Advertisement

Hsc70 Interacts with β4GalT5 to Regulate the Growth of Gliomas

  • Guan Sun
  • Ying Cao
  • Xueliang Dai
  • Min Li
  • Jun Guo
Original Paper
  • 32 Downloads

Abstract

Heat shock cognate protein 70 (Hsc70) is a key mediator for the maintenance of intracellular proteins and regulates cellular activities. And it is elevated in various tumor tissues including glioma, which is closely related to the malignancy and poor prognosis of the tumors. However, the effects of Hsc70 on gliomas and its regulatory mechanism have not yet been elucidated. In the present study, we found that Hsc70 was overexpressed in glioma tissues and cultured glioma cells. Furthermore, Hsc70 expression exhibited positive correlation with the grades of gliomas. Knockdown of Hsc70 could effectively inhibit cell proliferation and increase cell apoptosis. Furthermore, we identified that β4GalT5 was a critical target for Hsc70-mediated anti-glioma effects. Blocking β4GalT5 activity could effectively reverse the anti-tumor effect of Hsc70. Taken together, these data indicate that Hsc70 regulates β4GalT5 levels, and possibly plays a role in cell proliferation and apoptosis of glioma.

Keywords

Hsc70 β4GalT5 Proliferation Apoptosis Glioma 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81672499), Jiangsu Province’s Natural Science Foundation (BK20141256, BK20161318), and Yancheng Medical Science Development Foundation (YK2014011, YK 2015001). Top Talent Project of six-one-projects (LGY2018038).

Compliance with Ethical Standards

Conflict of interest

The authors declare no potential conflicts of interest.

References

  1. Beaman, G. M., Dennison, S. R., Chatfield, L. K., & Phoenix, D. A. (2014). Reliability of HSP70 (HSPA) expression as a prognostic marker in glioma. Molecular and Cellular Biochemistry, 393(2), 301–307.CrossRefGoogle Scholar
  2. Beckmann, R. P., Mizzen, L. E., & Welch, W. J. (1990). Interaction of Hsp 70 with newly synthesized proteins: Implications for protein folding and assembly. Science, 248(4957), 850–854.CrossRefGoogle Scholar
  3. Bukau, B., & Horwich, A. L. (1998). The Hsp70 and Hsp60 chaperone machines. Cell, 92(3), 351–366.CrossRefGoogle Scholar
  4. Chen, X., Jiang, J., Yang, J., Chen, C., Sun, M., Wei, Y., Guang, X., & Gu, J. (2006). Down-regulation of the expression of beta1, 4-galactosyltransferase V promotes integrin beta1 maturation. Biochemical and Biophysical Research Communication, 343(3), 910–916.CrossRefGoogle Scholar
  5. Cui, C., Chen, X., Liu, Y., Cao, B., Xing, Y., Liu, C., Yang, F., Li, Y., Yang, T., Hua, L., Tian, M., Wei, Y., Gong, Y., & Jiang, J.β(2017). β1,4-Galactosyltransferase V activates Notch1 signaling in glioma stem-like cells and promotes their transdifferentiation into endothelial cells. Journal of Biological Chemistry.  https://doi.org/10.1074/jbc.RA117.000682.Google Scholar
  6. D’Arrigo, P., Russo, M., Rea, A., Tufano, M., Guadagno, E., Del Basso De Caro, M. L., Pacelli, R., Hausch, F., Staibano, S., Ilardi, G., Parisi, S., & Romano, M. F. (2017). A regulatory role for the co-chaperone FKBP51s in PD-L1 expression in glioma. Oncotarget, 8(40):68291–68304.Google Scholar
  7. Ding, Y., Song, N., Liu, C., He, T., Zhuo, W., He, X., Chen, Y., Song, X., Fu, Y., & Luo, Y. (2012). Heat shock cognate 70 regulates the translocation and angiogenic function of nucleolin. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(9), 126–134.CrossRefGoogle Scholar
  8. Ferguson, S. D. (2011). Malignant gliomas: Diagnosis and treatment. Disease-a-Month, 57(10), 558–569.CrossRefGoogle Scholar
  9. Hantschel, M., Pfister, K., Jordan, A., Scholz, R., Andreesen, R., & Schmitz, G. (2000). Hsp70 plasma membrane expression on primary tumor biopsy material and bone marrow of leukemic patients. Cell Stress and Chaperones, 5(5), 438–442.CrossRefGoogle Scholar
  10. Hartl, F. U., & Hayer-Hartl, M. (2002). Molecular chaperones in the cytosol: From nascent chain to folded protein. Science, 295(5561), 1852–1858.CrossRefGoogle Scholar
  11. Isomoto, H., Oka, M., Yano, Y., Kanazawa, Y., Soda, H., Terada, R., Yasutake, T., Nakayama, T., Shikuwa, S., Takeshima, F., Udono, H., Murata, I., Ohtsuka, K., & Kohno, S. (2003). Expression of heat shock protein (Hsp) 70 and Hsp 40 in gastric cancer. Cancer Letters, 198(2), 219–228.CrossRefGoogle Scholar
  12. Jiang, J., Chen, X., Shen, J., Wei, Y., Wu, T., Yang, Y., Wang, H., Zong, H., Yang, J., Zhang, S., Xie, J., Kong, X., Liu, W., & Gu, J. (2006). Beta1,4-galactosyltransferase V functions as a positive growth regulator in glioma. Journal of Biological Chemistry, 281(14), 9482–9489.CrossRefGoogle Scholar
  13. Kumagai, T., Sato, T., Natsuka, S., Kobayashi, Y., Zhou, D., Shinkai, T., & Hayakawa, S., & Furukawa, K. (2010). Involvement of murine β-1,4-galactosyltransferase V in lactosylceramide biosynthesis. Glycoconjugate Journal, 27(7–9), 685–695.CrossRefGoogle Scholar
  14. Liu, W., Vielhauer, G. A., Holzbeierlein, J. M., Zhao, H., Ghosh, S., Brown, D., Lee, E., & Blagg, B. S. (2015). KU675, a concomitant heat-shock protein inhibitor of Hsp90 and Hsc70 that manifests isoform selectivity for Hsp90α in prostate cancer cells. Molecular Pharmacology, 88(1), 121–130.CrossRefGoogle Scholar
  15. Ramp, U., Mahotka, C., Heikaus, S., Shibata, T., Grimm, M. O., Willers, R., & Gabbert, H. E. (2007). Expression of heat shock protein 70 in renal cell carcinoma and its relation to tumor progression and prognosis. Histology and Histopathology, 22(10), 1099–1107.Google Scholar
  16. Robertson, T., Koszyca, B., & Gonzales, M. (2011). Overview and recent advances in neuropathology. Part 1: Central nervous system tumours. Pathology, 43(2), 88–92.CrossRefGoogle Scholar
  17. Shirane, K., Sato, T., Segawa, K., & Furukawa, K. (1999). Involvement of beta-1,4-galactosyltransferase V in malignant transformation-associated changes in glycosylation. Biochemical and Biophysical Research Communication, 265(2), 434–438.CrossRefGoogle Scholar
  18. Tanaka, M., Mun, S., Harada, A., Ohkawa, Y., Inagaki, A., Sano, S., Takahashi, K., Izumi, Y., Osada-Oka, M., Wanibuchi, H., Yamagata, M., Yukimura, T., Miura, K., Shiota, M., & Iwao, H. (2014). Hsc70 contributes to cancer cell survival by preventing Rab1A degradation under stress conditions. PLoS ONE, 9(5), e96785.CrossRefGoogle Scholar
  19. Vila-Carriles, W. H., Zhou, Z. H., Bubien, J. K., Fuller, C. M., & Benos, D. J. (2007). Participation of the chaperone Hsc70 in the trafficking and functional expression of ASIC2 in glioma cells. Journal of Biological Chemistry, 282(47), 34381–34391.CrossRefGoogle Scholar
  20. Wang, B. S., Yang, Y., Yang, H., Liu, Y. Z., Hao, J. J., Zhang, Y., Shi, Z. Z., Jia, X. M., Zhan, Q. M., & Wang, M. R. (2013). PKCι counteracts oxidative stress by regulating Hsc70 in an esophageal cancer cell line. Cell Stress and Chaperones, 18(3), 359–366.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Neurosurgery, Yancheng City No. 1 People’s HospitalThe Fourth Affiliated Hospital of Nantong UniversityYanchengPeople’s Republic of China
  2. 2.Department of Ear-Nose-Throat, The Second People’s Hospital of Huai’AnHuai’An Affiliated Hospital of Xuzhou Medical UniversityHuai’anPeople’s Republic of China
  3. 3.Department of NeurosurgeryZoucheng Peoples’ HospitalZouchengPeople’s Republic of China
  4. 4.Department of NeurosurgeryJiangning Hospital Affiliated with Nanjing Medical UniversityNanjingPeople’s Republic of China

Personalised recommendations