Advertisement

CSF Aβ1–42, but not p-Tau181, Predicted Progression from Amnestic MCI to Alzheimer’s Disease Dementia

  • Liara Rizzi
  • Luciane Missiaggia
  • Matheus Roriz-Cruz
Original Paper
  • 30 Downloads

Abstract

The purpose of the study was to determine whether Aβ1–42 and p-Tau181 cerebral spinal fluid (CSF) levels can predict progression from amnestic mild cognitive impairment (aMCI) to Alzheimer’s disease dementia (ADD) in a 3-year follow-up study. All participants were evaluated blindly by a behavioral neurologist and a neuropsychologist, and classified according to the Petersen criteria for aMCI and according to the Clinical Dementia Rating (CDR) scale. Individuals were also submitted to lumbar puncture at baseline. Levels of Aβ1–42 and p-Tau181 were measured by immunoenzymatic assay. Values were adjusted for age and sex. Thirty-one of 33 (93.9%) participants completed follow-up. Approximately 39% of aMCI individuals progressed to ADD. The relative risk of developing ADD in those with Aβ1–42 CSF levels lower than 618.5 pg/mL was 17.4 times higher than in those whose levels were higher than 618.5 pg/mL (P = 0.003). p-Tau181 alone did not predict progression to ADD (P = 0.101). The relative risk in those with a p-Tau181/Aβ1–42 ratio higher than 0.135 was 5.7 times greater (P < 0.001). Aβ1–42 and p-Tau181 explained 40.1% of the verbal memory test subscore of the Consortium to Establish a Registry for Alzheimer’s Disease (ΔCERADs) variance (P = 0.008). Aβ1–42 strongly predicted progression from aMCI to ADD. p-Tau181 alone, or its relation to Aβ1–42, was inferior than Aβ1–42 alone as a predictor of progression to ADD.

Keywords

Alzheimer’s disease Amyloid protein CSF biomarkers MCI Tau 

Notes

Acknowledgements

This study was supported by CAPES-CNPQ (Grant Number: 476387/2013-2) and FIPE (Process: 13-0009). All authors declare that their funding source had no role in the study design, in the collection, analysis and interpretation of data, in the writing of the report, and in the decision to submit the paper for publication.

Compliance with Ethical Standards

Conflict of interest

The authors hereby declare that there are no actual or potential conflicts of interest that may have affected the discussion presented.

References

  1. Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., Gamst, A., Holtzman, D. M., Jagust, W. J., Petersen, R. C., Snyder, P. J., Carrillo, M. C., Thies, B., & Phelps, C. H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement, 7(3), 270–279.CrossRefPubMedCentralGoogle Scholar
  2. Almeida, O., & Almeida, S. (1999). Confiabilidade da versão brasileira da Escala de Depressão em Geriatria (GDS) versão reduzida. Arq Neuro-Psiquiatr, 57, 421–426.CrossRefGoogle Scholar
  3. Bertolucci, P. H., Okamoto, I. H., Brucki, S. M., Siviero, M. O., Toniolo Neto, J., & Ramos, L. R. (2001). Applicability of the CERAD neuropsychological battery to Brazilian elderly. Arq Neuropsiquiatr, 59(3-A), 532–536.CrossRefPubMedCentralGoogle Scholar
  4. Bertolucci, P. H. F., Okamoto, I. H., Toniolo Neto, J., Ramos, L. R., & Brucki, S. M. D. 1998. Desempenho da populacao Brasileira na bateria neuropsicologica do Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) Revista de Psiquiatria Clínica, 25, 80–83.Google Scholar
  5. Brucki, S. M., Malheiros, S. M., Okamoto, I. H., & Bertolucci, P. H. (1997). Normative data on the verbal fluency test in the animal category in our milieu. Arquivos de Neuro-psiquiatria, 55(1), 56–61.CrossRefPubMedCentralGoogle Scholar
  6. Buchhave, P., Minthon, L., Zetterberg, H., Wallin, A. K., Blennow, K., & Hansson, O. (2012). Cerebrospinal fluid levels of β-amyloid 1–42, but not of tau, are fully changed already 5 to 10 years before the onset of Alzheimer dementia. Archives of General Psychiatry, 69(1), 98–106.CrossRefPubMedCentralGoogle Scholar
  7. Chandler, M. J., Lacritz, L. H., Hynan, L. S., Barnard, H. D., Allen, G., Deschner, M., Weiner, M. F., & Cullum, C. M. (2005). A total score for the CERAD neuropsychological battery. Neurology, 65(1), 102–106.CrossRefPubMedCentralGoogle Scholar
  8. Dubois, B., Feldman, H. H., Jacova, C., Hampel, H., Molinuevo, J. L., Blennow, K., DeKosky, S. T., Gauthier, S., Selkoe, D., Bateman, R., Cappa, S., Crutch, S., Engelborghs, S., Frisoni, G. B., Fox, N. C., Galasko, D., Habert, M. O., Jicha, G. A., Nordberg, A., Pasquier, F., Rabinovici, G., Robert, P., Rowe, C., Salloway, S., Sarazin, M., Epelbaum, S., de Souza, L. C., Vellas, B., Visser, P. J., Schneider, L., Stern, Y., Scheltens, P., & Cummings, J. L. (2014). Advancing research diagnostic criteria for Alzheimer’s disease: The IWG-2 criteria. The Lancet Neurology, 13(6), 614–629.CrossRefPubMedCentralGoogle Scholar
  9. Ferreira, D., Perestelo-Pérez, L., Westman, E., Wahlund, L. O., Sarría, A., & Serrano-Aguilar, P. (2014a). Meta-review of CSF core biomarkers in Alzheimer’s disease: The state-of-the-art after the new revised diagnostic criteria. Frontiers in Aging Neuroscience, 6, 47.PubMedPubMedCentralGoogle Scholar
  10. Ferreira, D., Rivero-Santana, A., Perestelo-Pérez, L., Westman, E., Wahlund, L. O., Sarría, A., & Serrano-Aguilar, P. (2014b). Improving CSF biomarkers’ performance for predicting progression from mild cognitive impairment to Alzheimer’s disease by considering different confounding factors: A meta-analysis. Frontiers in Aging Neuroscience, 6, 287.PubMedPubMedCentralGoogle Scholar
  11. Gifford, K. A., Liu, D., Damon, S. M., Chapman, W. G., Iii, R., Samuels, R. R., Lu, L. R., Jefferson, Z., Initiative, A. L., A.s.D.N (2015). Subjective memory complaint only relates to verbal episodic memory performance in mild cognitive impairment. Journal of Alzheimer’s Disease, 44(1), 309–318.CrossRefPubMedCentralGoogle Scholar
  12. Haapalinna, F., Paajanen, T., Penttinen, J., Kokki, H., Kokki, M., Koivisto, A. M., Hartikainen, P., Solje, E., Hänninen, T., Remes, A. M., & Herukka, S. K. (2016). Low cerebrospinal fluid amyloid-beta concentration is associated with poorer delayed memory recall in women. Dementia and Geriatric Cognitive Disorders Extra, 6(2), 303–312.CrossRefPubMedCentralGoogle Scholar
  13. Haldenwanger, A., Eling, P., Kastrup, A., & Hildebrandt, H. (2010). Correlation between cognitive impairment and CSF biomarkers in amnesic MCI, non-amnesic MCI, and Alzheimer’s disease. Journal of Alzheimer’s Disease, 22(3), 971–980.CrossRefPubMedCentralGoogle Scholar
  14. Isaacs, B., & Kennie, A. T. (1973). The Set test as an aid to the detection of dementia in old people. The British Journal of Psychiatry, 123(575), 467–470.CrossRefPubMedCentralGoogle Scholar
  15. Jack, C. R., Knopman, D. S., Jagust, W. J., Petersen, R. C., Weiner, M. W., Aisen, P. S., Shaw, L. M., Vemuri, P., Wiste, H. J., Weigand, S. D., Lesnick, T. G., Pankratz, V. S., Donohue, M. C., & Trojanowski, J. Q. (2013). Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers. The Lancet Neurology, 12(2), 207–216.CrossRefPubMedCentralGoogle Scholar
  16. Jack, C. R., Knopman, D. S., Jagust, W. J., Shaw, L. M., Aisen, P. S., Weiner, M. W., Petersen, R. C., & Trojanowski, J. Q. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. The Lancet Neurology, 9(1), 119–128.CrossRefPubMedCentralGoogle Scholar
  17. Kaplan, E., Goodglass, H., & Weintraub, S. (1983). Boston naming test. Philadelphia: Lea & Febiger.Google Scholar
  18. McGeer, P. L., & McGeer, E. G. (2013). The amyloid cascade-inflammatory hypothesis of Alzheimer disease: Implications for therapy. Acta Neuropathology, 126(4), 479–497.CrossRefGoogle Scholar
  19. McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R., Kawas, C. H., Klunk, W. E., Koroshetz, W. J., Manly, J. J., Mayeux, R., Mohs, R. C., Morris, J. C., Rossor, M. N., Scheltens, P., Carrillo, M. C., Thies, B., Weintraub, S., & Phelps, C. H. (2011). The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s and Dementia, 7(3), 263–269.CrossRefPubMedCentralGoogle Scholar
  20. Memória, C. M., Yassuda, M. S., Nakano, E. Y., & Forlenza, O. V. (2013). Brief screening for mild cognitive impairment: Validation of the Brazilian version of the Montreal cognitive assessment. International Journal of Geriatric Psychiatry, 28(1), 34–40.CrossRefPubMedCentralGoogle Scholar
  21. Michaud, T. L., Kane, R. L., McCarten, J. R., Gaugler, J. E., Nyman, J. A., Kuntz, K. M., & Initiative, A. S. D. N. (2015). Risk stratification using cerebrospinal fluid biomarkers in patients with mild cognitive impairment: An exploratory analysis. Journal of Alzheimer’s Disease, 47(3), 729–740.CrossRefPubMedCentralGoogle Scholar
  22. Miotto, E. C., Sato, J., Lucia, M. C., Camargo, C. H., & Scaff, M. (2010). Development of an adapted version of the Boston Naming Test for Portuguese speakers. Revista Brasileira de Psiquiatria, 32(3), 279–282.CrossRefPubMedCentralGoogle Scholar
  23. Molinuevo, J. L., Blennow, K., Dubois, B., Engelborghs, S., Lewczuk, P., Perret-Liaudet, A., Teunissen, C. E., & Parnetti, L. (2014). The clinical use of cerebrospinal fluid biomarker testing for Alzheimer’s disease diagnosis: A consensus paper from the Alzheimer’s Biomarkers Standardization Initiative. Alzheimer’s & Dementia, 10, 808–817CrossRefGoogle Scholar
  24. Morris, J. C. (1993). The clinical dementia rating (CDR): Current version and scoring rules. Neurology, 43(11), 2412–2414.CrossRefGoogle Scholar
  25. Morris, J. C., Blennow, K., Froelich, L., Nordberg, A., Soininen, H., Waldemar, G., Wahlund, L. O., & Dubois, B. (2014). Harmonized diagnostic criteria for Alzheimer’s disease: Recommendations. Journal of Internal Medicine, 275(3), 204–213.CrossRefPubMedCentralGoogle Scholar
  26. Morris, J. C., Heyman, A., Mohs, R. C., Hughes, J. P., van Belle, G., Fillenbaum, G., Mellits, E. D., & Clark, C. (1989). The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology, 39(9), 1159–1165.CrossRefPubMedCentralGoogle Scholar
  27. Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., Cummings, J. L., & Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatric Society, 53(4), 695–699.CrossRefGoogle Scholar
  28. Petersen, R. C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256(3), 183–194.CrossRefPubMedCentralGoogle Scholar
  29. Petersen, R. C., Caracciolo, B., Brayne, C., Gauthier, S., Jelic, V., & Fratiglioni, L. (2014). Mild cognitive impairment: A concept in evolution. Journal of Internal Medicine, 275(3), 214–228.CrossRefPubMedCentralGoogle Scholar
  30. Prestia, A., Caroli, A., Wade, S. K., van der Flier, W. M., Ossenkoppele, R., Van Berckel, B., Barkhof, F., Teunissen, C. E., Wall, A., Carter, S. F., Schöll, M., Choo, I. H., Nordberg, A., Scheltens, P., & Frisoni, G. B. (2015). Prediction of AD dementia by biomarkers following the NIA-AA and IWG diagnostic criteria in MCI patients from three European memory clinics. Alzheimer’s & Dementia, 11(10), 1191–1201.CrossRefGoogle Scholar
  31. Rami, L., Fortea, J., Bosch, B., Solé-Padullés, C., Lladó, A., Iranzo, A., Sánchez-Valle, R., & Molinuevo, J. L. (2011). Cerebrospinal fluid biomarkers and memory present distinct associations along the continuum from healthy subjects to AD patients. Journal of Alzheimer’s Disease, 23(2), 319–326.CrossRefPubMedCentralGoogle Scholar
  32. Ritchie, C., Smailagic, N., Noel-Storr, A. H., Takwoingi, Y., Flicker, L., Mason, S. E., & McShane, R. 2014. Plasma and cerebrospinal fluid amyloid beta for the diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database System Review, 6, CD008782.Google Scholar
  33. Rizzi, L., Maria Portal, M., Batista, C. E. A., Missiaggia, L., & Roriz-Cruz, M. (2018). CSF Aβ1–42, but not p-Tau181, differentiates aMCI from SCI. Brain Research, 1678, 27–31.CrossRefPubMedCentralGoogle Scholar
  34. Rosen, W. G., Mohs, R. C., & Davis, K. L. (1984). A new rating scale for Alzheimer’s disease. American Journal of Psychiatry, 141(11), 1356–1364.CrossRefPubMedCentralGoogle Scholar
  35. Samtani, M. N., Raghavan, N., Shi, Y., Novak, G., Farnum, M., Lobanov, V., Schultz, T., Yang, E., DiBernardo, A., Narayan, V. A., & Initiative, A. s. D. N. (2013). Disease progression model in subjects with mild cognitive impairment from the Alzheimer’s disease neuroimaging initiative: CSF biomarkers predict population subtypes. The British Journal of Clinical Pharmacology, 75(1), 146–161.CrossRefPubMedCentralGoogle Scholar
  36. Schjønning Nielsen, M., Simonsen, A. H., Siersma, V., Hasselbalch, S. G., & Høgh, P. (2016). Are CSF biomarkers useful as prognostic indicators in diagnostically unresolved cognitively impaired patients in a normal clinical setting. Dementia and Geriatric Cognitive Disorders Extra, 6(3), 465–476.CrossRefPubMedCentralGoogle Scholar
  37. Tang, W., Huang, Q., Wang, Y., Wang, Z. Y., & Yao, Y. Y. (2014). Assessment of CSF Aβ42 as an aid to discriminating Alzheimer’s disease from other dementias and mild cognitive impairment: A meta-analysis of 50 studies. Journal of Neurology Science, 345(1–2), 26–36.CrossRefGoogle Scholar
  38. Tondelli, M., Bedin, R., Chiari, A., Molinari, M. A., Bonifacio, G., Lelli, N., Trenti, T., & Nichelli, P. (2015). Role of cerebrospinal fluid biomarkers to predict conversion to dementia in patients with mild cognitive impairment: A clinical cohort study. Clinical Chemistry Laboratory Medicine, 53(3), 453–460.CrossRefPubMedCentralGoogle Scholar
  39. Trzepacz, P. T., Hochstetler, H., Wang, S., Walker, B., Saykin, A. J., & Initiative, A. S. D. N. (2015). Relationship between the Montreal Cognitive Assessment and Mini-mental State Examination for assessment of mild cognitive impairment in older adults. BMC Geriatric, 15, 107.CrossRefGoogle Scholar
  40. Vos, S. J., van Rossum, I. A., Verhey, F., Knol, D. L., Soininen, H., Wahlund, L. O., Hampel, H., Tsolaki, M., Minthon, L., Frisoni, G. B., Froelich, L., Nobili, F., van der Flier, W., Blennow, K., Wolz, R., Scheltens, P., & Visser, P. J. (2013). Prediction of Alzheimer disease in subjects with amnestic and nonamnestic MCI. Neurology 80(12), 1124–1132.CrossRefPubMedCentralGoogle Scholar
  41. Yesavage, J. A., Brink, T. L., Rose, T. L., Lum, O., Huang, V., Adey, M., & Leirer, V. O. (1982). Development and validation of a geriatric depression screening scale: A preliminary report. Journal of Psychiatric Research, 17(1), 37–49.CrossRefPubMedCentralGoogle Scholar
  42. Youden, W. J. (1950). Index for rating diagnostic tests. Cancer, 3(1), 32–35.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Geriatric Neurology, Neurology ServiceHospital de Clínicas de Porto Alegre (HCPA)Porto AlegreBrazil
  2. 2.School of MedicineUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil

Personalised recommendations