Advertisement

NeuroMolecular Medicine

, Volume 21, Issue 1, pp 12–24 | Cite as

The Promises and Challenges of Erythropoietin for Treatment of Alzheimer’s Disease

  • Jiahong Sun
  • Jan Michelle Martin
  • Victoria Vanderpoel
  • Rachita K. SumbriaEmail author
Review Paper

Abstract

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder in the world, and intracellular neurofibrillary tangles and extracellular amyloid-beta protein deposits represent the major pathological hallmarks of the disease. Currently available treatments provide some symptomatic relief but fail to modify primary pathological processes that underlie the disease. Erythropoietin (EPO), a hematopoietic growth factor, acts primarily to stimulate erythroid cell production, and is clinically used to treat anemia. EPO has evolved as a therapeutic agent for neurodegeneration and has improved neurological outcomes and AD pathology in rodents. However, penetration of the blood–brain barrier (BBB) and negative hematopoietic effects are the two major challenges for the therapeutic development of EPO for chronic neurodegenerative diseases like AD. The transferrin receptors at the BBB, which are responsible for transporting transferrin-bound iron from the blood into the brain parenchyma, can be used to shuttle therapeutic molecules across the BBB. In this review, we discuss the role of EPO as a potential neurotherapeutic for AD, challenges associated with EPO development for AD, and targeting the BBB transferrin receptor for EPO brain delivery.

Keywords

Erythropoietin Alzheimer’s disease Transferrin receptor Blood–brain barrier Molecular Trojan horse 

Notes

Acknowledgements

This work was supported by a Grant from The National Institute of Health, NIA R21AG055949 (to RKS).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alzheimer's Association. (2018). Alzheimer’s disease facts and figures (2018). Alzheimer’s & Dementia, 14(3), 367–429.  https://doi.org/10.1016/j.jalz.2018.02.001.CrossRefGoogle Scholar
  2. Arabpoor, Z., Hamidi, G., Rashidi, B., Shabrang, M., Alaei, H., Sharifi, M. R., et al. (2012). Erythropoietin improves neuronal proliferation in dentate gyrus of hippocampal formation in an animal model of Alzheimer’s disease. Advanced Biomedical Research.  https://doi.org/10.4103/2277-9175.100157.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ardura-Fabregat, A., Boddeke, E., Boza-Serrano, A., Brioschi, S., Castro-Gomez, S., Ceyzeriat, K., et al. (2017). Targeting neuroinflammation to treat Alzheimer’s disease. CNS Drugs, 31(12), 1057–1082.  https://doi.org/10.1007/s40263-017-0483-3.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Armand-Ugon, M., Aso, E., Moreno, J., Riera-Codina, M., Sanchez, A., Vegas, E., et al. (2015). Memory improvement in the AbetaPP/PS1 mouse model of familial Alzheimer’s disease induced by carbamylated-erythropoietin is accompanied by modulation of synaptic genes. Journal of Alzheimers Disease, 45(2), 407–421.  https://doi.org/10.3233/jad-150002.CrossRefGoogle Scholar
  5. Assaraf, M. I., Diaz, Z., Liberman, A., Miller, W. H. Jr., Arvanitakis, Z., Li, Y., et al. (2007). Brain erythropoietin receptor expression in Alzheimer disease and mild cognitive impairment. Journal of Neuropathology & Experimental Neurology, 66(5), 389–398.  https://doi.org/10.1097/nen.0b013e3180517b28.CrossRefGoogle Scholar
  6. Bachurin, S. O., Bovina, E. V., & Ustyugov, A. A. (2017). Drugs in clinical trials for Alzheimer’s Disease: The major trends. Medicinal Research Reviews, 37(5), 1186–1225.  https://doi.org/10.1002/med.21434.CrossRefPubMedGoogle Scholar
  7. Banks, W. A., Jumbe, N. L., Farrell, C. L., Niehoff, M. L., & Heatherington, A. C. (2004). Passage of erythropoietic agents across the blood-brain barrier: A comparison of human and murine erythropoietin and the analog darbepoetin alfa. European Journal of Pharmacology, 505(1–3), 93–101.  https://doi.org/10.1016/j.ejphar.2004.10.035.CrossRefPubMedGoogle Scholar
  8. Barrett, A. M., Eslinger, P. J., Ballentine, N. H., & Heilman, K. M. (2005). Unawareness of cognitive deficit (cognitive anosognosia) in probable AD and control subjects. Neurology, 64(4), 693–699.  https://doi.org/10.1212/01.wnl.0000151959.64379.1b.CrossRefPubMedGoogle Scholar
  9. Bartus, R. T., Dean, R. L. 3rd, Beer, B., & Lippa, A. S. (1982). The cholinergic hypothesis of geriatric memory dysfunction. Science, 217(4558), 408–414.CrossRefPubMedGoogle Scholar
  10. Bien-Ly, N., Yu, Y. J., Bumbaca, D., Elstrott, J., Boswell, C. A., Zhang, Y., et al. (2014). Transferrin receptor (TfR) trafficking determines brain uptake of TfR antibody affinity variants. Journal of Experimental Medicine, 211(2), 233–244.  https://doi.org/10.1084/jem.20131660.CrossRefPubMedGoogle Scholar
  11. Boado, R. J., Hui, E. K., Lu, J. Z., & Pardridge, W. M. (2010). Drug targeting of erythropoietin across the primate blood-brain barrier with an IgG molecular Trojan horse. Journal of Pharmacology and Experimental Therapeutics, 333(3), 961–969.  https://doi.org/10.1124/jpet.109.165092.CrossRefPubMedGoogle Scholar
  12. Boado, R. J., Zhang, Y., Wang, Y., & Pardridge, W. M. (2009). Engineering and expression of a chimeric transferrin receptor monoclonal antibody for blood-brain barrier delivery in the mouse. Biotechnology and Bioengineering, 102(4), 1251–1258.  https://doi.org/10.1002/bit.22135.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Braak, H., Alafuzoff, I., Arzberger, T., Kretzschmar, H., & Del Tredici, K. (2006). Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathology, 112(4), 389–404.  https://doi.org/10.1007/s00401-006-0127-z.CrossRefGoogle Scholar
  14. Brettschneider, J., Widl, K., Ehrenreich, H., Riepe, M., & Tumani, H. (2006). Erythropoietin in the cerebrospinal fluid in neurodegenerative diseases. Neuroscience Letters, 404(3), 347–351.  https://doi.org/10.1016/j.neulet.2006.06.011.CrossRefPubMedGoogle Scholar
  15. Brines, M. L., Ghezzi, P., Keenan, S., Agnello, D., de Lanerolle, N. C., Cerami, C., et al. (2000). Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proceedings of the National Academy of Sciences of the United States of America, 97(19), 10526–10531.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Brunkan, A. L., & Goate, A. M. (2005). Presenilin function and gamma-secretase activity. Journal of Neurochemistry, 93(4), 769–792.  https://doi.org/10.1111/j.1471-4159.2005.03099.x.CrossRefPubMedGoogle Scholar
  17. Castellano, J. M., Kim, J., Stewart, F. R., Jiang, H., DeMattos, R. B., Patterson, B. W., et al. (2011). Human apoE isoforms differentially regulate brain amyloid-beta peptide clearance. Science Translational Medicine, 3(89), 89ra57.  https://doi.org/10.1126/scitranslmed.3002156.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chang, R., Maghribi, A., Vanderpoel, A., Vasilevko, V., Cribbs, V., Boado, D. H., R., et al (2018). Brain penetrating bifunctional erythropoietin-transferrin receptor antibody fusion protein for Alzheimer’s disease. Molecular Pharmaceutics.  https://doi.org/10.1021/acs.molpharmaceut.8b00594.CrossRefPubMedGoogle Scholar
  19. Chow, V. W., Mattson, M. P., Wong, P. C., & Gleichmann, M. (2010). An overview of APP processing enzymes and products. Neuromolecular Medicine, 12(1), 1–12.  https://doi.org/10.1007/s12017-009-8104-z.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Collin, L., Bohrmann, B., Gopfert, U., Oroszlan-Szovik, K., Ozmen, L., & Gruninger, F. (2014). Neuronal uptake of tau/pS422 antibody and reduced progression of tau pathology in a mouse model of Alzheimer’s disease. Brain, 137(Pt 10), 2834–2846.  https://doi.org/10.1093/brain/awu213.CrossRefPubMedGoogle Scholar
  21. Cornford, E. M., & Hyman, S. (2005). Localization of brain endothelial luminal and abluminal transporters with immunogold electron microscopy. NeuroRx, 2(1), 27–43.  https://doi.org/10.1602/neurorx.2.1.27.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Couch, J. A., Yu, Y. J., Zhang, Y., Tarrant, J. M., Fuji, R. N., Meilandt, W. J., et al. (2013). Addressing safety liabilities of TfR bispecific antibodies that cross the blood-brain barrier. Science Translational Medicine, 5(183), 183ra157.  https://doi.org/10.1126/scitranslmed.3005338. 181 – 112.CrossRefGoogle Scholar
  23. Danysz, W., Parsons, C. G., Mobius, H. J., Stoffler, A., & Quack, G. (2000). Neuroprotective and symptomatological action of memantine relevant for Alzheimer’s disease—A unified glutamatergic hypothesis on the mechanism of action. Neurotoxicity Research, 2(2–3), 85–97.CrossRefPubMedGoogle Scholar
  24. Dauphinot, V., Delphin-Combe, F., Mouchoux, C., Dorey, A., Bathsavanis, A., Makaroff, Z., et al. (2015). Risk factors of caregiver burden among patients with Alzheimer’s disease or related disorders: A cross-sectional study. Journal of Alzheimers Disease, 44(3), 907–916.  https://doi.org/10.3233/jad-142337.CrossRefGoogle Scholar
  25. Dautry-Varsat, A., Ciechanover, A., & Lodish, H. F. (1983). pH and the recycling of transferrin during receptor-mediated endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 80(8), 2258–2262.CrossRefPubMedPubMedCentralGoogle Scholar
  26. De Felice, F. G., Wu, D., Lambert, M. P., Fernandez, S. J., Velasco, P. T., Lacor, P. N., et al. (2008). Alzheimer’s disease-type neuronal tau hyperphosphorylation induced by A beta oligomers. Neurobiology of Aging, 29(9), 1334–1347.  https://doi.org/10.1016/j.neurobiolaging.2007.02.029.CrossRefPubMedGoogle Scholar
  27. DeKosky, S. T., & Scheff, S. W. (1990). Synapse loss in frontal cortex biopsies in Alzheimer’s disease: Correlation with cognitive severity. Annals of Neurology, 27(5), 457–464.  https://doi.org/10.1002/ana.410270502.CrossRefPubMedGoogle Scholar
  28. Diaz, Z., Assaraf, M. I., Miller, W. H. Jr., & Schipper, H. M. (2005). Astroglial cytoprotection by erythropoietin pre-conditioning: Implications for ischemic and degenerative CNS disorders. Journal of Neurochemistry, 93(2), 392–402.  https://doi.org/10.1111/j.1471-4159.2005.03038.x.CrossRefPubMedGoogle Scholar
  29. Digicaylioglu, M., Bichet, S., Marti, H. H., Wenger, R. H., Rivas, L. A., Bauer, C., et al. (1995). Localization of specific erythropoietin binding sites in defined areas of the mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 92(9), 3717–3720.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Dinamarca, M. C., Rios, J. A., & Inestrosa, N. C. (2012). Postsynaptic receptors for amyloid-beta oligomers as mediators of neuronal damage in Alzheimer’s disease. Frontiers in Physiology, 3, 464.  https://doi.org/10.3389/fphys.2012.00464.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Doody, R. S., Raman, R., Farlow, M., Iwatsubo, T., Vellas, B., Joffe, S., et al. (2013). A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. New England Journal of Medicine, 369(4), 341–350.  https://doi.org/10.1056/NEJMoa1210951.CrossRefPubMedGoogle Scholar
  32. Eckert, G. P., Renner, K., Eckert, S. H., Eckmann, J., Hagl, S., Abdel-Kader, R. M., et al. (2012). Mitochondrial dysfunction—A pharmacological target in Alzheimer’s disease. Molecular Neurobiology, 46(1), 136–150.  https://doi.org/10.1007/s12035-012-8271-z.CrossRefPubMedGoogle Scholar
  33. Eikelenboom, P., Veerhuis, R., Scheper, W., Rozemuller, A. J., van Gool, W. A., & Hoozemans, J. J. (2006). The significance of neuroinflammation in understanding Alzheimer’s disease. Journal of Neural Transmission (Vienna), 113(11), 1685–1695.  https://doi.org/10.1007/s00702-006-0575-6.CrossRefGoogle Scholar
  34. Erbayraktar, S., Grasso, G., Sfacteria, A., Xie, Q. W., Coleman, T., Kreilgaard, M., et al. (2003). Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vivo. Proceedings of the National Academy of Sciences of the United States of America, 100(11), 6741–6746.  https://doi.org/10.1073/pnas.1031753100.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Esmaeili Tazangi, P., Moosavi, S. M., Shabani, M., & Haghani, M. (2015). Erythropoietin improves synaptic plasticity and memory deficits by decrease of the neurotransmitter release probability in the rat model of Alzheimer’s disease. Pharmacology Biochemistry and Behavior, 130, 15–21.  https://doi.org/10.1016/j.pbb.2014.12.011.CrossRefGoogle Scholar
  36. Fan, Z., Okello, A. A., Brooks, D. J., & Edison, P. (2015). Longitudinal influence of microglial activation and amyloid on neuronal function in Alzheimer’s disease. Brain, 138(Pt 12), 3685–3698.  https://doi.org/10.1093/brain/awv288.CrossRefPubMedGoogle Scholar
  37. Fishman, J. B., Rubin, J. B., Handrahan, J. V., Connor, J. R., & Fine, R. E. (1987). Receptor-mediated transcytosis of transferrin across the blood-brain barrier. Journal of Neuroscience Research, 18(2), 299–304.  https://doi.org/10.1002/jnr.490180206.CrossRefPubMedGoogle Scholar
  38. Giannakopoulos, P., Duc, M., Gold, G., Hof, P. R., Michel, J. P., & Bouras, C. (1998). Pathologic correlates of apraxia in Alzheimer disease. Archives in Neurology, 55(5), 689–695.CrossRefGoogle Scholar
  39. Gremer, L., Scholzel, D., Schenk, C., Reinartz, E., & Labahn, J. (2017). Fibril structure of amyloid-beta(1–42) by cryo-electron microscopy. Science, 358(6359), 116–119,  https://doi.org/10.1126/science.aao2825.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Haase, V. H. (2013). Regulation of erythropoiesis by hypoxia-inducible factors. Blood Review, 27(1), 41–53.  https://doi.org/10.1016/j.blre.2012.12.003.CrossRefGoogle Scholar
  41. Haass, C., & De Strooper, B. (1999). The presenilins in Alzheimer’s disease–proteolysis holds the key. Science, 286(5441), 916–919.CrossRefPubMedGoogle Scholar
  42. Hardy, J. (2009). The amyloid hypothesis for Alzheimer’s disease: A critical reappraisal. Journal of Neurochemistry, 110(4), 1129–1134.  https://doi.org/10.1111/j.1471-4159.2009.06181.x.CrossRefPubMedGoogle Scholar
  43. Hardy, J. A., & Higgins, G. A. (1992). Alzheimer’s disease: The amyloid cascade hypothesis. Science, 256(5054), 184–185.CrossRefPubMedGoogle Scholar
  44. Hebert, L. E., Beckett, L. A., Scherr, P. A., & Evans, D. A. (2001). Annual incidence of Alzheimer disease in the United States projected to the years 2000 through 2050. Alzheimer Disease and Associated Disorders, 15(4), 169–173.CrossRefPubMedGoogle Scholar
  45. Heneka, M. T., Carson, M. J., El Khoury, J., Landreth, G., Brosseron, F., Feinstein, D. L., et al. (2015). Neuroinflammation in Alzheimer’s disease. Lancet Neurology, 14(4), 388–405.  https://doi.org/10.1016/s1474-4422(15)70016-5.CrossRefPubMedGoogle Scholar
  46. Hong, S., Beja-Glasser, V. F., Nfonoyim, B. M., Frouin, A., Li, S., Ramakrishnan, S., et al. (2016). Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science, 352(6286), 712–716.  https://doi.org/10.1126/science.aad8373.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Hooshmandi, E., Motamedi, F., Moosavi, M., Katinger, H., Zakeri, Z., Zaringhalam, J., et al. (2018). CEPO-Fc (An EPO Derivative) protects hippocampus against abeta-induced memory deterioration: a behavioral and molecular study in a rat model of abeta toxicity. Neuroscience, 388, 405–417.  https://doi.org/10.1016/j.neuroscience.2018.08.001.CrossRefPubMedGoogle Scholar
  48. Hultqvist, G., Syvanen, S., Fang, X. T., Lannfelt, L., & Sehlin, D. (2017). Bivalent brain shuttle increases antibody uptake by monovalent binding to the transferrin receptor. Theranostics, 7(2), 308–318.  https://doi.org/10.7150/thno.17155.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Huwyler, J., & Pardridge, W. M. (1998). Examination of blood-brain barrier transferrin receptor by confocal fluorescent microscopy of unfixed isolated rat brain capillaries. Journal of Neurochemistry, 70(2), 883–886.CrossRefPubMedGoogle Scholar
  50. James, B. D., Leurgans, S. E., Hebert, L. E., Scherr, P. A., Yaffe, K., & Bennett, D. A. (2014). Contribution of Alzheimer disease to mortality in the United States. Neurology, 82(12), 1045–1050.  https://doi.org/10.1212/wnl.0000000000000240.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Jefferies, W. A., Brandon, M. R., Hunt, S. V., Williams, A. F., Gatter, K. C., & Mason, D. Y. (1984). Transferrin receptor on endothelium of brain capillaries. Nature, 312(5990), 162–163.CrossRefPubMedGoogle Scholar
  52. Jelkmann, W. (2005). Effects of erythropoietin on brain function. Current Pharmaceutical Biotechnology, 6(1), 65–79.CrossRefPubMedGoogle Scholar
  53. Jelkmann, W. (2013). Physiology and pharmacology of erythropoietin. Transfusion Medicine and Hemotherapy, 40(5), 302–309.  https://doi.org/10.1159/000356193.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Ji, P. (2016). Pericytes: new EPO-producing cells in the brain. Blood, 128(21), 2483–2485.  https://doi.org/10.1182/blood-2016-10-743880.CrossRefPubMedGoogle Scholar
  55. Jiao, S. S., Shen, L. L., Zhu, C., Bu, X. L., Liu, Y. H., Liu, C. H., et al. (2016). Brain-derived neurotrophic factor protects against tau-related neurodegeneration of Alzheimer’s disease. Translational Psychiatry, 6(10), e907.  https://doi.org/10.1038/tp.2016.186.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Jones, A. R., & Shusta, E. V. (2007). Blood-brain barrier transport of therapeutics via receptor-mediation. Pharmaceutical Research, 24(9), 1759–1771.  https://doi.org/10.1007/s11095-007-9379-0.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Juul, S. E., Anderson, D. K., Li, Y., & Christensen, R. D. (1998). Erythropoietin and erythropoietin receptor in the developing human central nervous system. Pediatrics Research, 43(1), 40–49.  https://doi.org/10.1203/00006450-199804001-00243.CrossRefGoogle Scholar
  58. Kandimalla, R., & Reddy, P. H. (2017). Therapeutics of neurotransmitters in Alzheimer’s disease. Journal of Alzheimers Diseases, 57(4), 1049–1069.  https://doi.org/10.3233/jad-161118.CrossRefGoogle Scholar
  59. Karch, C. M., & Goate, A. M. (2015). Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biological Psychiatry, 77(1), 43–51.  https://doi.org/10.1016/j.biopsych.2014.05.006.CrossRefPubMedGoogle Scholar
  60. Kato, M., Miura, K., Kamiyama, H., Okazaki, A., Kumaki, K., Kato, Y., et al. (1998). Pharmacokinetics of erythropoietin in genetically anemic mice. Drug Metabolism and Disposition, 26(2), 126–131.PubMedGoogle Scholar
  61. King, V. R., Averill, S. A., Hewazy, D., Priestley, J. V., Torup, L., & Michael-Titus, A. T. (2007). Erythropoietin and carbamylated erythropoietin are neuroprotective following spinal cord hemisection in the rat. European Journal of Neuroscience, 26(1), 90–100.  https://doi.org/10.1111/j.1460-9568.2007.05635.x.CrossRefPubMedGoogle Scholar
  62. Konishi, Y., Chui, D. H., Hirose, H., Kunishita, T., & Tabira, T. (1993). Trophic effect of erythropoietin and other hematopoietic factors on central cholinergic neurons in vitro and in vivo. Brain Research, 609(1–2), 29–35.CrossRefPubMedGoogle Scholar
  63. Konofagou, E. E., Tung, Y. S., Choi, J., Deffieux, T., Baseri, B., & Vlachos, F. (2012). Ultrasound-induced blood-brain barrier opening. Current Pharmaceutical Biotechnology, 13(7), 1332–1345.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Lapchak, P. A. (2010). Erythropoietin molecules to treat acute ischemic stroke: A translational dilemma! Expert Opinion on Investigational Drugs, 19(10), 1179–1186.  https://doi.org/10.1517/13543784.2010.517954.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Lee, H. J., Engelhardt, B., Lesley, J., Bickel, U., & Pardridge, W. M. (2000). Targeting rat anti-mouse transferrin receptor monoclonal antibodies through blood-brain barrier in mouse. Journal of Pharmacology and Experimental Therapeutics, 292(3), 1048–1052.PubMedGoogle Scholar
  66. Lee, S. T., Chu, K., Park, J. E., Jung, K. H., Jeon, D., Lim, J. Y., et al. (2012). Erythropoietin improves memory function with reducing endothelial dysfunction and amyloid-beta burden in Alzheimer’s disease models. Journal of Neurochemistry, 120(1), 115–124.  https://doi.org/10.1111/j.1471-4159.2011.07534.x.CrossRefPubMedGoogle Scholar
  67. Leuner, K., Muller, W. E., & Reichert, A. S. (2012). From mitochondrial dysfunction to amyloid beta formation: Novel insights into the pathogenesis of Alzheimer’s disease. Molecular Neurobiology, 46(1), 186–193.  https://doi.org/10.1007/s12035-012-8307-4.CrossRefPubMedGoogle Scholar
  68. Li, G., Ma, R., Huang, C., Tang, Q., Fu, Q., Liu, H., et al. (2008). Protective effect of erythropoietin on beta-amyloid-induced PC12 cell death through antioxidant mechanisms. Neuroscience Letters, 442(2), 143–147.  https://doi.org/10.1016/j.neulet.2008.07.007.CrossRefPubMedGoogle Scholar
  69. Li, J. Y., Boado, R. J., & Pardridge, W. M. (2001). Blood-brain barrier genomics. Journal of Cerebral Blood Flow & Metabolism, 21(1), 61–68.  https://doi.org/10.1097/00004647-200101000-00008.CrossRefGoogle Scholar
  70. Li, Y. P., Yang, G. J., Jin, L., Yang, H. M., Chen, J., Chai, G. S., et al. (2015). Erythropoietin attenuates Alzheimer-like memory impairments and pathological changes induced by amyloid beta42 in mice. Brain Research, 1618, 159–167.  https://doi.org/10.1016/j.brainres.2015.05.031.CrossRefPubMedGoogle Scholar
  71. Lochhead, J. J., & Thorne, R. G. (2012). Intranasal delivery of biologics to the central nervous system. Advanced Drug Delivery Reviews, 64(7), 614–628.  https://doi.org/10.1016/j.addr.2011.11.002.CrossRefPubMedGoogle Scholar
  72. Lombardo, S., & Maskos, U. (2015). Role of the nicotinic acetylcholine receptor in Alzheimer’s disease pathology and treatment. Neuropharmacology, 96(Pt B), 255–262,  https://doi.org/10.1016/j.neuropharm.2014.11.018.CrossRefPubMedGoogle Scholar
  73. Lu, C. T., Zhao, Y. Z., Wong, H. L., Cai, J., Peng, L., & Tian, X. Q. (2014). Current approaches to enhance CNS delivery of drugs across the brain barriers. International Journal of Nanomedicine, 9, 2241–2257.  https://doi.org/10.2147/ijn.s61288.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Lundby, C., Thomsen, J. J., Boushel, R., Koskolou, M., Warberg, J., Calbet, J. A., et al. (2007). Erythropoietin treatment elevates haemoglobin concentration by increasing red cell volume and depressing plasma volume. Journal of Physiology, 578(Pt 1), 309–314.  https://doi.org/10.1113/jphysiol.2006.122689.CrossRefPubMedGoogle Scholar
  75. Ma, R., Xiong, N., Huang, C., Tang, Q., Hu, B., Xiang, J., et al. (2009). Erythropoietin protects PC12 cells from beta-amyloid(25–35)-induced apoptosis via PI3K/Akt signaling pathway. Neuropharmacology, 56(6–7), 1027–1034.  https://doi.org/10.1016/j.neuropharm.2009.02.006.CrossRefPubMedGoogle Scholar
  76. Marti, H. H., Wenger, R. H., Rivas, L. A., Straumann, U., Digicaylioglu, M., Henn, V., et al. (1996). Erythropoietin gene expression in human, monkey and murine brain. European Journal of Neuroscience, 8(4), 666–676.CrossRefPubMedGoogle Scholar
  77. Masuda, S., Okano, M., Yamagishi, K., Nagao, M., Ueda, M., & Sasaki, R. (1994). A novel site of erythropoietin production. Oxygen-dependent production in cultured rat astrocytes. The Journal of Biological Chemistry, 269(30), 19488–19493.PubMedGoogle Scholar
  78. Maurice, T., Mustafa, M. H., Desrumaux, C., Keller, E., Naert, G., de la García-Barceló, M. C., et al. (2013). Intranasal formulation of erythropoietin (EPO) showed potent protective activity against amyloid toxicity in the Abeta(2)(5)(-)(3)(5) non-transgenic mouse model of Alzheimer’s disease. Journal of Psychopharmacology, 27(11), 1044–1057.  https://doi.org/10.1177/0269881113494939.CrossRefPubMedGoogle Scholar
  79. Mawanda, F., & Wallace, R. (2013). Can infections cause Alzheimer’s disease? Epidemiologic Reviews, 35, 161–180.  https://doi.org/10.1093/epirev/mxs007.CrossRefPubMedPubMedCentralGoogle Scholar
  80. McGeer, E. G., & McGeer, P. L. (2003). Inflammatory processes in Alzheimer’s disease. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 27(5), 741–749.  https://doi.org/10.1016/s0278-5846(03)00124-6.CrossRefGoogle Scholar
  81. Melov, S., Adlard, P. A., Morten, K., Johnson, F., Golden, T. R., Hinerfeld, D., et al. (2007). Mitochondrial oxidative stress causes hyperphosphorylation of tau. PLoS ONE, 2(6), e536.  https://doi.org/10.1371/journal.pone.0000536.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Mennini, T., De Paola, M., Bigini, P., Mastrotto, C., Fumagalli, E., Barbera, S., et al. (2006). Nonhematopoietic erythropoietin derivatives prevent motoneuron degeneration in vitro and in vivo. Molecular Medicine, 12(7–8), 153–160.  https://doi.org/10.2119/2006-00045.Mennini.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Mitchell, S. L., Teno, J. M., Kiely, D. K., Shaffer, M. L., Jones, R. N., Prigerson, H. G., et al. (2009). The clinical course of advanced dementia. New England Journal of Medicine, 361(16), 1529–1538.  https://doi.org/10.1056/NEJMoa0902234.CrossRefPubMedGoogle Scholar
  84. Moos, T., Nielsen, T. R., Skjorringe, T., & Morgan, E. H. (2007). Iron trafficking inside the brain. Journal of Neurochemistry, 103(5), 1730–1740.  https://doi.org/10.1111/j.1471-4159.2007.04976.x.CrossRefPubMedGoogle Scholar
  85. Morishita, E., Masuda, S., Nagao, M., Yasuda, Y., & Sasaki, R. (1997). Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death. Neuroscience, 76(1), 105–116.CrossRefGoogle Scholar
  86. Nagai, A., Nakagawa, E., Choi, H. B., Hatori, K., Kobayashi, S., & Kim, S. U. (2001). Erythropoietin and erythropoietin receptors in human CNS neurons, astrocytes, microglia, and oligodendrocytes grown in culture. Journal of Neuropathology & Experimental Neurology, 60(4), 386–392.CrossRefGoogle Scholar
  87. Ng, T., Marx, G., Littlewood, T., & Macdougall, I. (2003). Recombinant erythropoietin in clinical practice. Postgraduate Medical Journal, 79(933), 367–376.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Nicoll, J. A., Wilkinson, D., Holmes, C., Steart, P., Markham, H., & Weller, R. O. (2003). Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: A case report. Nature Medicine, 9(4), 448–452.  https://doi.org/10.1038/nm840.CrossRefPubMedGoogle Scholar
  89. Niewoehner, J., Bohrmann, B., Collin, L., Urich, E., Sade, H., Maier, P., et al. (2014). Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron, 81(1), 49–60.  https://doi.org/10.1016/j.neuron.2013.10.061.CrossRefPubMedGoogle Scholar
  90. Panza, F., Frisardi, V., Solfrizzi, V., Imbimbo, B. P., Logroscino, G., Santamato, A., et al. (2012). Immunotherapy for Alzheimer’s disease: From anti-beta-amyloid to tau-based immunization strategies. Immunotherapy, 4(2), 213–238.  https://doi.org/10.2217/imt.11.170.CrossRefPubMedGoogle Scholar
  91. Panza, F., Logroscino, G., Imbimbo, B. P., & Solfrizzi, V. (2014). Is there still any hope for amyloid-based immunotherapy for Alzheimer’s disease? Current Opinion in Psychiatry, 27(2), 128–137.  https://doi.org/10.1097/yco.0000000000000041.CrossRefPubMedGoogle Scholar
  92. Pardridge, W. M. (2005). The blood-brain barrier: Bottleneck in brain drug development. NeuroRx, 2(1), 3–14.  https://doi.org/10.1602/neurorx.2.1.3.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Pardridge, W. M. (2006). Molecular Trojan horses for blood-brain barrier drug delivery. Discovery Medicine, 6(34), 139–143.PubMedGoogle Scholar
  94. Pardridge, W. M. (2009). Alzheimer’s disease drug development and the problem of the blood-brain barrier. Alzheimers Dementia, 5(5), 427–432.  https://doi.org/10.1016/j.jalz.2009.06.003.CrossRefGoogle Scholar
  95. Pardridge, W. M. (2012). Drug transport across the blood-brain barrier. Journal of Cerebral Blood Flow & Metabolism, 32(11), 1959–1972.  https://doi.org/10.1038/jcbfm.2012.126.CrossRefGoogle Scholar
  96. Pardridge, W. M. (2015). Blood-brain barrier drug delivery of IgG fusion proteins with a transferrin receptor monoclonal antibody. Expert Opinion on Drug Delivery, 12(2), 207–222.  https://doi.org/10.1517/17425247.2014.952627.CrossRefPubMedGoogle Scholar
  97. Pardridge, W. M. (2016). CSF, blood-brain barrier, and brain drug delivery. Expert Opinion on Drug Delivery, 13(7), 963–975.  https://doi.org/10.1517/17425247.2016.1171315.CrossRefPubMedGoogle Scholar
  98. Pardridge, W. M. (2017). Delivery of biologics across the blood-brain barrier with molecular Trojan horse technology. BioDrugs, 31(6), 503–519.  https://doi.org/10.1007/s40259-017-0248-z.CrossRefPubMedGoogle Scholar
  99. Pardridge, W. M., Boado, R. J., Patrick, D. J., Ka-Wai Hui, E., & Lu, J. Z. (2018). Blood-brain barrier transport, plasma pharmacokinetics, and neuropathology following chronic treatment of the rhesus monkey with a brain penetrating humanized monoclonal antibody against the human transferrin receptor. Molecular Pharmaceutics.  https://doi.org/10.1021/acs.molpharmaceut.8b00730.CrossRefPubMedGoogle Scholar
  100. Portet, F., Scarmeas, N., Cosentino, S., Helzner, E. P., & Stern, Y. (2009). Extrapyramidal signs before and after diagnosis of incident Alzheimer disease in a prospective population study. Archive of Neurology, 66(9), 1120–1126.  https://doi.org/10.1001/archneurol.2009.196.CrossRefGoogle Scholar
  101. Potter, R., Patterson, B. W., Elbert, D. L., Ovod, V., Kasten, T., Sigurdson, W., et al. (2013). Increased in vivo amyloid-beta42 production, exchange, and loss in presenilin mutation carriers. Science Translational Medicine, 5(189), 189ra177.  https://doi.org/10.1126/scitranslmed.3005615.CrossRefGoogle Scholar
  102. Preston, J. E., Abbott, N. J., & Begley, D. J. (2014). Transcytosis of macromolecules at the blood-brain barrier. Advances in Pharmacology, 71, 147–163.  https://doi.org/10.1016/bs.apha.2014.06.001.CrossRefPubMedGoogle Scholar
  103. Priller, C., Bauer, T., Mitteregger, G., Krebs, B., Kretzschmar, H. A., & Herms, J. (2006). Synapse formation and function is modulated by the amyloid precursor protein. Journal of Neuroscience, 26(27), 7212–7221.  https://doi.org/10.1523/jneurosci.1450-06.2006.CrossRefPubMedGoogle Scholar
  104. Reisberg, B., Doody, R., Stoffler, A., Schmitt, F., Ferris, S., & Mobius, H. J. (2003). Memantine in moderate-to-severe Alzheimer’s disease. New England Journal of Medicine, 348(14), 1333–1341.  https://doi.org/10.1056/NEJMoa013128.CrossRefPubMedGoogle Scholar
  105. Revett, T. J., Baker, G. B., Jhamandas, J., & Kar, S. (2013). Glutamate system, amyloid ss peptides and tau protein: Functional interrelationships and relevance to Alzheimer disease pathology. Journal of Psychiatry Neurosci, 38(1), 6–23.  https://doi.org/10.1503/jpn.110190.CrossRefGoogle Scholar
  106. Reynolds, G. P., Mason, S. L., Meldrum, A., De Keczer, S., Parnes, H., Eglen, R. M., et al. (1995). 5-Hydroxytryptamine (5-HT)4 receptors in post mortem human brain tissue: distribution, pharmacology and effects of neurodegenerative diseases. British Journal of Pharmacology, 114(5), 993–998.CrossRefPubMedPubMedCentralGoogle Scholar
  107. Roberts, R. L., Fine, R. E., & Sandra, A. (1993). Receptor-mediated endocytosis of transferrin at the blood-brain barrier. Journal of Cell Science, 104(Pt 2), 521–532.PubMedGoogle Scholar
  108. Rodriguez Cruz, Y., Strehaiano, M., Obaya, R., Garcia Rodriguez, T., J. C., & Maurice, T. (2017). An intranasal formulation of erythropoietin (Neuro-EPO) prevents memory deficits and amyloid toxicity in the APPSwe transgenic mouse model of Alzheimer’s disease. Journal of Alzheimers Disease, 55(1), 231–248.  https://doi.org/10.3233/jad-160500.CrossRefGoogle Scholar
  109. Rogaev, E. I., Sherrington, R., Rogaeva, E. A., Levesque, G., Ikeda, M., Liang, Y., et al. (1995). Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature, 376(6543), 775–778.  https://doi.org/10.1038/376775a0.CrossRefPubMedPubMedCentralGoogle Scholar
  110. Rogers, J., Webster, S., Lue, L. F., Brachova, L., Civin, W. H., Emmerling, M., et al. (1996). Inflammation and Alzheimer’s disease pathogenesis. Neurobiology of Aging, 17(5), 681–686.CrossRefPubMedGoogle Scholar
  111. Sakanaka, M., Wen, T. C., Matsuda, S., Masuda, S., Morishita, E., Nagao, M., et al. (1998). In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc Natl Acad Sci U S A, 95(8), 4635–4640.CrossRefPubMedPubMedCentralGoogle Scholar
  112. Samy, D. M., Ismail, C. A., Nassra, R. A., Zeitoun, T. M., & Nomair, A. M. (2016). Downstream modulation of extrinsic apoptotic pathway in streptozotocin-induced Alzheimer’s dementia in rats: Erythropoietin versus curcumin. European Journal of Pharmacology, 770, 52–60.  https://doi.org/10.1016/j.ejphar.2015.11.046.CrossRefPubMedGoogle Scholar
  113. Sarazin, M., Stern, Y., Berr, C., Riba, A., Albert, M., Brandt, J., et al. (2005). Neuropsychological predictors of dependency in patients with Alzheimer disease. Neurology, 64(6), 1027–1031.  https://doi.org/10.1212/01.wnl.0000154529.53488.30.CrossRefPubMedGoogle Scholar
  114. Sargin, D., Friedrichs, H., El-Kordi, A., & Ehrenreich, H. (2010). Erythropoietin as neuroprotective and neuroregenerative treatment strategy: Comprehensive overview of 12 years of preclinical and clinical research. Best Practice & Research: Clinical Anaesthesiology, 24(4), 573–594.  https://doi.org/10.1016/j.bpa.2010.10.005.CrossRefGoogle Scholar
  115. Schupf, N., Kapell, D., Nightingale, B., Rodriguez, A., Tycko, B., & Mayeux, R. (1998). Earlier onset of Alzheimer’s disease in men with Down syndrome. Neurology, 50(4), 991–995.CrossRefPubMedGoogle Scholar
  116. Shang, Y. C., Chong, Z. Z., Wang, S., & Maiese, K. (2011). Erythropoietin and Wnt1 govern pathways of mTOR, Apaf-1, and XIAP in inflammatory microglia. Current Neurovascular Research, 8(4), 270–285.CrossRefPubMedPubMedCentralGoogle Scholar
  117. Shang, Y. C., Chong, Z. Z., Wang, S., & Maiese, K. (2012). Prevention of beta-amyloid degeneration of microglia by erythropoietin depends on Wnt1, the PI 3-K/mTOR pathway, Bad, and Bcl-xL. Aging (Albany NY), 4(3), 187–201.  https://doi.org/10.18632/aging.100440.CrossRefGoogle Scholar
  118. Sigurdsson, E. M. (2018). Tau Immunotherapies for Alzheimer’s Disease and Related Tauopathies: Progress and Potential Pitfalls. Journal of Alzheimers Disease, 64(s1), S555–Ss565.  https://doi.org/10.3233/jad-179937.CrossRefGoogle Scholar
  119. Slotkin, T. A., Seidler, F. J., Crain, B. J., Bell, J. M., Bissette, G., & Nemeroff, C. B. (1990). Regulatory changes in presynaptic cholinergic function assessed in rapid autopsy material from patients with Alzheimer disease: implications for etiology and therapy. Proceedings of the National Academy of Sciences of the United States of America, 87(7), 2452–2455.CrossRefPubMedPubMedCentralGoogle Scholar
  120. Sosa-Ortiz, A. L., Acosta-Castillo, I., & Prince, M. J. (2012). Epidemiology of dementias and Alzheimer’s disease. Archives of Medical Research, 43(8), 600–608.  https://doi.org/10.1016/j.arcmed.2012.11.003.CrossRefPubMedGoogle Scholar
  121. Thal, D. R., Rub, U., Orantes, M., & Braak, H. (2002). Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology, 58(12), 1791–1800.CrossRefPubMedGoogle Scholar
  122. Torup, L., & Leist, M. (2006). Development of non-erythropoietic erythropoietin variants for neuroprotection. In A. Höke (Ed.), Erythropoietin and the nervous system: novel therapeutic options for neuroprotection (pp. 211–219). Boston: Springer.CrossRefGoogle Scholar
  123. Ulrich, D. (2015). Amyloid-beta Impairs synaptic inhibition via GABA(A) receptor endocytosis. Journal of Neuroscience, 35(24), 9205–9210.  https://doi.org/10.1523/jneurosci.0950-15.2015.CrossRefPubMedGoogle Scholar
  124. van Marum, R. J. (2009). Update on the use of memantine in Alzheimer’s disease. Neuropsychiatric Disease and Treatment, 5, 237–247.CrossRefPubMedPubMedCentralGoogle Scholar
  125. Villa, P., Bigini, P., Mennini, T., Agnello, D., Laragione, T., Cagnotto, A., et al. (2003). Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. Journal of Experimental Medicine, 198(6), 971–975.  https://doi.org/10.1084/jem.20021067.CrossRefPubMedGoogle Scholar
  126. Viviani, B., Bartesaghi, S., Corsini, E., Villa, P., Ghezzi, P., Garau, A., et al. (2005). Erythropoietin protects primary hippocampal neurons increasing the expression of brain-derived neurotrophic factor. Journal of Neurochemistry, 93(2), 412–421.  https://doi.org/10.1111/j.1471-4159.2005.03033.x.CrossRefPubMedGoogle Scholar
  127. Vossel, K. A., Tartaglia, M. C., Nygaard, H. B., Zeman, A. Z., & Miller, B. L. (2017). Epileptic activity in Alzheimer’s disease: Causes and clinical relevance. Lancet Neurology, 16(4), 311–322.  https://doi.org/10.1016/s1474-4422(17)30044-3.CrossRefPubMedGoogle Scholar
  128. Wan, H. I., Jacobsen, J. S., Rutkowski, J. L., & Feuerstein, G. Z. (2009). Translational medicine lessons from flurizan’s failure in Alzheimer’s disease (AD) trial: Implication for future drug discovery and development for AD. Clinical and Translational Science, 2(3), 242–247.  https://doi.org/10.1111/j.1752-8062.2009.00121.x.CrossRefPubMedPubMedCentralGoogle Scholar
  129. Wang, W. Y., Tan, M. S., Yu, J. T., & Tan, L. (2015). Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Annals of Translational Medicine, 3(10), 136.  https://doi.org/10.3978/j.issn.2305-5839.2015.03.49.CrossRefPubMedPubMedCentralGoogle Scholar
  130. Weber, F., Bohrmann, B., Niewoehner, J., Fischer, J. A. A., Rueger, P., Tiefenthaler, G., et al. (2018). Brain Shuttle antibody for Alzheimer’s disease with attenuated peripheral effector function due to an inverted binding mode. Cell Reports, 22(1), 149–162.  https://doi.org/10.1016/j.celrep.2017.12.019.CrossRefPubMedGoogle Scholar
  131. Wenk, G. L. (2003). Neuropathologic changes in Alzheimer’s disease. Journal of Clinical Psychiatry, 64(Suppl 9), 7–10.PubMedGoogle Scholar
  132. Wenker, S. D., Chamorro, M. E., Vittori, D. C., & Nesse, A. B. (2013). Protective action of erythropoietin on neuronal damage induced by activated microglia. FEBS J, 280(7), 1630–1642.  https://doi.org/10.1111/febs.12172.CrossRefPubMedGoogle Scholar
  133. Wildburger, N. C., Esparza, T. J., & LeDuc, R. D. (2017). Diversity of Amyloid-beta Proteoforms in the Alzheimer’s Disease Brain. Scientific Reports, 7(1), 9520,  https://doi.org/10.1038/s41598-017-10422-x.CrossRefPubMedPubMedCentralGoogle Scholar
  134. Wyss-Coray, T. (2006). Inflammation in Alzheimer disease: Driving force, bystander or beneficial response? Nature Medicine, 12(9), 1005–1015.  https://doi.org/10.1038/nm1484.CrossRefPubMedGoogle Scholar
  135. Yu, Y. J., Atwal, J. K., Zhang, Y., Tong, R. K., Wildsmith, K. R., Tan, C., et al. (2014). Therapeutic bispecific antibodies cross the blood-brain barrier in nonhuman primates. Science Translational Medicine, 6(261), 261ra154.  https://doi.org/10.1126/scitranslmed.3009835.CrossRefPubMedGoogle Scholar
  136. Yu, Y. J., Zhang, Y., Kenrick, M., Hoyte, K., Luk, W., Lu, Y., et al. (2011). Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Science Translational Medicine, 3(84), 84ra44.  https://doi.org/10.1126/scitranslmed.3002230.CrossRefPubMedGoogle Scholar
  137. Zhang, Y., & Pardridge, W. M. (2001). Rapid transferrin efflux from brain to blood across the blood-brain barrier. Journal of Neurochemistry, 76(5), 1597–1600.CrossRefPubMedGoogle Scholar
  138. Zhang, Z., Song, M., Liu, X., Kang, S. S., Kwon, I. S., Duong, D. M., et al. (2014). Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer’s disease. Nature Medicine, 20(11), 1254–1262.  https://doi.org/10.1038/nm.3700.CrossRefPubMedPubMedCentralGoogle Scholar
  139. Zhou, Q. H., Boado, R. J., Lu, J. Z., Hui, E. K., & Pardridge, W. M. (2010). Re-engineering erythropoietin as an IgG fusion protein that penetrates the blood-brain barrier in the mouse. Molecular Pharmaceutics, 7(6), 2148–2155.  https://doi.org/10.1021/mp1001763.CrossRefPubMedGoogle Scholar
  140. Zhou, Q. H., Hui, E. K., Lu, J. Z., Boado, R. J., & Pardridge, W. M. (2011). Brain penetrating IgG-erythropoietin fusion protein is neuroprotective following intravenous treatment in Parkinson’s disease in the mouse. Brain Research, 1382, 315–320.  https://doi.org/10.1016/j.brainres.2011.01.061.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biopharmaceutical Sciences, School of Pharmacy and Health SciencesKeck Graduate InstituteClaremontUSA
  2. 2.College of MedicineCalifornia Northstate UniversityElk GroveUSA
  3. 3.Department of NeurosciencePomona CollegeClaremontUSA
  4. 4.Department of NeurologyUniversity of CaliforniaIrvineUSA

Personalised recommendations