a cause of familial intracranial aneurysm. World Neurosurgery.  https://doi.org/10.1016/j.wneu.2017.10.094.CrossRefPubMedPubMedCentralGoogle Scholar
  173. Xu, Z., Rui, Y. N., Balzeau, J., Menezes, M. R., Niu, A., Hagan, J. P., et al. (2017). Highly efficient one-step scarless protein tagging by type IIS restriction endonuclease-mediated precision cloning. Biochemical and Biophysical Research Communications,490(1), 8–16.  https://doi.org/10.1016/j.bbrc.2017.05.153.CrossRefPubMedPubMedCentralGoogle Scholar
  174. Xu, Z., Rui, Y. N., Hagan, J. P., & Kim, D. H. (2018). Precision tagging: A novel seamless protein tagging by combinational use of Type II and Type IIS restriction endonucleases. Bio Protoc.  https://doi.org/10.21769/bioprotoc.2721.CrossRefPubMedPubMedCentralGoogle Scholar
  175. Yamada, S., Utsunomiya, M., Inoue, K., Nozaki, K., Inoue, S., Takenaka, K., et al. (2004). Genome-wide scan for Japanese familial intracranial aneurysms: Linkage to several chromosomal regions. Circulation,110(24), 3727–3733.  https://doi.org/10.1161/01.CIR.0000143077.23367.18.CrossRefPubMedGoogle Scholar
  176. Yan, J., Hitomi, T., Takenaka, K., Kato, M., Kobayashi, H., Okuda, H., et al. (2015). Genetic study of intracranial aneurysms. Stroke,46(3), 620–626.  https://doi.org/10.1161/STROKEAHA.114.007286.CrossRefPubMedGoogle Scholar
  177. Yang, X., Li, J., Fang, Y., Zhang, Z., Jin, D., Chen, X., et al. (2018). Rho guanine nucleotide exchange factor ARHGEF17 is a risk gene for intracranial aneurysms. Circulation: Genomic and Precision Medicine,11(7), e002099.  https://doi.org/10.1161/CIRCGEN.117.002099.CrossRefGoogle Scholar
  178. Yasuno, K., Bilguvar, K., Bijlenga, P., Low, S. K., Krischek, B., Auburger, G., et al. (2010). Genome-wide association study of intracranial aneurysm identifies three new risk loci. Nature Genetics,42(5), 420–425.  https://doi.org/10.1038/ng.563.CrossRefPubMedPubMedCentralGoogle Scholar
  179. Zacharia, B. E., Hickman, Z. L., Grobelny, B. T., DeRosa, P., Kotchetkov, I., Ducruet, A. F., et al. (2010). Epidemiology of aneurysmal subarachnoid hemorrhage. Neurosurgery Clinics of North America,21(2), 221–233.  https://doi.org/10.1016/j.nec.2009.10.002.CrossRefPubMedGoogle Scholar
  180. Zhang, G., Tu, Y., Feng, W., Huang, L., Li, M., & Qi, S. (2011). Association of interleukin-6-572G/C gene polymorphisms in the Cantonese population with intracranial aneurysms. Journal of the Neurological Sciences,306(1–2), 94–97.  https://doi.org/10.1016/j.jns.2011.03.036.CrossRefPubMedGoogle Scholar
  181. Zhang, L. T., Wei, F. J., Zhao, Y., Zhang, Z., Dong, W. T., Jin, Z. N., et al. (2015). Intracranial aneurysm risk factor genes: Relationship with intracranial aneurysm risk in a Chinese Han population. Genetics and Molecular Research,14(2), 6865–6878.  https://doi.org/10.4238/2015.June.18.30.CrossRefPubMedGoogle Scholar
  182. Zheng, S., Su, A., Sun, H., & You, C. (2013). The association between interleukin-6 gene polymorphisms and intracranial aneurysms: A meta-analysis. Human Immunology,74(12), 1679–1683.  https://doi.org/10.1016/j.humimm.2013.08.274.CrossRefPubMedGoogle Scholar
  183. Zholdybayeva, E. V., Medetov, Y. Z., Aitkulova, A. M., Makhambetov, Y. T., Akshulakov, S. K., Kaliyev, A. B., et al. (2018). Genetic risk factors for intracranial aneurysm in the Kazakh population. Journal of Molecular Neuroscience,66(1), 135–145.  https://doi.org/10.1007/s12031-018-1134-y.CrossRefPubMedGoogle Scholar
  184. Zhou, S., Ambalavanan, A., Rochefort, D., Xie, P., Bourassa, C. V., Hince, P., et al. (2016). RNF213 is associated with intracranial aneurysms in the French-Canadian population. American Journal of Human Genetics,99(5), 1072–1085.  https://doi.org/10.1016/j.ajhg.2016.09.001.CrossRefPubMedPubMedCentralGoogle Scholar
  185. Zhou, S., Dion, P. A., & Rouleau, G. A. (2018). Genetics of intracranial aneurysms. Stroke,49(3), 780–787.  https://doi.org/10.1161/STROKEAHA.117.018152.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Neurosurgery, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonUSA

Personalised recommendations