Intracranial Aneurysms: Pathology, Genetics, and Molecular Mechanisms
- 544 Downloads
Abstract
Intracranial aneurysms (IA) are local dilatations in cerebral arteries that predominantly affect the circle of Willis. Occurring in approximately 2–5% of adults, these weakened areas are susceptible to rupture, leading to subarachnoid hemorrhage (SAH), a type of hemorrhagic stroke. Due to its early age of onset and poor prognosis, SAH accounts for > 25% of years lost for all stroke victims under the age of 65. In this review, we describe the cerebrovascular pathology associated with intracranial aneurysms. To understand IA genetics, we summarize syndromes with elevated incidence, genome-wide association studies (GWAS), whole exome studies on IA-affected families, and recent research that established definitive roles for Thsd1 (Thrombospondin Type 1 Domain Containing Protein 1) and Sox17 (SRY-box 17) in IA using genetically engineered mouse models. Lastly, we discuss the underlying molecular mechanisms of IA, including defects in vascular endothelial and smooth muscle cells caused by dysfunction in mechanotransduction, Thsd1/FAK (Focal Adhesion Kinase) signaling, and the Transforming Growth Factor β (TGF-β) pathway. As illustrated by THSD1 research, cell adhesion may play a significant role in IA.
Keywords
Intracranial aneurysm Subarachnoid hemorrhage Etiology Genetics Animal models THSD1Notes
Acknowledgements
This work was supported by the grant # 1R01NS104280-01A1 from the National Institute of Neurological Disorders and Stroke, National Institutes of Health. We thank Dr. Joanna O’Leary for helpful comments that helped improve the manuscript.
Compliance with Ethical Standards
Conflicts of interest
There are no conflicts of interest to report.
References
- AbouAlaiwi, W. A., Takahashi, M., Mell, B. R., Jones, T. J., Ratnam, S., Kolb, R. J., et al. (2009). Ciliary polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signaling cascades. Circulation Research,104(7), 860–869. https://doi.org/10.1161/CIRCRESAHA.108.192765.CrossRefPubMedPubMedCentralGoogle Scholar
- Abrantes, P., Santos, M. M., Sousa, I., Xavier, J. M., Francisco, V., Krug, T., et al. (2015). Genetic variants underlying risk of intracranial aneurysms: Insights from a GWAS in Portugal. PLoS ONE,10(7), e0133422. https://doi.org/10.1371/journal.pone.0133422.CrossRefPubMedPubMedCentralGoogle Scholar
- Akagawa, H., Tajima, A., Sakamoto, Y., Krischek, B., Yoneyama, T., Kasuya, H., et al. (2006). A haplotype spanning two genes, ELN and LIMK1, decreases their transcripts and confers susceptibility to intracranial aneurysms. Human Molecular Genetics,15(10), 1722–1734. https://doi.org/10.1093/hmg/ddl096.CrossRefPubMedGoogle Scholar
- Akiyama, K., Narita, A., Nakaoka, H., Cui, T., Takahashi, T., Yasuno, K., et al. (2010). Genome-wide association study to identify genetic variants present in Japanese patients harboring intracranial aneurysms. Journal of Human Genetics,55(10), 656–661. https://doi.org/10.1038/jhg.2010.82.CrossRefPubMedGoogle Scholar
- Alg, V. S., Ke, X., Grieve, J., Bonner, S., Walsh, D. C., Bulters, D., et al. (2018). Association of functional MMP-2 gene variant with intracranial aneurysms: Case-control genetic association study and meta-analysis. British Journal of Neurosurgery,32(3), 255–259. https://doi.org/10.1080/02688697.2018.1427213.CrossRefPubMedGoogle Scholar
- Alg, V. S., Sofat, R., Houlden, H., & Werring, D. J. (2013). Genetic risk factors for intracranial aneurysms: A meta-analysis in more than 116,000 individuals. Neurology,80(23), 2154–2165. https://doi.org/10.1212/WNL.0b013e318295d751.CrossRefPubMedPubMedCentralGoogle Scholar
- Andreasen, T. H., Bartek, J., Jr., Andresen, M., Springborg, J. B., & Romner, B. (2013). Modifiable risk factors for aneurysmal subarachnoid hemorrhage. Stroke,44(12), 3607–3612. https://doi.org/10.1161/STROKEAHA.113.001575.CrossRefPubMedGoogle Scholar
- Aoki, T., Kataoka, H., Ishibashi, R., Nozaki, K., Egashira, K., & Hashimoto, N. (2009). Impact of monocyte chemoattractant protein-1 deficiency on cerebral aneurysm formation. Stroke,40(3), 942–951. https://doi.org/10.1161/STROKEAHA.108.532556.CrossRefPubMedGoogle Scholar
- Aoki, T., Kataoka, H., Shimamura, M., Nakagami, H., Wakayama, K., Moriwaki, T., et al. (2007). NF-kappaB is a key mediator of cerebral aneurysm formation. Circulation,116(24), 2830–2840. https://doi.org/10.1161/CIRCULATIONAHA.107.728303.CrossRefPubMedGoogle Scholar
- Aoki, T., & Nishimura, M. (2011). The development and the use of experimental animal models to study the underlying mechanisms of CA formation. Journal of Biomedicine and Biotechnology,2011, 535921. https://doi.org/10.1155/2011/535921.CrossRefPubMedGoogle Scholar
- Aoki, T., Saito, M., Koseki, H., Tsuji, K., Tsuji, A., Murata, K., et al. (2017). Macrophage imaging of cerebral aneurysms with ferumoxytol: An exploratory study in an animal model and in patients. The Journal of Stroke & Cerebrovascular Diseases,26(10), 2055–2064. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.10.026.CrossRefGoogle Scholar
- Arning, A., Jeibmann, A., Kohnemann, S., Brokinkel, B., Ewelt, C., Berger, K., et al. (2016). ADAMTS genes and the risk of cerebral aneurysm. Journal of Neurosurgery,125(2), 269–274. https://doi.org/10.3171/2015.7.JNS154.CrossRefPubMedGoogle Scholar
- Batra, R., Suh, M. K., Carson, J. S., Dale, M. A., Meisinger, T. M., Fitzgerald, M., et al. (2018). IL-1beta (interleukin-1beta) and TNF-alpha (tumor necrosis factor-alpha) impact abdominal aortic aneurysm formation by differential effects on macrophage polarization. Arteriosclerosis, Thrombosis, and Vascular Biology,38(2), 457–463. https://doi.org/10.1161/ATVBAHA.117.310333.CrossRefPubMedGoogle Scholar
- Bergmann, C., Guay-Woodford, L. M., Harris, P. C., Horie, S., Peters, D. J. M., & Torres, V. E. (2018). Polycystic kidney disease. Nature Reviews Disease Primers,4(1), 50. https://doi.org/10.1038/s41572-018-0047-y.CrossRefPubMedPubMedCentralGoogle Scholar
- Bilguvar, K., Yasuno, K., Niemela, M., Ruigrok, Y. M., von Und, Zu, Fraunberg, M., et al. (2008). Susceptibility loci for intracranial aneurysm in European and Japanese populations. Nature Genetics,40(12), 1472–1477. https://doi.org/10.1038/ng.240.CrossRefPubMedPubMedCentralGoogle Scholar
- Bober, M. B., Khan, N., Kaplan, J., Lewis, K., Feinstein, J. A., Scott, C. I., Jr., et al. (2010). Majewski osteodysplastic primordial dwarfism type II (MOPD II): Expanding the vascular phenotype. The American Journal of Medical Genetics - Part A,152A(4), 960–965. https://doi.org/10.1002/ajmg.a.33252.CrossRefPubMedGoogle Scholar
- Bor, A. S., Rinkel, G. J., Adami, J., Koffijberg, H., Ekbom, A., Buskens, E., et al. (2008). Risk of subarachnoid haemorrhage according to number of affected relatives: A population based case-control study. Brain,131(Pt 10), 2662–2665. https://doi.org/10.1093/brain/awn187.CrossRefPubMedGoogle Scholar
- Bourcier, R., Le Scouarnec, S., Bonnaud, S., Karakachoff, M., Bourcereau, E., Heurtebise-Chretien, S., et al. (2018). Rare coding variants in ANGPTL6 are associated with familial forms of intracranial aneurysm. American Journal of Human Genetics,102(1), 133–141. https://doi.org/10.1016/j.ajhg.2017.12.006.CrossRefPubMedPubMedCentralGoogle Scholar
- Bouzeghrane, F., Naggara, O., Kallmes, D. F., Berenstein, A., Raymond, J., & International Consortium of Neuroendovascular, C. (2010). In vivo experimental intracranial aneurysm models: A systematic review. AJNR American Journal of Neuroradiology,31(3), 418–423. https://doi.org/10.3174/ajnr.A1853.CrossRefGoogle Scholar
- Brain Aneurysm Foundation. (2017). Brain aneurysm statistics and facts. Retrieved May 8, 2017 https://www.bafound.org/about-brain-aneurysms/brain-aneurysm-basics/brain-aneurysm-statistics-and-facts/.
- Brancati, F., Castori, M., Mingarelli, R., & Dallapiccola, B. (2005). Majewski osteodysplastic primordial dwarfism type II (MOPD II) complicated by stroke: Clinical report and review of cerebral vascular anomalies. The American Journal of Medical Genetics,139(3), 212–215. https://doi.org/10.1002/ajmg.a.31009.CrossRefPubMedGoogle Scholar
- Bromberg, J. E., Rinkel, G. J., Algra, A., Greebe, P., van Duyn, C. M., Hasan, D., et al. (1995). Subarachnoid haemorrhage in first and second degree relatives of patients with subarachnoid haemorrhage. BMJ,311(7000), 288–289.CrossRefGoogle Scholar
- Cagnazzo, F., Gambacciani, C., Morganti, R., & Perrini, P. (2017). Intracranial aneurysms in patients with autosomal dominant polycystic kidney disease: Prevalence, risk of rupture, and management. A systematic review. Acta Neurochirurgica,159(5), 811–821. https://doi.org/10.1007/s00701-017-3142-z.CrossRefPubMedGoogle Scholar
- Canham, P. B., Talman, E. A., Finlay, H. M., & Dixon, J. G. (1991). Medial collagen organization in human arteries of the heart and brain by polarized light microscopy. Connective Tissue Research,26(1–2), 121–134.CrossRefGoogle Scholar
- Chalouhi, N., Ali, M. S., Jabbour, P. M., Tjoumakaris, S. I., Gonzalez, L. F., Rosenwasser, R. H., et al. (2012). Biology of intracranial aneurysms: Role of inflammation. Journal of Cerebral Blood Flow and Metabolism,32(9), 1659–1676. https://doi.org/10.1038/jcbfm.2012.84.CrossRefPubMedPubMedCentralGoogle Scholar
- Chu, Y., Wilson, K., Gu, H., Wegman-Points, L., Dooley, S. A., Pierce, G. L., et al. (2015). Myeloperoxidase is increased in human cerebral aneurysms and increases formation and rupture of cerebral aneurysms in mice. Stroke,46(6), 1651–1656. https://doi.org/10.1161/STROKEAHA.114.008589.CrossRefPubMedPubMedCentralGoogle Scholar
- Conway, J. E., Hutchins, G. M., & Tamargo, R. J. (1999). Marfan syndrome is not associated with intracranial aneurysms. Stroke,30(8), 1632–1636.CrossRefGoogle Scholar
- Conway, J. E., Hutchins, G. M., & Tamargo, R. J. (2001). Lack of evidence for an association between neurofibromatosis type I and intracranial aneurysms: autopsy study and review of the literature. Stroke,32(11), 2481–2485.CrossRefGoogle Scholar
- Crist, A. M., Lee, A. R., Patel, N. R., Westhoff, D. E., & Meadows, S. M. (2018). Vascular deficiency of Smad4 causes arteriovenous malformations: A mouse model of Hereditary Hemorrhagic Telangiectasia. Angiogenesis,21(2), 363–380. https://doi.org/10.1007/s10456-018-9602-0.CrossRefPubMedPubMedCentralGoogle Scholar
- Cun, Y. P., Xiong, C. J., Diao, B., Yang, Y., Pan, L., & Ma, L. T. (2017). Association between angiotensin-converting enzyme insertion/deletion polymorphisms and intracranial aneurysm susceptibility: A meta-analysis. Biomedical Reports,6(6), 663–670. https://doi.org/10.3892/br.2017.893.CrossRefPubMedPubMedCentralGoogle Scholar
- de Hoog, C. L., Foster, L. J., & Mann, M. (2004). RNA and RNA binding proteins participate in early stages of cell spreading through spreading initiation centers. Cell,117(5), 649–662.CrossRefGoogle Scholar
- De Paepe, A., & Malfait, F. (2012). The Ehlers-Danlos syndrome, a disorder with many faces. Clinical Genetics,82(1), 1–11. https://doi.org/10.1111/j.1399-0004.2012.01858.x.CrossRefPubMedGoogle Scholar
- Deka, R., Koller, D. L., Lai, D., Indugula, S. R., Sun, G., Woo, D., et al. (2010). The relationship between smoking and replicated sequence variants on chromosomes 8 and 9 with familial intracranial aneurysm. Stroke,41(6), 1132–1137. https://doi.org/10.1161/STROKEAHA.109.574640.CrossRefPubMedPubMedCentralGoogle Scholar
- Deng, Q., Huo, Y., & Luo, J. (2014). Endothelial mechanosensors: The gatekeepers of vascular homeostasis and adaptation under mechanical stress. Science China Life Sciences,57(8), 755–762. https://doi.org/10.1007/s11427-014-4705-3.CrossRefPubMedGoogle Scholar
- Diagbouga, M. R., Morel, S., Bijlenga, P., & Kwak, B. R. (2018). Role of hemodynamics in initiation/growth of intracranial aneurysms. European Journal of Clinical Investigation,48(9), e12992. https://doi.org/10.1111/eci.12992.CrossRefPubMedGoogle Scholar
- Dietz, H. C., Saraiva, J. M., Pyeritz, R. E., Cutting, G. R., & Francomano, C. A. (1992). Clustering of fibrillin (FBN1) missense mutations in Marfan syndrome patients at cysteine residues in EGF-like domains. Human Mutation,1(5), 366–374. https://doi.org/10.1002/humu.1380010504.CrossRefPubMedGoogle Scholar
- Draghia, F., Draghia, A. C., & Onicescu, D. (2008). Electron microscopic study of the arterial wall in the cerebral aneurysms. Romanian Journal of Morphology and Embryology,49(1), 101–103.PubMedGoogle Scholar
- Fan, J., Sun, W., Lin, M., Yu, K., Wang, J., Duan, D., et al. (2016). Genetic association study identifies a functional CNV in the WWOX gene contributes to the risk of intracranial aneurysms. Oncotarget,7(13), 16104–16111. https://doi.org/10.18632/oncotarget.7546.CrossRefPubMedPubMedCentralGoogle Scholar
- Farlow, J. L., Lin, H., Sauerbeck, L., Lai, D., Koller, D. L., Pugh, E., et al. (2015). Lessons learned from whole exome sequencing in multiplex families affected by a complex genetic disorder, intracranial aneurysm. PLoS ONE,10(3), e0121104. https://doi.org/10.1371/journal.pone.0121104.CrossRefPubMedPubMedCentralGoogle Scholar
- Farnham, J. M., Camp, N. J., Neuhausen, S. L., Tsuruda, J., Parker, D., MacDonald, J., et al. (2004). Confirmation of chromosome 7q11 locus for predisposition to intracranial aneurysm. Human Genetics,114(3), 250–255. https://doi.org/10.1007/s00439-003-1044-z.CrossRefPubMedGoogle Scholar
- Fennell, V. S., Kalani, M. Y., Atwal, G., Martirosyan, N. L., & Spetzler, R. F. (2016). Biology of saccular cerebral aneurysms: A review of current understanding and future directions. Frontiers in Surgery,3, 43. https://doi.org/10.3389/fsurg.2016.00043.CrossRefPubMedPubMedCentralGoogle Scholar
- Finlay, H. M., McCullough, L., & Canham, P. B. (1995). Three-dimensional collagen organization of human brain arteries at different transmural pressures. Journal of Vascular Research,32(5), 301–312. https://doi.org/10.1159/000159104.CrossRefPubMedGoogle Scholar
- Finlay, H. M., Whittaker, P., & Canham, P. B. (1998). Collagen organization in the branching region of human brain arteries. Stroke,29(8), 1595–1601.CrossRefGoogle Scholar
- Finney, L. H., Roberts, T. S., & Anderson, R. E. (1976). Giant intracranial aneurysm associated with Marfan’s syndrome. Case report. Journal of Neurosurgery,45(3), 342–347. https://doi.org/10.3171/jns.1976.45.3.0342.CrossRefPubMedGoogle Scholar
- Forbus, W. D. (1930). On the origin of miliary aneurysms of the superficial cerebral arteries. Bulletin of the Johns Hopkins Hospital,47, 239–284.Google Scholar
- Foroud, T., Koller, D. L., Lai, D., Sauerbeck, L., Anderson, C., Ko, N., et al. (2012). Genome-wide association study of intracranial aneurysms confirms role of Anril and SOX17 in disease risk. Stroke,43(11), 2846–2852. https://doi.org/10.1161/STROKEAHA.112.656397.CrossRefPubMedPubMedCentralGoogle Scholar
- Foroud, T., Lai, D., Koller, D., Van’t Hof, F., Kurki, M. I., Anderson, C. S., et al. (2014). Genome-wide association study of intracranial aneurysm identifies a new association on chromosome 7. Stroke,45(11), 3194–3199. https://doi.org/10.1161/STROKEAHA.114.006096.CrossRefPubMedPubMedCentralGoogle Scholar
- Foroud, T., Sauerbeck, L., Brown, R., Anderson, C., Woo, D., Kleindorfer, D., et al. (2009). Genome screen in familial intracranial aneurysm. BMC Medical Genetics,10, 3. https://doi.org/10.1186/1471-2350-10-3.CrossRefPubMedPubMedCentralGoogle Scholar
- Foroud, T., Sauerbeck, L., Brown, R., Anderson, C., Woo, D., Kleindorfer, D., et al. (2008). Genome screen to detect linkage to intracranial aneurysm susceptibility genes: The Familial Intracranial Aneurysm (FIA) study. Stroke,39(5), 1434–1440. https://doi.org/10.1161/STROKEAHA.107.502930.CrossRefPubMedPubMedCentralGoogle Scholar
- Gan, Q., Liu, Q., Hu, X., & You, C. (2017). Collagen type I alpha 2 (COL1A2) polymorphism contributes to intracranial aneurysm susceptibility: A meta-analysis. Medical Science Monitor,23, 3240–3246.CrossRefGoogle Scholar
- Givens, C., & Tzima, E. (2016). Endothelial mechanosignaling: Does one sensor fit all? Antioxidants & Redox Signaling,25(7), 373–388. https://doi.org/10.1089/ars.2015.6493.CrossRefGoogle Scholar
- Glasker, S., Schatlo, B., Klingler, J. H., Braun, V., Spangenberg, P., Kim, I. S., et al. (2014). Associations of collagen type I alpha2 polymorphisms with the presence of intracranial aneurysms in patients from Germany. The Journal of Stroke and Cerebrovascular Diseases,23(2), 356–360. https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.04.038.CrossRefPubMedGoogle Scholar
- Haasdijk, R. A., Den Dekker, W. K., Cheng, C., Tempel, D., Szulcek, R., Bos, F. L., et al. (2016). THSD1 preserves vascular integrity and protects against intraplaque haemorrhaging in ApoE−/− mice. Cardiovascular Research,110(1), 129–139. https://doi.org/10.1093/cvr/cvw015.CrossRefPubMedGoogle Scholar
- Hainsworth, P. J., & Mendelow, A. D. (1991). Giant intracranial aneurysm associated with Marfan’s syndrome: A case report. Journal of Neurology, Neurosurgery and Psychiatry,54(5), 471–472.CrossRefGoogle Scholar
- Harburger, D. S., & Calderwood, D. A. (2009). Integrin signalling at a glance. Journal of Cell Science,122(Pt 2), 159–163. https://doi.org/10.1242/jcs.018093.CrossRefPubMedGoogle Scholar
- Hateboer, N., v Dijk, M. A., Bogdanova, N., Coto, E., Saggar-Malik, A. K., San Millan, J. L., et al. (1999). Comparison of phenotypes of polycystic kidney disease types 1 and 2. European PKD1-PKD2 Study Group. Lancet,353(9147), 103–107.CrossRefGoogle Scholar
- Hayward, C., Keston, M., Brock, D. J., & Dietz, H. C. (1992). Fibrillin (FBN1) mutations in Marfan syndrome. Human Mutation,1(1), 79. https://doi.org/10.1002/humu.1380010115.CrossRefPubMedGoogle Scholar
- Higashida, R. T., Halbach, V. V., Hieshima, G. B., & Cahan, L. (1988). Cavernous carotid artery aneurysm associated with Marfan’s syndrome: Treatment by balloon embolization therapy. Neurosurgery,22(2), 297–300.CrossRefGoogle Scholar
- Hitchcock, E., & Gibson, W. T. (2017). A review of the genetics of intracranial berry aneurysms and implications for genetic counseling. Journal of Genetic Counseling,26(1), 21–31. https://doi.org/10.1007/s10897-016-0029-8.CrossRefPubMedGoogle Scholar
- Hong, E. P., Jeon, J. P., Kim, S. E., Yang, J. S., Choi, H. J., Kang, S. H., et al. (2017). A novel association between lysyl oxidase gene polymorphism and intracranial aneurysm in Koreans. Yonsei Medical Journal,58(5), 1006–1011. https://doi.org/10.3349/ymj.2017.58.5.1006.CrossRefPubMedPubMedCentralGoogle Scholar
- Hop, J. W., Rinkel, G. J., Algra, A., & van Gijn, J. (1997). Case-fatality rates and functional outcome after subarachnoid hemorrhage: A systematic review. Stroke,28(3), 660–664.CrossRefGoogle Scholar
- Hu, J., Luo, J., Wang, H., Wang, C., Sun, X., Li, A., et al. (2017). Association of TNF-alpha-3959T/C gene polymorphisms in the Chinese population with intracranial aneurysms. Journal of Molecular Neuroscience,63(3–4), 349–354. https://doi.org/10.1007/s12031-017-0985-y.CrossRefPubMedGoogle Scholar
- Hu, X., Fang, Y., Li, Y. K., Liu, W. K., Li, H., Ma, L., et al. (2015). Role of endoglin insertion and rs1800956 polymorphisms in intracranial aneurysm susceptibility: A meta-analysis. Medicine (Baltimore),94(45), e1847. https://doi.org/10.1097/MD.0000000000001847.CrossRefGoogle Scholar
- Iida, A., Wang, Z., Hirata, H., & Sehara-Fujisawa, A. (2018). Integrin beta1 activity is required for cardiovascular formation in zebrafish. Genes to Cells,23(11), 938–951. https://doi.org/10.1111/gtc.12641.CrossRefPubMedGoogle Scholar
- International Study of Unruptured Intracranial Aneurysms (1998). Unruptured intracranial aneurysms–risk of rupture and risks of surgical intervention. New England Journal of Medicine,339(24), 1725–1733. https://doi.org/10.1056/NEJM199812103392401.CrossRefGoogle Scholar
- Ishibashi, R., Aoki, T., Nishimura, M., Hashimoto, N., & Miyamoto, S. (2010). Contribution of mast cells to cerebral aneurysm formation. Current Neurovascular Research,7(2), 113–124.CrossRefGoogle Scholar
- Itoh, F., Itoh, S., Adachi, T., Ichikawa, K., Matsumura, Y., Takagi, T., et al. (2012). Smad2/Smad3 in endothelium is indispensable for vascular stability via S1PR1 and N-cadherin expressions. Blood,119(22), 5320–5328. https://doi.org/10.1182/blood-2011-12-395772.CrossRefPubMedPubMedCentralGoogle Scholar
- Johnston, S. C., Selvin, S., & Gress, D. R. (1998). The burden, trends, and demographics of mortality from subarachnoid hemorrhage. Neurology,50(5), 1413–1418.CrossRefGoogle Scholar
- Joo, S. P., Kim, T. S., Lee, I. K., Lee, J. K., Seo, B. R., Kim, J. H., et al. (2009). The role of collagen type I alpha2 polymorphisms: intracranial aneurysms in Koreans. Surgical Neurology,72(1), 48–53. https://doi.org/10.1016/j.surneu.2009.02.009 (discussion 53).CrossRefPubMedGoogle Scholar
- Joo, S. P., Lee, J. K., Kim, T. S., Kim, M. K., Lee, I. K., Seo, B. R., et al. (2008). A polymorphic variant of the endoglin gene is associated with increased risk for intracranial aneurysms in a Korean population. Surgical Neurology,70(1), 39–44. https://doi.org/10.1016/j.surneu.2008.01.060.CrossRefPubMedGoogle Scholar
- Jurczyk, A., Gromley, A., Redick, S., San Agustin, J., Witman, G., Pazour, G. J., et al. (2004). Pericentrin forms a complex with intraflagellar transport proteins and polycystin-2 and is required for primary cilia assembly. Journal of Cell Biology,166(5), 637–643. https://doi.org/10.1083/jcb.200405023.CrossRefPubMedGoogle Scholar
- Kallakuri, S., Yu, J. A., Li, J., Li, Y., Weinstein, B. M., Nicoli, S., et al. (2015). Endothelial cilia are essential for developmental vascular integrity in zebrafish. Journal of the American Society of Nephrology,26(4), 864–875. https://doi.org/10.1681/ASN.2013121314.CrossRefPubMedGoogle Scholar
- Kanematsu, Y., Kanematsu, M., Kurihara, C., Tada, Y., Tsou, T. L., van Rooijen, N., et al. (2011). Critical roles of macrophages in the formation of intracranial aneurysm. Stroke,42(1), 173–178. https://doi.org/10.1161/STROKEAHA.110.590976.CrossRefPubMedGoogle Scholar
- Kim, C. J., Park, S. S., Lee, H. S., Chung, H. J., Choi, W., Chung, J. H., et al. (2011). Identification of an autosomal dominant locus for intracranial aneurysm through a model-based family collection in a geographically limited area. Journal of Human Genetics,56(6), 464–466. https://doi.org/10.1038/jhg.2011.27.CrossRefPubMedGoogle Scholar
- Kim, D. H., Van Ginhoven, G., & Milewicz, D. M. (2003). Incidence of familial intracranial aneurysms in 200 patients: Comparison among Caucasian, African-American, and Hispanic populations. Neurosurgery,53(2), 302–308.CrossRefGoogle Scholar
- Kim, S. T., Brinjikji, W., & Kallmes, D. F. (2016). Prevalence of intracranial aneurysms in patients with connective tissue diseases: A retrospective study. AJNR American Journal of Neuroradiology,37(8), 1422–1426. https://doi.org/10.3174/ajnr.A4718.CrossRefPubMedGoogle Scholar
- Kondo, S., Hashimoto, N., Kikuchi, H., Hazama, F., Nagata, I., & Kataoka, H. (1998). Apoptosis of medial smooth muscle cells in the development of saccular cerebral aneurysms in rats. Stroke,29(1), 181–188 (discussion 189).CrossRefGoogle Scholar
- Korja, M., Silventoinen, K., Laatikainen, T., Jousilahti, P., Salomaa, V., Hernesniemi, J., et al. (2013). Risk factors and their combined effects on the incidence rate of subarachnoid hemorrhage—A population-based cohort study. PLoS ONE,8(9), e73760. https://doi.org/10.1371/journal.pone.0073760.CrossRefPubMedPubMedCentralGoogle Scholar
- Korja, M., Silventoinen, K., McCarron, P., Zdravkovic, S., Skytthe, A., Haapanen, A., et al. (2010). Genetic epidemiology of spontaneous subarachnoid hemorrhage: Nordic Twin Study. Stroke,41(11), 2458–2462. https://doi.org/10.1161/STROKEAHA.110.586420.CrossRefPubMedGoogle Scholar
- Krings, T., Mandell, D. M., Kiehl, T. R., Geibprasert, S., Tymianski, M., Alvarez, H., et al. (2011). Intracranial aneurysms: From vessel wall pathology to therapeutic approach. Nature Reviews Neurology,7(10), 547–559. https://doi.org/10.1038/nrneurol.2011.136.CrossRefPubMedGoogle Scholar
- Krischek, B., Tajima, A., Akagawa, H., Narita, A., Ruigrok, Y., Rinkel, G., et al. (2010). Association of the Jun dimerization protein 2 gene with intracranial aneurysms in Japanese and Korean cohorts as compared to a Dutch cohort. Neuroscience,169(1), 339–343. https://doi.org/10.1016/j.neuroscience.2010.05.002.CrossRefPubMedGoogle Scholar
- Kurki, M. I., Gaal, E. I., Kettunen, J., Lappalainen, T., Menelaou, A., Anttila, V., et al. (2014). High risk population isolate reveals low frequency variants predisposing to intracranial aneurysms. PLoS Genetics,10(1), e1004134. https://doi.org/10.1371/journal.pgen.1004134.CrossRefPubMedPubMedCentralGoogle Scholar
- Lee, S., Kim, I. K., Ahn, J. S., Woo, D. C., Kim, S. T., Song, S., et al. (2015). Deficiency of endothelium-specific transcription factor Sox17 induces intracranial aneurysm. Circulation,131(11), 995–1005. https://doi.org/10.1161/CIRCULATIONAHA.114.012568.CrossRefPubMedGoogle Scholar
- Li, F. F., Wang, X. D., Zhu, M. W., Lou, Z. H., Zhang, Q., Zhu, C. Y., et al. (2015). Identification of two novel critical mutations in PCNT gene resulting in microcephalic osteodysplastic primordial dwarfism type II associated with multiple intracranial aneurysms. Metabolic Brain Disease,30(6), 1387–1394. https://doi.org/10.1007/s11011-015-9712-y.CrossRefPubMedGoogle Scholar
- Linn, F. H., Rinkel, G. J., Algra, A., & van Gijn, J. (1996). Incidence of subarachnoid hemorrhage: Role of region, year, and rate of computed tomography: A meta-analysis. Stroke,27(4), 625–629.CrossRefGoogle Scholar
- Liu, J., Zeng, L., Kennedy, R. M., Gruenig, N. M., & Childs, S. J. (2012). betaPix plays a dual role in cerebral vascular stability and angiogenesis, and interacts with integrin alphavbeta8. Developmental Biology,363(1), 95–105. https://doi.org/10.1016/j.ydbio.2011.12.022.CrossRefPubMedGoogle Scholar
- Loeys, B. L., Schwarze, U., Holm, T., Callewaert, B. L., Thomas, G. H., Pannu, H., et al. (2006). Aneurysm syndromes caused by mutations in the TGF-beta receptor. New England Journal of Medicine,355(8), 788–798. https://doi.org/10.1056/NEJMoa055695.CrossRefPubMedGoogle Scholar
- Lorenzo-Betancor, O., Blackburn, P. R., Edwards, E., Vazquez-do-Campo, R., Klee, E. W., Labbe, C., et al. (2018). PCNT point mutations and familial intracranial aneurysms. Neurology,91(23), e2170–e2181. https://doi.org/10.1212/WNL.0000000000006614.CrossRefPubMedGoogle Scholar
- Low, S. K., Takahashi, A., Cha, P. C., Zembutsu, H., Kamatani, N., Kubo, M., et al. (2012). Genome-wide association study for intracranial aneurysm in the Japanese population identifies three candidate susceptible loci and a functional genetic variant at EDNRA. Human Molecular Genetics,21(9), 2102–2110. https://doi.org/10.1093/hmg/dds020.CrossRefPubMedGoogle Scholar
- Low, S. K., Zembutsu, H., Takahashi, A., Kamatani, N., Cha, P. C., Hosono, N., et al. (2011). Impact of LIMK1, MMP2 and TNF-alpha variations for intracranial aneurysm in Japanese population. Journal of Human Genetics,56(3), 211–216. https://doi.org/10.1038/jhg.2010.169.CrossRefPubMedGoogle Scholar
- MacCarrick, G., Black, J. H., 3rd, Bowdin, S., El-Hamamsy, I., Frischmeyer-Guerrerio, P. A., Guerrerio, A. L., et al. (2014). Loeys-Dietz syndrome: A primer for diagnosis and management. Genetics in Medicine,16(8), 576–587. https://doi.org/10.1038/gim.2014.11.CrossRefPubMedPubMedCentralGoogle Scholar
- Mackey, J., Brown, R. D., Sauerbeck, L., Hornung, R., Moomaw, C. J., Koller, D. L., et al. (2015). Affected twins in the familial intracranial aneurysm study. Cerebrovascular Diseases,39(2), 82–86. https://doi.org/10.1159/000369961.CrossRefPubMedGoogle Scholar
- Malfait, F. (2018). Vascular aspects of the Ehlers-Danlos Syndromes. Matrix Biology,71–72, 380–395. https://doi.org/10.1016/j.matbio.2018.04.013.CrossRefPubMedGoogle Scholar
- Matsuda, M., Matsuda, I., Handa, H., & Okamoto, K. (1979). Intracavernous giant aneurysm associated with Marfan’s syndrome. Surgical Neurology,12(2), 119–121.PubMedGoogle Scholar
- Meng, H., Tutino, V. M., Xiang, J., & Siddiqui, A. (2014). High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: Toward a unifying hypothesis. AJNR American Journal of Neuroradiology,35(7), 1254–1262. https://doi.org/10.3174/ajnr.A3558.CrossRefPubMedGoogle Scholar
- Meng, H., Wang, Z., Hoi, Y., Gao, L., Metaxa, E., Swartz, D. D., et al. (2007). Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke,38(6), 1924–1931. https://doi.org/10.1161/STROKEAHA.106.481234.CrossRefPubMedPubMedCentralGoogle Scholar
- Mineharu, Y., Inoue, K., Inoue, S., Yamada, S., Nozaki, K., Hashimoto, N., et al. (2007). Model-based linkage analyses confirm chromosome 19q13.3 as a susceptibility locus for intracranial aneurysm. Stroke,38(4), 1174–1178. https://doi.org/10.1161/01.str.0000259657.73682.03.CrossRefPubMedGoogle Scholar
- Miyata, H., Koseki, H., Takizawa, K., Kasuya, H., Nozaki, K., Narumiya, S., et al. (2017). T cell function is dispensable for intracranial aneurysm formation and progression. PLoS ONE,12(4), e0175421. https://doi.org/10.1371/journal.pone.0175421.CrossRefPubMedPubMedCentralGoogle Scholar
- Montero-Balaguer, M., Swirsding, K., Orsenigo, F., Cotelli, F., Mione, M., & Dejana, E. (2009). Stable vascular connections and remodeling require full expression of VE-cadherin in zebrafish embryos. PLoS ONE,4(6), e5772. https://doi.org/10.1371/journal.pone.0005772.CrossRefPubMedPubMedCentralGoogle Scholar
- Morimoto, M., Miyamoto, S., Mizoguchi, A., Kume, N., Kita, T., & Hashimoto, N. (2002). Mouse model of cerebral aneurysm: Experimental induction by renal hypertension and local hemodynamic changes. Stroke,33(7), 1911–1915.CrossRefGoogle Scholar
- Nader, G. P., Ezratty, E. J., & Gundersen, G. G. (2016). FAK, talin and PIPKIgamma regulate endocytosed integrin activation to polarize focal adhesion assembly. Nature Cell Biology,18(5), 491–503. https://doi.org/10.1038/ncb3333.CrossRefPubMedGoogle Scholar
- Nahed, B. V., Seker, A., Guclu, B., Ozturk, A. K., Finberg, K., Hawkins, A. A., et al. (2005). Mapping a Mendelian form of intracranial aneurysm to 1p34.3-p36.13. American Journal of Human Genetics, 76(1), 172–179. https://doi.org/10.1086/426953.CrossRefGoogle Scholar
- Nakajima-Takagi, Y., Osawa, M., Oshima, M., Takagi, H., Miyagi, S., Endoh, M., et al. (2013). Role of SOX17 in hematopoietic development from human embryonic stem cells. Blood,121(3), 447–458. https://doi.org/10.1182/blood-2012-05-431403.CrossRefPubMedGoogle Scholar
- Nauli, S. M., Kawanabe, Y., Kaminski, J. J., Pearce, W. J., Ingber, D. E., & Zhou, J. (2008). Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation,117(9), 1161–1171. https://doi.org/10.1161/CIRCULATIONAHA.107.710111.CrossRefPubMedPubMedCentralGoogle Scholar
- Nicholls, A. C., De Paepe, A., Narcisi, P., Dalgleish, R., De Keyser, F., Matton, M., et al. (1988). Linkage of a polymorphic marker for the type III collagen gene (COL3A1) to atypical autosomal dominant Ehlers-Danlos syndrome type IV in a large Belgian pedigree. Human Genetics,78(3), 276–281.CrossRefGoogle Scholar
- Norrgard, O., Angquist, K. A., Fodstad, H., Forsell, A., & Lindberg, M. (1987). Intracranial aneurysms and heredity. Neurosurgery,20(2), 236–239.CrossRefGoogle Scholar
- Nuki, Y., Tsou, T. L., Kurihara, C., Kanematsu, M., Kanematsu, Y., & Hashimoto, T. (2009). Elastase-induced intracranial aneurysms in hypertensive mice. Hypertension,54(6), 1337–1344. https://doi.org/10.1161/HYPERTENSIONAHA.109.138297.CrossRefPubMedPubMedCentralGoogle Scholar
- Ohtsuki, H., Sugiura, M., Iwaki, K., Nishikawa, M., & Yasuno, M. (1984). A case of Marfan’s syndrome with a ruptured distal middle cerebral aneurysm. No Shinkei Geka,12(8), 983–985.PubMedGoogle Scholar
- Olson, J. M., Vongpunsawad, S., Kuivaniemi, H., Ronkainen, A., Hernesniemi, J., Ryynanen, M., et al. (2002). Search for intracranial aneurysm susceptibility gene(s) using Finnish families. BMC Medical Genetics,3, 7.CrossRefGoogle Scholar
- Onda, H., Kasuya, H., Yoneyama, T., Takakura, K., Hori, T., Takeda, J., et al. (2001). Genomewide-linkage and haplotype-association studies map intracranial aneurysm to chromosome 7q11. American Journal of Human Genetics,69(4), 804–819. https://doi.org/10.1086/323614.CrossRefPubMedPubMedCentralGoogle Scholar
- Ozturk, A. K., Nahed, B. V., Bydon, M., Bilguvar, K., Goksu, E., Bademci, G., et al. (2006). Molecular genetic analysis of two large kindreds with intracranial aneurysms demonstrates linkage to 11q24-25 and 14q23-31. Stroke,37(4), 1021–1027. https://doi.org/10.1161/01.STR.0000206153.92675.b9.CrossRefPubMedGoogle Scholar
- Paschoal, E. H. A., Yamaki, V. N., Teixeira, R. K. C., Paschoal Junior, F. M., Jong, A. L. G. S., Teixeira, M. J., et al. (2018). Relationship between endothelial nitric oxide synthase (eNOS) and natural history of intracranial aneurysms: Meta-analysis. Neurosurgical Review,41(1), 87–94. https://doi.org/10.1007/s10143-016-0761-4.CrossRefPubMedGoogle Scholar
- Paterakis, K., Koutsias, S., Doxani, C., Xanthopoulou, P., Kokkali, C., Mpoulimari, I., et al. (2017). Variants of the elastin (ELN) gene and susceptibility to intracranial aneurysm: A synthesis of genetic association studies using a genetic model-free approach. International Journal of Neuroscience,127(7), 567–572. https://doi.org/10.1080/00207454.2016.1212027.CrossRefPubMedGoogle Scholar
- Pentimalli, L., Modesti, A., Vignati, A., Marchese, E., Albanese, A., Di Rocco, F., et al. (2004). Role of apoptosis in intracranial aneurysm rupture. Journal of Neurosurgery,101(6), 1018–1025. https://doi.org/10.3171/jns.2004.101.6.1018.CrossRefPubMedGoogle Scholar
- Pirson, Y. (2010). Extrarenal manifestations of autosomal dominant polycystic kidney disease. Advances in Chronic Kidney Disease,17(2), 173–180. https://doi.org/10.1053/j.ackd.2010.01.003.CrossRefPubMedGoogle Scholar
- Rauch, A. (2011). The shortest of the short: Pericentrin mutations and beyond. Best Practice & Research Clinical Endocrinology & Metabolism,25(1), 125–130. https://doi.org/10.1016/j.beem.2010.10.015.CrossRefGoogle Scholar
- Rauch, A., Thiel, C. T., Schindler, D., Wick, U., Crow, Y. J., Ekici, A. B., et al. (2008). Mutations in the pericentrin (PCNT) gene cause primordial dwarfism. Science,319(5864), 816–819. https://doi.org/10.1126/science.1151174.CrossRefPubMedGoogle Scholar
- Ravindra, V. M., Karsy, M., Schmidt, R. H., Taussky, P., Park, M. S., & Bollo, R. J. (2016). Rapid de novo aneurysm formation after clipping of a ruptured middle cerebral artery aneurysm in an infant with an MYH11 mutation. Journal of Neurosurgery Pediatrics,18(4), 463–470. https://doi.org/10.3171/2016.5.PEDS16115.CrossRefPubMedGoogle Scholar
- Rodrigues, V. J., Elsayed, S., Loeys, B. L., Dietz, H. C., & Yousem, D. M. (2009). Neuroradiologic manifestations of Loeys-Dietz syndrome type 1. AJNR American Journal of Neuroradiology,30(8), 1614–1619. https://doi.org/10.3174/ajnr.A1651.CrossRefPubMedGoogle Scholar
- Ronkainen, A., Hernesniemi, J., Puranen, M., Niemitukia, L., Vanninen, R., Ryynanen, M., et al. (1997). Familial intracranial aneurysms. Lancet,349(9049), 380–384. https://doi.org/10.1016/S0140-6736(97)80009-8.CrossRefPubMedGoogle Scholar
- Ronkainen, A., Hernesniemi, J., & Ryynanen, M. (1993). Familial subarachnoid hemorrhage in east Finland, 1977-1990. Neurosurgery,33(5), 787–796 (discussion 796–797).PubMedGoogle Scholar
- Roos, Y. B., Pals, G., Struycken, P. M., Rinkel, G. J., Limburg, M., Pronk, J. C., et al. (2004). Genome-wide linkage in a large Dutch consanguineous family maps a locus for intracranial aneurysms to chromosome 2p13. Stroke,35(10), 2276–2281. https://doi.org/10.1161/01.STR.0000141415.28155.46.CrossRefPubMedGoogle Scholar
- Roszer, T. (2015). Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators of Inflammation,2015, 816460. https://doi.org/10.1155/2015/816460.CrossRefPubMedPubMedCentralGoogle Scholar
- Rui, Y. N., Xu, Z., Fang, X., Menezes, M. R., Balzeau, J., Niu, A., et al. (2017). The intracranial aneurysm gene THSD1 connects endosome dynamics to nascent focal adhesion assembly. Cellular Physiology and Biochemistry,43(6), 2200–2211. https://doi.org/10.1159/000484298.CrossRefPubMedGoogle Scholar
- Ruigrok, Y. M., Rinkel, G. J., & Wijmenga, C. (2006). The versican gene and the risk of intracranial aneurysms. Stroke,37(9), 2372–2374. https://doi.org/10.1161/01.STR.0000236499.55301.09.CrossRefPubMedGoogle Scholar
- Ruigrok, Y. M., Rinkel, G. J., Wijmenga, C., Kasuya, H., Tajima, A., Takahashi, T., et al. (2009). Association analysis of genes involved in the maintenance of the integrity of the extracellular matrix with intracranial aneurysms in a Japanese cohort. Cerebrovascular Diseases,28(2), 131–134. https://doi.org/10.1159/000223438.CrossRefPubMedGoogle Scholar
- Ruigrok, Y. M., Wijmenga, C., Rinkel, G. J., van’t Slot, R., Baas, F., Wolfs, M., et al. (2008). Genomewide linkage in a large Dutch family with intracranial aneurysms: replication of 2 loci for intracranial aneurysms to chromosome 1p36.11-p36.13 and Xp22.2-p22.32. Stroke, 39(4), 1096–1102. https://doi.org/10.1161/strokeaha.107.495168.CrossRefGoogle Scholar
- Santiago-Sim, T., Depalma, S. R., Ju, K. L., McDonough, B., Seidman, C. E., Seidman, J. G., et al. (2009a). Genomewide linkage in a large Caucasian family maps a new locus for intracranial aneurysms to chromosome 13q. Stroke,40(3 Suppl), S57–60. https://doi.org/10.1161/STROKEAHA.108.534396.CrossRefPubMedGoogle Scholar
- Santiago-Sim, T., Fang, X., Hennessy, M. L., Nalbach, S. V., DePalma, S. R., Lee, M. S., et al. (2016). THSD1 (thrombospondin type 1 domain containing protein 1) mutation in the pathogenesis of intracranial aneurysm and subarachnoid hemorrhage. Stroke,47(12), 3005–3013. https://doi.org/10.1161/STROKEAHA.116.014161.CrossRefPubMedPubMedCentralGoogle Scholar
- Santiago-Sim, T., & Kim, D. H. (2011). Pathobiology of intracranial aneurysms. In H. R. Winn (Ed.), Youmans neurological surgery (6th ed., Vol. 4, pp. 3747–3755). Philadelphia, PA: Elsevier.CrossRefGoogle Scholar
- Santiago-Sim, T., Mathew-Joseph, S., Pannu, H., Milewicz, D. M., Seidman, C. E., Seidman, J. G., et al. (2009b). Sequencing of TGF-beta pathway genes in familial cases of intracranial aneurysm. Stroke,40(5), 1604–1611. https://doi.org/10.1161/STROKEAHA.108.540245.CrossRefPubMedPubMedCentralGoogle Scholar
- Santoro, M. M., Samuel, T., Mitchell, T., Reed, J. C., & Stainier, D. Y. (2007). Birc2 (cIap1) regulates endothelial cell integrity and blood vessel homeostasis. Nature Genetics,39(11), 1397–1402. https://doi.org/10.1038/ng.2007.8.CrossRefPubMedGoogle Scholar
- Sathyan, S., Koshy, L. V., Balan, S., Easwer, H. V., Premkumar, S., Nair, S., et al. (2014). Association of Versican (VCAN) gene polymorphisms rs251124 and rs2287926 (G428D), with intracranial aneurysm. Meta Gene,2, 651–660. https://doi.org/10.1016/j.mgene.2014.07.001.CrossRefPubMedPubMedCentralGoogle Scholar
- Sawyer, D. M., Pace, L. A., Pascale, C. L., Kutchin, A. C., O’Neill, B. E., Starke, R. M., et al. (2016). Lymphocytes influence intracranial aneurysm formation and rupture: Role of extracellular matrix remodeling and phenotypic modulation of vascular smooth muscle cells. Journal of Neuroinflammation,13(1), 185. https://doi.org/10.1186/s12974-016-0654-z.CrossRefPubMedPubMedCentralGoogle Scholar
- Scanarini, M., Mingrino, S., Zuccarello, M., & Trincia, G. (1978). Scanning electron microscopy (s.e.m.) of biopsy specimens of ruptured intracranial saccular aneurysms. Acta Neuropathologica,44(2), 131–134.CrossRefGoogle Scholar
- Schievink, W. I., Parisi, J. E., Piepgras, D. G., & Michels, V. V. (1997). Intracranial aneurysms in Marfan’s syndrome: An autopsy study. Neurosurgery,41(4), 866–870 (discussion 871).CrossRefGoogle Scholar
- Schievink, W. I., Riedinger, M., & Maya, M. M. (2005). Frequency of incidental intracranial aneurysms in neurofibromatosis type 1. American Journal of Medical Genetics Part A,134A(1), 45–48. https://doi.org/10.1002/ajmg.a.30475.CrossRefPubMedGoogle Scholar
- Schievink, W. I., Schaid, D. J., Michels, V. V., & Piepgras, D. G. (1995). Familial aneurysmal subarachnoid hemorrhage: A community-based study. Journal of Neurosurgery,83(3), 426–429. https://doi.org/10.3171/jns.1995.83.3.0426.CrossRefPubMedGoogle Scholar
- Schievink, W. I., Schaid, D. J., Rogers, H. M., Piepgras, D. G., & Michels, V. V. (1994). On the inheritance of intracranial aneurysms. Stroke,25(10), 2028–2037.CrossRefGoogle Scholar
- Schurmann, C., Gremse, F., Jo, H., Kiessling, F., & Brandes, R. P. (2015). Micro-CT technique is well suited for documentation of remodeling processes in murine carotid arteries. PLoS ONE,10(6), e0130374. https://doi.org/10.1371/journal.pone.0130374.CrossRefPubMedPubMedCentralGoogle Scholar
- Sforza, D. M., Putman, C. M., & Cebral, J. R. (2009). Hemodynamics of cerebral aneurysms. Annual Review of Fluid Mechanics,41, 91–107. https://doi.org/10.1146/annurev.fluid.40.111406.102126.CrossRefPubMedPubMedCentralGoogle Scholar
- Shao, L., Qin, X., Liu, J., Jian, Z., Xiong, X., & Liu, R. (2017). Macrophage polarization in cerebral aneurysm: Perspectives and potential targets. Journal of Immunology Research,2017, 8160589. https://doi.org/10.1155/2017/8160589.CrossRefPubMedPubMedCentralGoogle Scholar
- Shen, T. L., Park, A. Y., Alcaraz, A., Peng, X., Jang, I., Koni, P., et al. (2005). Conditional knockout of focal adhesion kinase in endothelial cells reveals its role in angiogenesis and vascular development in late embryogenesis. Journal of Cell Biology,169(6), 941–952. https://doi.org/10.1083/jcb.200411155.CrossRefPubMedGoogle Scholar
- Signorelli, F., Sela, S., Gesualdo, L., Chevrel, S., Tollet, F., Pailler-Mattei, C., et al. (2018). Hemodynamic stress, inflammation, and intracranial aneurysm development and rupture: A systematic review. World Neurosurg,115, 234–244. https://doi.org/10.1016/j.wneu.2018.04.143.CrossRefPubMedGoogle Scholar
- Sima, X., Sun, H., Zhou, P., & You, C. (2015). A potential polymorphism in the promoter of Let-7 is associated with an increased risk of intracranial aneurysm: A case-control study. Medicine (Baltimore),94(51), e2267. https://doi.org/10.1097/MD.0000000000002267.CrossRefGoogle Scholar
- Song, Y., Liu, P., Li, Z., Shi, Y., Huang, J., Li, S., et al. (2018). The effect of myosin light chain kinase on the occurrence and development of intracranial aneurysm. Frontiers in Cellular Neuroscience,12, 416. https://doi.org/10.3389/fncel.2018.00416.CrossRefPubMedPubMedCentralGoogle Scholar
- Starke, R. M., Chalouhi, N., Ding, D., Raper, D. M., McKisic, M. S., Owens, G. K., et al. (2014). Vascular smooth muscle cells in cerebral aneurysm pathogenesis. Translational Stroke Research,5(3), 338–346. https://doi.org/10.1007/s12975-013-0290-1.CrossRefPubMedGoogle Scholar
- Stehbens, W. E., Delahunt, B., & Hilless, A. D. (1989). Early berry aneurysm formation in Marfan’s syndrome. Surgical Neurology,31(3), 200–202.CrossRefGoogle Scholar
- Sun, H., Zhang, D., & Zhao, J. (2008). The interleukin-6 gene -572G > C promoter polymorphism is related to intracranial aneurysms in Chinese Han nationality. Neuroscience Letters,440(1), 1–3. https://doi.org/10.1016/j.neulet.2008.04.077.CrossRefPubMedGoogle Scholar
- Suo, M., Lin, Y., Yu, H., Song, W., Sun, K., Song, Y., et al. (2014). Association of Kallikrein gene polymorphisms with sporadic intracranial aneurysms in the Chinese population. Journal of Neurosurgery,120(6), 1397–1401. https://doi.org/10.3171/2013.11.JNS131036.CrossRefPubMedGoogle Scholar
- Superti-Furga, A., Gugler, E., Gitzelmann, R., & Steinmann, B. (1988). Ehlers-Danlos syndrome type IV: A multi-exon deletion in one of the two COL3A1 alleles affecting structure, stability, and processing of type III procollagen. Journal of Biological Chemistry,263(13), 6226–6232.PubMedGoogle Scholar
- Tada, Y., Kanematsu, Y., Kanematsu, M., Nuki, Y., Liang, E. I., Wada, K., et al. (2011). A mouse model of intracranial aneurysm: Technical considerations. Acta Neurochirurgica. Supplementum,111, 31–35. https://doi.org/10.1007/978-3-7091-0693-8_6.CrossRefGoogle Scholar
- Teasdale, G. M., Wardlaw, J. M., White, P. M., Murray, G., Teasdale, E. M., & Easton, V. (2005). The familial risk of subarachnoid haemorrhage. Brain,128(Pt 7), 1677–1685. https://doi.org/10.1093/brain/awh497.CrossRefPubMedGoogle Scholar
- Teo, M., Johnson, J. N., Bell-Stephens, T. E., Marks, M. P., Do, H. M., Dodd, R. L., et al. (2016). Surgical outcomes of Majewski osteodysplastic primordial dwarfism Type II with intracranial vascular anomalies. Journal of Neurosurgery Pediatrics,25(6), 717–723. https://doi.org/10.3171/2016.6.PEDS16243.CrossRefPubMedGoogle Scholar
- Thompson, B. G., Brown, R. D., Jr., Amin-Hanjani, S., Broderick, J. P., Cockroft, K. M., Connolly, E. S., Jr., et al. (2015). Guidelines for the management of patients with unruptured intracranial aneurysms: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke,46(8), 2368–2400. https://doi.org/10.1161/STR.0000000000000070.CrossRefPubMedGoogle Scholar
- Tromp, G., Weinsheimer, S., Ronkainen, A., & Kuivaniemi, H. (2014). Molecular basis and genetic predisposition to intracranial aneurysm. Annals of Medicine,46(8), 597–606. https://doi.org/10.3109/07853890.2014.949299.CrossRefPubMedPubMedCentralGoogle Scholar
- Tsipouras, P., Byers, P. H., Schwartz, R. C., Chu, M. L., Weil, D., Pepe, G., et al. (1986). Ehlers-Danlos syndrome type IV: Cosegregation of the phenotype to a COL3A1 allele of type III procollagen. Human Genetics,74(1), 41–46.CrossRefGoogle Scholar
- van den Berg, J. S., Limburg, M., & Hennekam, R. C. (1996). Is Marfan syndrome associated with symptomatic intracranial aneurysms? Stroke,27(1), 10–12.CrossRefGoogle Scholar
- van der Voet, M., Olson, J. M., Kuivaniemi, H., Dudek, D. M., Skunca, M., Ronkainen, A., et al. (2004). Intracranial aneurysms in Finnish families: confirmation of linkage and refinement of the interval to chromosome 19q13.3. The American Journal of Human Genetics, 74(3), 564–571. https://doi.org/10.1086/382285.CrossRefGoogle Scholar
- Vanakker, O. M., Hemelsoet, D., & De Paepe, A. (2011). Hereditary connective tissue diseases in young adult stroke: a comprehensive synthesis. Stroke Research and Treatment,2011, 712903. https://doi.org/10.4061/2011/712903.CrossRefPubMedPubMedCentralGoogle Scholar
- Verlaan, D. J., Dube, M. P., St-Onge, J., Noreau, A., Roussel, J., Satge, N., et al. (2006). A new locus for autosomal dominant intracranial aneurysm, ANIB4, maps to chromosome 5p15.2-14.3. Journal of Medical Genetics,43(6), e31. https://doi.org/10.1136/jmg.2005.033209.CrossRefPubMedPubMedCentralGoogle Scholar
- Vo, A. H., Swaroop, A., Liu, Y., Norris, Z. G., & Shavit, J. A. (2013). Loss of fibrinogen in zebrafish results in symptoms consistent with human hypofibrinogenemia. PLoS ONE,8(9), e74682. https://doi.org/10.1371/journal.pone.0074682.CrossRefPubMedPubMedCentralGoogle Scholar
- Wang, Q., Liu, Z., Ren, J., Morgan, S., Assa, C., & Liu, B. (2015a). Receptor-interacting protein kinase 3 contributes to abdominal aortic aneurysms via smooth muscle cell necrosis and inflammation. Circulation Research,116(4), 600–611. https://doi.org/10.1161/CIRCRESAHA.116.304899.CrossRefPubMedPubMedCentralGoogle Scholar
- Wang, Y., Emeto, T. I., Lee, J., Marshman, L., Moran, C., Seto, S. W., et al. (2015b). Mouse models of intracranial aneurysm. Brain Pathology,25(3), 237–247. https://doi.org/10.1111/bpa.12175.CrossRefPubMedGoogle Scholar
- Weinsheimer, S., Goddard, K. A., Parrado, A. R., Lu, Q., Sinha, M., Lebedeva, E. R., et al. (2007). Association of kallikrein gene polymorphisms with intracranial aneurysms. Stroke,38(10), 2670–2676. https://doi.org/10.1161/STROKEAHA.107.486225.CrossRefPubMedGoogle Scholar
- Wiebers, D. O., Piepgras, D. G., Meyer, F. B., Kallmes, D. F., Meissner, I., Atkinson, J. L., et al. (2004). Pathogenesis, natural history, and treatment of unruptured intracranial aneurysms. Mayo Clinic Proceedings,79(12), 1572–1583. https://doi.org/10.4065/79.12.1572.CrossRefPubMedGoogle Scholar
- Wiebers, D. O., Whisnant, J. P., Huston, J., 3rd, Meissner, I., Brown, R. D., Jr., Piepgras, D. G., et al. (2003). Unruptured intracranial aneurysms: Natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet,362(9378), 103–110.CrossRefGoogle Scholar
- Willems, M., Genevieve, D., Borck, G., Baumann, C., Baujat, G., Bieth, E., et al. (2010). Molecular analysis of pericentrin gene (PCNT) in a series of 24 Seckel/microcephalic osteodysplastic primordial dwarfism type II (MOPD II) families. Journal of Medical Genetics,47(12), 797–802. https://doi.org/10.1136/jmg.2009.067298.CrossRefPubMedGoogle Scholar
- Williams, L. N., & Brown, R. D., Jr. (2013). Management of unruptured intracranial aneurysms. Neurology: Clinical Practice,3(2), 99–108. https://doi.org/10.1212/CPJ.0b013e31828d9f6b.CrossRefGoogle Scholar
- Wozniak, M. A., Modzelewska, K., Kwong, L., & Keely, P. J. (2004). Focal adhesion regulation of cell behavior. Biochimica et Biophysica Acta,1692(2–3), 103–119. https://doi.org/10.1016/j.bbamcr.2004.04.007.CrossRefPubMedGoogle Scholar
- Wu, Q., Zhang, J., Koh, W., Yu, Q., Zhu, X., Amsterdam, A., et al. (2015). Talin1 is required for cardiac Z-disk stabilization and endothelial integrity in zebrafish. FASEB J,29(12), 4989–5005. https://doi.org/10.1096/fj.15-273409.CrossRefPubMedPubMedCentralGoogle Scholar
- Wu, Y., Li, Z., Shi, Y., Chen, L., Tan, H., Wang, Z., et al. (2017). Exome sequencing identifies LOXL2 mutation as a cause of familial intracranial aneurysm. World Neurosurgery. https://doi.org/10.1016/j.wneu.2017.10.094.CrossRefPubMedPubMedCentralGoogle Scholar
- Xu, Z., Rui, Y. N., Balzeau, J., Menezes, M. R., Niu, A., Hagan, J. P., et al. (2017). Highly efficient one-step scarless protein tagging by type IIS restriction endonuclease-mediated precision cloning. Biochemical and Biophysical Research Communications,490(1), 8–16. https://doi.org/10.1016/j.bbrc.2017.05.153.CrossRefPubMedPubMedCentralGoogle Scholar
- Xu, Z., Rui, Y. N., Hagan, J. P., & Kim, D. H. (2018). Precision tagging: A novel seamless protein tagging by combinational use of Type II and Type IIS restriction endonucleases. Bio Protoc. https://doi.org/10.21769/bioprotoc.2721.CrossRefPubMedPubMedCentralGoogle Scholar
- Yamada, S., Utsunomiya, M., Inoue, K., Nozaki, K., Inoue, S., Takenaka, K., et al. (2004). Genome-wide scan for Japanese familial intracranial aneurysms: Linkage to several chromosomal regions. Circulation,110(24), 3727–3733. https://doi.org/10.1161/01.CIR.0000143077.23367.18.CrossRefPubMedGoogle Scholar
- Yan, J., Hitomi, T., Takenaka, K., Kato, M., Kobayashi, H., Okuda, H., et al. (2015). Genetic study of intracranial aneurysms. Stroke,46(3), 620–626. https://doi.org/10.1161/STROKEAHA.114.007286.CrossRefPubMedGoogle Scholar
- Yang, X., Li, J., Fang, Y., Zhang, Z., Jin, D., Chen, X., et al. (2018). Rho guanine nucleotide exchange factor ARHGEF17 is a risk gene for intracranial aneurysms. Circulation: Genomic and Precision Medicine,11(7), e002099. https://doi.org/10.1161/CIRCGEN.117.002099.CrossRefGoogle Scholar
- Yasuno, K., Bilguvar, K., Bijlenga, P., Low, S. K., Krischek, B., Auburger, G., et al. (2010). Genome-wide association study of intracranial aneurysm identifies three new risk loci. Nature Genetics,42(5), 420–425. https://doi.org/10.1038/ng.563.CrossRefPubMedPubMedCentralGoogle Scholar
- Zacharia, B. E., Hickman, Z. L., Grobelny, B. T., DeRosa, P., Kotchetkov, I., Ducruet, A. F., et al. (2010). Epidemiology of aneurysmal subarachnoid hemorrhage. Neurosurgery Clinics of North America,21(2), 221–233. https://doi.org/10.1016/j.nec.2009.10.002.CrossRefPubMedGoogle Scholar
- Zhang, G., Tu, Y., Feng, W., Huang, L., Li, M., & Qi, S. (2011). Association of interleukin-6-572G/C gene polymorphisms in the Cantonese population with intracranial aneurysms. Journal of the Neurological Sciences,306(1–2), 94–97. https://doi.org/10.1016/j.jns.2011.03.036.CrossRefPubMedGoogle Scholar
- Zhang, L. T., Wei, F. J., Zhao, Y., Zhang, Z., Dong, W. T., Jin, Z. N., et al. (2015). Intracranial aneurysm risk factor genes: Relationship with intracranial aneurysm risk in a Chinese Han population. Genetics and Molecular Research,14(2), 6865–6878. https://doi.org/10.4238/2015.June.18.30.CrossRefPubMedGoogle Scholar
- Zheng, S., Su, A., Sun, H., & You, C. (2013). The association between interleukin-6 gene polymorphisms and intracranial aneurysms: A meta-analysis. Human Immunology,74(12), 1679–1683. https://doi.org/10.1016/j.humimm.2013.08.274.CrossRefPubMedGoogle Scholar
- Zholdybayeva, E. V., Medetov, Y. Z., Aitkulova, A. M., Makhambetov, Y. T., Akshulakov, S. K., Kaliyev, A. B., et al. (2018). Genetic risk factors for intracranial aneurysm in the Kazakh population. Journal of Molecular Neuroscience,66(1), 135–145. https://doi.org/10.1007/s12031-018-1134-y.CrossRefPubMedGoogle Scholar
- Zhou, S., Ambalavanan, A., Rochefort, D., Xie, P., Bourassa, C. V., Hince, P., et al. (2016). RNF213 is associated with intracranial aneurysms in the French-Canadian population. American Journal of Human Genetics,99(5), 1072–1085. https://doi.org/10.1016/j.ajhg.2016.09.001.CrossRefPubMedPubMedCentralGoogle Scholar
- Zhou, S., Dion, P. A., & Rouleau, G. A. (2018). Genetics of intracranial aneurysms. Stroke,49(3), 780–787. https://doi.org/10.1161/STROKEAHA.117.018152.CrossRefPubMedGoogle Scholar